首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Animal behaviour》1988,36(3):814-824
It has been proposed that ontogeny may be an important constraint on the evolution of morphological traits. In this paper, ontogeny is discussed as a possible constraint on behavioural evolution. A literature review of the development of song in oscine birds (Passeriformes; Passeres) shows that song development follows von Baer's law; that is, that development proceeds from early, generally distributed stages to later, specialized stages. Song ontogeny is found to parallel phylogeny in a lineage of sparrows (Emberizidae; Emberizinae). Possible cases of paedomorphosis (slowing down or truncation of development) in bird song are discussed, specifically in the family Mimidae and in the reed warbler, Acrocephalus palustris (Muscicapidae; Sylviinae). Finally, the implications of developmental constraints for the study of the adaptive significance of behaviour are discussed.  相似文献   

2.
Past investigation of gametophyte ontogeny in Gleichenia bifida indicated that there was considerable plasticity in early developmental stages (spore germination to initiation of two-dimensional growth). Recent examination has shown that this early ontogeny is not so plastic and can be defined by a characteristic series of developmental stages. Cell divisions following germination result in a three-dimensional mass of cells which secondarily initiates the two-dimensional thallus. Early development as a three-dimensional mass correlates with other gametophyte and sporophyte features which indicate Gleichenia to be phylogenetically primitive. This pattern of early ontogeny may also be of adaptive significance in enabling the gametophytes to survive the environmental fluctuations of the exposed, bare-soil habitats which they colonize.  相似文献   

3.
Sexual dimorphism can evolve when males and females differ in phenotypic optima. Genetic constraints can, however, limit the evolution of sexual dimorphism. One possible constraint is derived from alleles expressed in both sexes. Because males and females share most of their genome, shared alleles with different fitness effects between sexes are faced with intralocus sexual conflict. Another potential constraint is derived from genetic correlations between developmental stages. Sexually dimorphic traits are often favoured at adult stages, but selected against as juvenile, so developmental decoupling of traits between ontogenetic stages may be necessary for the evolution of sexual dimorphism in adults. Resolving intralocus conflicts between sexes and ages is therefore a key to the evolution of age‐specific expression of sexual dimorphism. We investigated the genetic architecture of divergence in the ontogeny of sexual dimorphism between two populations of the Japanese medaka (Oryzias latipes) that differ in the magnitude of dimorphism in anal and dorsal fin length. Quantitative trait loci (QTL) mapping revealed that few QTL had consistent effects throughout ontogenetic stages and the majority of QTL change the sizes and directions of effects on fin growth rates during ontogeny. We also found that most QTL were sex‐specific, suggesting that intralocus sexual conflict is almost resolved. Our results indicate that sex‐ and age‐specific QTL enable the populations to achieve optimal developmental trajectories of sexually dimorphic traits in response to complex natural and sexual selection.  相似文献   

4.
Adopting an integrative approach to the study of sequence heterochrony, we compared the timing of developmental events encompassing a mixture of developmental stages and functional traits in the embryos of 12 species of basommatophoran snails in an explicit phylogenetic framework. PARSIMOV analysis demonstrated clear functional heterochronies associated both with basal branches within the phylogeny and with terminal speciation events. A consensus of changes inferred under both accelerated transformation and delayed transformation optimizations identified four heterochronies where the direction of movement was known plus six twin heterochronies where the relative movements of the two events could not be assigned. On average, 0.5 and 0.58 events were inferred to have changed their position in the developmental sequence on internal and terminal branches of the phylogeny, respectively; these values are comparable with frequencies of sequence heterochrony reported in mammals. Directional heterochronies such as the early occurrence of body flexing in relation to the ontogeny of the eye spots, heart beat, and free swimming events occurred convergently and/or at different levels (i.e., familial, generic, and species) within the phylogeny. Such a functional approach to the study of developmental sequences has highlighted the possibility that heterochrony may have played a prominent role in the evolution of this group of invertebrates.  相似文献   

5.
What is a larva, if it is not what survives of an ancestor's adult, compressed into a transient pre‐reproductive phase, as suggested by Haeckel's largely disreputed model of evolution by recapitulation? A recently published article hypothesizes that larva and adult of holometabolous insects are developmental expressions of two different genomes coexisting in the same animal as a result of an ancient hybridization event between an onychophoran and a primitive insect with eventless post‐embryonic development. More likely, however, larvae originated from late embryonic or early post‐embryonic stages of ancestors with direct development. Evolutionary novelties would thus be intercalary rather than terminal, with respect to the ancestor's ontogenetic schedule. This scenario, supported by current research on holometabolous insects and marine invertebrates with complex life cycles, offers a serious alternative to the traditional scenario (‘what is early in ontogeny is also early in phylogeny’) underlying the current perception of the evolution of genetic regulatory networks.  相似文献   

6.
7.
Anthropogenic change in the abundance or identity of dominant top predators may induce reorganizations in whole food webs. Predicting these reorganizations requires identifying the biological rules that govern trophic niches. However, we still lack a detailed understanding of the respective contributions of body size, behaviour (e.g. match between predator hunting mode and prey antipredator strategy), phylogeny and/or ontogeny in determining both the presence and strength of trophic interactions. Here, we address this question by measuring zooplankton numerical response to fish predators in lake enclosures. We compared the fit to zooplankton count data of models grouping zooplankters based either on 1) body sizes, 2) antipredator behaviour, 3) body size combined with antipredator behaviour or on 4) phylogeny combined with ontogeny (i.e. different life stages of copepods). Body size was a better predictor of zooplankton numerical response to fish than antipredator behaviour, but combining body size and behaviour provided even better predictions. Models based on phylogeny combined with ontogeny clearly outperformed those based on other zooplankton grouping rules, except when phylogeny was poorly resolved. Removing ontogenetic information plagued the predictive power of the highly-resolved (genus-level) phylogenetic grouping but not of medium-resolved or poorly-resolved phylogenetic grouping. Our results support the recent use of phylogeny as a superior surrogate for traits controlling trophic niches, and further highlight the added value of combining phylogeny with ontogenetic traits. Further improvements in our mechanistic understanding of how trophic networks are shaped are bound to uncovering the trophic traits captured by phylogeny and ontogeny, but that currently remain hidden to us.  相似文献   

8.
Referring the developmental canalization to stabilizing selection may be a bias that results from the ignorance of developmental mechanisms. Considering the morphological evolution of one-cell trichomes in Draba plants makes it clear that the transition from continuous variation in morphological traits to developmental creods occurs in the evolution of remote lineages of the genus irrespective of contribution to the net fitness. Morphological diversification of trichome branching is not under selection control, being a physical consequence of the trichome cell volume growth equilibrated by complication of the cell surface shape. At the start of evolution, the trichome development refers not to an individual trichome, but rather to repetitive trichome modules (branches), whose spatiotemporal order is arbitrary, except that some variants of branching depend on events that occur at earlier developmental stages more than others. Under selection fluctuating at random, or with no selection at all, fixing of these variants leads to the formation of trichome ontogeny, in which earlier developmental stages correspond to later stages of developmental evolution.  相似文献   

9.

Background  

Karl Ernst Von Baer noted that species tend to show greater morphological divergence in later stages of development when compared to earlier stages. Darwin originally interpreted these observations via a selectionist framework, suggesting that divergence should be greatest during ontogenic stages in which organisms experienced varying 'conditions of existence' and opportunity for differential selection. Modern hypotheses have focused on the notion that genes and structures involved in early development will be under stronger purifying selection due to the deleterious pleiotropic effects of mutations propagating over the course of ontogeny, also known as the developmental constraint hypothesis.  相似文献   

10.
Phenotypic traits differ between plants in different environments and within individuals as they grow and develop. Comparing plants in different environments at a common age can obscure the developmental basis for differences in phenotype means in different environments. Here, we compared trait means and patterns of trait ontogeny for perennial (Viola septemloba) plants growing in environments that differed in quality either naturally or due to experimental manipulation. Consistent with predictions for adaptive stress resistance, plants grown in lower-quality environments allocated proportionately more biomass to roots and rhizomes, and produced smaller, thicker and longer-lived leaves. The developmental trajectory of almost all traits differed between environments, and these differences contributed to observed differences in trait means. Plants were able to alter their initial developmental trajectory in response to an increase in resources after 8 wk of growth. This result contrasts with previous findings, and may reflect a difference in the way that annual and perennial species respond to stress. Our results demonstrate the complexity of interactions between the environment and the development of the phenotype that underlie putatively adaptive plastic responses to environment quality.  相似文献   

11.
The cichlid fishes comprise the largest extant vertebrate family and are the quintessential example of rapid “explosive” adaptive radiations and phenotypic diversification. Despite low genetic divergence, East African cichlids harbor a spectacular intra- and interspecific morphological diversity, including the hyper-variable, neural crest (NC)-derived traits such as coloration and craniofacial skeleton. Although the genetic and developmental basis of these phenotypes has been investigated, understanding of when, and specifically how early, in ontogeny species-specific differences emerge, remains limited. Since adult traits often originate during embryonic development, the processes of embryogenesis could serve as a potential source of species-specific variation. Consequently, we designed a staging system by which we compare the features of embryogenesis between three Malawi cichlid species—Astatotilapia calliptera, Tropheops sp. ‘mauve’ and Rhamphochromis sp. “chilingali”—representing a wide spectrum of variation in pigmentation and craniofacial morphologies. Our results showed fundamental differences in multiple aspects of embryogenesis that could underlie interspecific divergence in adult adaptive traits. First, we identified variation in the somite number and signatures of temporal variation, or heterochrony, in the rates of somite formation. The heterochrony was also evident within and between species throughout ontogeny, up to the juvenile stages. Finally, the identified interspecific differences in the development of pigmentation and craniofacial cartilages, present at the earliest stages of their overt formation, provide compelling evidence that the species-specific trajectories begin divergence during early embryogenesis, potentially during somitogenesis and NC development. Altogether, our results expand our understanding of fundamental cichlid biology and provide new insights into the developmental origins of vertebrate morphological diversity.  相似文献   

12.
Animal personality is defined as consistent individual differences across time and situations, but little is known about how or when those differences are established during development. Likewise, several studies described the personality structure of adult capuchin monkeys, without assessing the ontogeny of these personality traits. We analyzed the behavioral repertoire of 12 wild infants (9 males, 3 females) yellow-breasted capuchin monkeys (Sapajus xanthosternos), in Una Biological Reserve (Bahia, Brazil). Each infant was observed and filmed weekly from birth until 36 months, through daily focal sampling. We analyzed the behavior of each individual in 10 developmental points. By means of component reduction (principal component analysis), we obtained four behavioral traits: Sociability, Anxiety, Openness, and Activity. We investigated whether there were developmental effects on those traits by fitting regression models for the effect of time on behavioral traits, controlling for monkey identity, sex, and cohort. Sociability (decreasing) and Anxiety (increasing) changed significantly along development. By means of repeatability analysis, we did not find intra-individual consistency across time in those traits, so we cannot discriminate stable personality traits in early ontogeny. Our results show that the personality structure of capuchin monkeys is not established during early development, in agreement with the literature on human personality.  相似文献   

13.
Environmental conditions such as temperature and water velocity may induce changes among alternative developmental pathways, i.e. phenotypic responses, in vertebrates. However, the extent to which the environment induces developmental plasticity and integrated developmental responses during early ontogeny of fishes remains poorly documented. We analyzed the responses of newly hatched Arctic charr (Salvelinus alpinus) to four experimental water velocities during 100 days of development. To our knowledge, this work is the first to analyze developmental plasticity responses of body morphology to an experimental gradient of water velocities during early ontogeny of fish. Arctic charr body size and shape responses show first, that morphometric traits display significant differences between low and high water velocities, thus revealing directional changes in body traits. Secondly, trait variation allows the recognition of critical ontogenetic periods that are most responsive to environmental constraints (40-70 and 80-90 days) and exhibit different levels of developmental plasticity. This is supported by the observation of asynchronous timing of variation peaks among treatments. Third, morphological interaction of traits is developmentally plastic and time-dependent. We suggest that developmental responses of traits plasticity and interaction at critical ontogenetic periods are congruent with specific environmental conditions to maintain the functional integrity of the organism.  相似文献   

14.
Von Baer's laws of development observe that an embryo, in the course of its ontogeny, progresses through a series of forms which diverge increasingly from the embryonic forms of related species, and in an evolutionary interpretation, from those of its phylogenetic ancestors. This observation on the relation of phylogeny to ontogeny is explained by Wimsatt's (1986) "Developmental Lock" model of complex generative systems, which proposes that evolution is constrained to alter developmental programs in a manner that usually modifies or adds new complexity to pre-existent developmental functions at positions relatively "downstream" in the causal structure. If the Developmental Lock model is correct, (1) evolution should have resulted in hierarchically ordered developmental programs, and (2) the most important developmental functions in the hierarchy should be ancient. Wimsatt also suggests that developmental functions be analyzed according to a degree property called "generative entrenchment", which replaces the temporal analysis in the traditional formulation of von Baer's laws. Herein, a substantial body of data on Drosophila ontogeny is analyzed according to generative entrenchment, in order to try the effectiveness of this form of analysis, and also to empirically test these two main predictions of the Developmental Lock model. The novel analytic approach proves to be fruitful, both in generating experimental hypotheses and in ordering existing data. Moreover, data concerning the developmental functions discussed here indicate that the order of the Drosophila developmental program conforms to the predictions of Wimsatt's model with few deviations. Explanations of the anomalies are offered, along with proposals for experiments to test some of those explanations.  相似文献   

15.
Heterochronic development has been proposed to have played an important role in the evolution of echinoderms. In the class Ophiuroidea, paedomorphosis (retention of juvenile characters into adulthood) has been documented in the families Ophiuridae and Ophiolepididae but not been investigated on a broader taxonomic scale. Historical errors, confusing juvenile stages with paedomorphic species, show the difficulties in correctly identifying the effects of heterochrony on development and evolution. This study presents a detailed analysis of 40 species with morphologies showing various degrees of juvenile appearance in late ontogeny. They are compared to a range of early ontogenetic stages from paedomorphic and non-paedomorphic species. Both quantitative and qualitative measurements are taken and analysed. The results suggest that strongly paedomorphic species are usually larger than other species at comparable developmental stage. The findings support recent notions of polyphyletic origin of the families Ophiuridae and Ophiolepididae. The importance of paedomorphosis and its correct recognition for the practice of taxonomy and phylogeny are emphasized.  相似文献   

16.
Modern human populations differ in developmental processes and in several phenotypic traits. However, the link between ontogenetic variation and human diversification has not been frequently addressed. Here, we analysed craniofacial ontogenies by means of geometric-morphometrics of Europeans and Southern Africans, according to dental and chronological ages. Results suggest that different adult cranial morphologies between Southern Africans and Europeans arise by a combination of processes that involve traits modified during the prenatal life and others that diverge during early postnatal ontogeny. Main craniofacial changes indicate that Europeans differ from Southern Africans by increasing facial developmental rates and extending the attainment of adult size and shape. Since other studies have suggested that native subsaharan populations attain adulthood earlier than Europeans, it is probable that facial ontogeny is linked with other developmental mechanisms that control the timing of maturation in other variables. Southern Africans appear as retaining young features in adulthood. Facial ontogeny in Europeans produces taller and narrower noses, which seems as an adaptation to colder environments. The lack of these morphological traits in Neanderthals, who lived in cold environments, seems a paradox, but it is probably the consequence of a warm-adapted faces together with precocious maturation. When modern Homo sapiens migrated into Asia and Europe, colder environments might establish pressures that constrained facial growth and development in order to depart from the warm-adapted morphology. Our results provide some answers about how cranial growth and development occur in two human populations and when developmental shifts take place providing a better adaptation to environmental constraints.  相似文献   

17.
We performed a tree-based analysis of trilobite postembryonic development in a sample of 60 species for which quantitative data on segmentation and growth increments between putative successive instars are available, and that spans much of the temporal, phylogenetic, and habitat range of the group. Three developmental traits were investigated: the developmental mode of trunk segmentation, the average per-molt growth rate, and the conformity to a constant per-molt growth rate (Dyar's rule), for which an original metric was devised. Growth rates are within the normal range with respect to other arthropods and show overall conformity to Dyar's rule. Randomization tests indicate statistically significant phylogenetic signal for growth in early juveniles but not in later stages. Among five evolutionary models fit via maximum likelihood, one in which growth rates vary independently among species, analogous to Brownian motion on a star phylogeny, is the best supported in all ontogenetic stages, although a model with a single, stationary peak to which growth rates are attracted also garners nontrivial support. These results are not consistent with unbounded, Brownian-motion-like evolutionary dynamics, but instead suggest the influence of an adaptive zone. Our results suggest that developmental traits in trilobites were relatively labile during evolutionary history.  相似文献   

18.
Understanding the link between ontogeny (development) and phylogeny (evolution) remains a key aim of biology. Heterochrony, the altered timing of developmental events between ancestors and descendants, could be such a link although the processes responsible for producing heterochrony, widely viewed as an interspecific phenomenon, are still unclear. However, intraspecific variation in developmental event timing, if heritable, could provide the raw material from which heterochronies originate. To date, however, heritable developmental event timing has not been demonstrated, although recent work did suggest a genetic basis for intraspecific differences in event timing in the embryonic development of the pond snail, Radix balthica. Consequently, here we used high-resolution (temporal and spatial) imaging of the entire embryonic development of R. balthica to perform a parent–offspring comparison of the timing of twelve, physiological and morphological developmental events. Between-parent differences in the timing of all events were good predictors of such timing differences between their offspring, and heritability was demonstrated for two of these events (foot attachment and crawling). Such heritable intraspecific variation in developmental event timing could be the raw material for speciation events, providing a fundamental link between ontogeny and phylogeny, via heterochrony.  相似文献   

19.
Studies of morphological integration can provide insight into developmental patterns, even in extinct taxa known only from skeletal remains, thus making them an important tool for studies of evolutionary development. However, interpreting patterns of integration and assessing their significance for organismal evolution requires detailed understanding of the developmental interactions that shape integration and how those interactions change through ontogeny. Thus far, relatively little comparative data have been produced for this important topic, and the data that do exist are overwhelmingly from humans and their close relatives or from laboratory models such as mice. Here, we compare data on shape, variance and integration through postnatal ontogeny for a placental mammal, the least shrew, Cryptotis parva, and a marsupial mammal, the gray short-tailed opossum, Monodelphis domestica. Cranial variance decreased dramatically from early to late ontogeny in Cryptotis, but remained stable through ontogeny in Monodelphis, potentially reflecting functional constraints related to the short gestation and early ossification of oral bones in marsupials. Both Cryptotis and Monodelphis showed significant changes in cranial integration through ontogeny, with a mixture of increased, decreased and stable levels of integration in different cranial regions. Of particular note is that Monodelphis showed an unambiguous decrease in integration of the oral region through ontogeny, potentially relating to their early ossification. Selection at different stages of development may have markedly different effects if patterns of integration change substantially through ontogeny. Our results suggest that high integration of the oral region combined with functional constraints for suckling during early postnatal ontogeny may drive the stagnant variance observed in Monodelphis and potentially other marsupials.  相似文献   

20.
Although, Walter Garstang died over 60 years ago, his work is still cited—sometimes praised, but sometimes belittled. On the negative side, he often appropriated ideas of others without attribution, ignored earlier studies conflicting with his theories, and clung to notions like inheritance of acquired characters, progressive evolution, and saltation after many of his contemporaries were advancing toward the modern synthesis. Moreover, his evolutionary scenarios—especially his derivation of vertebrates from a sessile ascidian—have not been well supported by recent work in developmental genetics and molecular phylogenetics. On the positive side, Garstang firmly established several points of view that remain useful in the age of evolutionary development (evo-devo). He popularized the valid idea that adaptive changes in larvae combined with shifts in developmental timing (heterochrony) could radically change adult morphology and provide an escape from overspecialization. Moreover, his re-statement of the biogenetic law is now widely accepted: namely, that recapitulation results when characters at one stage of development are required for the correct formation of other characters at subsequent stages (his stepping stone model). In other words, ontogeny creates phylogeny because some developmental features are constraints, favoring particular evolutionary outcomes while excluding others. This viewpoint is a useful basis for advancing concepts of homology and for comparing the phylogeny of ontogenies across a series of animals to ascertain the timing and the nature of the underlying ontogenetic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号