共查询到20条相似文献,搜索用时 15 毫秒
1.
Aili Guo Nigel A. Daniels Jean Thuma Kelly D. McCall Ramiro Malgor Frank L. Schwartz 《PloS one》2015,10(1)
Background
Clinical studies suggest that short-term insulin treatment in new-onset type 2 diabetes (T2DM) can promote prolonged glycemic control. The purpose of this study was to establish an animal model to examine such a “legacy” effect of early insulin therapy (EIT) in long-term glycemic control in new-onset T2DM. The objective of the study was to investigate the role of diet following onset of diabetes in the favorable outcomes of EIT.Methodology
As such, C57BL6/J male mice were fed a high-fat diet (HFD) for 21 weeks to induce diabetes and then received 4 weeks of daily insulin glargine or sham subcutaneous injections. Subsequently, mice were either kept on the HFD or switched to a low-fat diet (LFD) for 4 additional weeks.Principal Findings
Mice fed a HFD gained significant fat mass and displayed increased leptin levels, increasing insulin resistance (poor HOMA-IR) and worse glucose tolerance test (GTT) performance in comparison to mice fed a LFD, as expected. Insulin-treated diabetic mice but maintained on the HFD demonstrated even greater weight gain and insulin resistance compared to sham-treated mice. However, insulin-treated mice switched to the LFD exhibited a better HOMA-IR compared to those mice left on a HFD. Further, between the insulin-treated and sham control mice, in spite of similar HOMA-IR values, the insulin-treated mice switched to a LFD following insulin therapy did demonstrate significantly better HOMA-B% values than sham control and insulin-treated HFD mice.Conclusion/Interpretation
Early insulin treatment in HFD-induced T2DM in C57BL6/J mice was only beneficial in animals that were switched to a LFD after insulin treatment which may explain why a similar legacy effect in humans is achieved clinically in only a portion of cases studied, emphasizing a vital role for diet adherence in diabetes control. 相似文献2.
Val'ovka TI Filonenko VV Velykyï MM Drobot LB Voterfill M Matsuka HKh Hut IT 《Ukrainski? biokhimicheski? zhurnal》2000,72(3):31-37
Integrin family of adhesion receptors play an important role in organizing the actin cytoskeleton and in signal transduction from the extracellular matrix. The previous studies have shown that exposure of fibroblast cells to extracellular matrix proteins activates ribosomal S6 kinase 1 (S6K1) pathway in a ligand dependent manner. Recently, a new, highly homologous ribosomal S6 kinase, termed S6K2, was identified. It has 70% amino acid identity in the overall sequence with S6K1, and the potential phosphorylation sites of S6K1 are conserved in S6K2. However, the N- and C-terminal domains of S6K2 are quite different from those of S6K1. In this study we have examined dynamics of fibronectin-induced activation of these two kinases, transiently expressed in human HEK 293 cells. Differences between profiles of activation of S6K1 and S6K2 were observed in the early period of fibronectin stimulation. Fibronectin-induced changes in S6K2 activity were closely correlated with phosphorylation at Ser423, which is homologues to Ser 434 of S6K1. Although we didn't observe considerable changes in phosphorylation of S6K1 at Ser434, suggesting potential differences in the regulation of these homologous kinases upon fibronectin stimulation. 相似文献
3.
4.
Peng Zhao Qiao Meng Ling-Zhi Liu Ning Liu Bing-Hua Jiang 《Biochemical and biophysical research communications》2010,395(2):219-224
PI3K activation is commonly observed in many human cancer cells. Survivin expression is elevated in cancer cells, and induced by some growth factors through PI3K activation. However, it is not clear whether PI3K activation is sufficient to induce survivin expression. To investigate the role of PI3K pathway in the regulation of survivin, we expressed an active form of PI3K, v-P3k in chicken embryonic fibroblast cells (CEF), and found that overexpression of PI3K-induced survivin mRNA expression. Forced expression of wild-type but not mutant tumor suppressor PTEN in CEF decreased survivin mRNA levels. PI3K regulates survivin expression through Akt activation. To further investigate downstream target of PI3K and Akt in regulating the expression of survivin mRNA, we found that PI3K and Akt-induced p70S6K1 activation and that overexpression of p70S6K1 alone was sufficient to induce survivin expression. The treatment of CEF cells by rapamycin decreased the survivin mRNA expression. This result demonstrated that p70S6K1 is an important target downstream of PI3K and Akt in regulating suvivin mRNA expression. The knockdown of survivin mRNA expression by its specific siRNA induced apoptosis of cancer cells when the cells were treated with LY294002 or taxol. Taken together, these results demonstrated that PI3K/Akt/p70S6K1 pathway is essential for regulating survivin mRNA expression. 相似文献
5.
Feedback inhibition of the PI3K-Akt pathway by the mammalian target of rapamycin complex 1 (mTORC1) has emerged as an important signaling event in tumor syndromes, cancer, and insulin resistance. Cells lacking the tuberous sclerosis complex (TSC) gene products are a model for this feedback regulation. We find that, despite Akt attenuation, the Akt substrate GSK3 is constitutively phosphorylated in cells and tumors lacking TSC1 or TSC2. In these settings, GSK3 phosphorylation is sensitive to mTORC1 inhibition by rapamycin or amino acid withdrawal, and GSK3 becomes a direct target of S6K1. This aberrant phosphorylation leads to decreased GSK3 activity and phosphorylation of downstream substrates and contributes to the growth-factor-independent proliferation of TSC-deficient cells. We find that GSK3 can also be regulated downstream of mTORC1 in a HepG2 model of cellular insulin resistance. Therefore, we define conditions in which S6K1, rather than Akt, is the predominant GSK3 regulatory kinase. 相似文献
6.
X Li Z Li W Zhou X Xing L Huang L Tian J Chen C Chen X Ma Z Yang 《Cell death & disease》2013,4(9):e803-9
Our previous studies have shown that the inhibition of phosphatidylinositol 3-kinase (PI3K) or mTOR complex 1 can obviously promote the Coxsackievirus B3 (CVB3)-induced apoptosis of HeLa cells by regulating the expression of proapoptotic factors. To further illustrate it, Homo sapiens eIF4E-binding protein 1 (4EBP1), p70S6 kinase (p70S6K), Akt1 and Akt2 were transfected to HeLa cells, respectively. And then, we established the stable transfected cell lines. Next, after CVB3 infection, apoptosis in different groups was determined by flow cytometry; the expressions of Bim, Bax, caspase-9 and caspase-3 were examined by real-time fluorescence quantitative PCR and western blot analysis; the expression of CVB3 mRNA and viral capsid protein VP1 were also analyzed by real-time fluorescence quantitative PCR, western blot analysis and immunofluorescence, respectively. At the meantime, CVB3 replication was observed by transmission electron microscope. We found that CVB3-induced cytopathic effect and apoptosis in transfected groups were more obvious than that in controls. Unexpectedly, apoptosis rate in Akt1 group was higher than others at the early stage after viral infection and decreased with the viral-infected time increasing, which was opposite to other groups. Compared with controls, the expression of CVB3 mRNA was increased at 3, 6, 12 and 24 h postinfection (p. i.) in all groups. At the meantime, VP1 expression in 4EBP1 group was higher than control during the process of infection, while the expressions in the other groups were change dynamically. Moreover, overexpression of 4EBP1 did not affect the mRNA expressions of Bim, Bax, caspase-9 and caspase-3; while protein expressions of Bim and Bax were decreased, the self-cleavages of caspase-9 and caspase-3 were stimulated. Meanwhile, overexpression of p70S6K blocked the CVB3-induced Bim, Bax and caspase-9 expressions but promoted the self-cleavage of caspase-9. In the Akt1 group, it is noteworthy that the expressions of Bim protein were higher than controls at 3 and 6 h p. i. but lower at 24 h p. i., and the expression of Bax protein were higher at 6 and 24 h p. i., while their mRNA expressions were all decreased. Furthermore, overexpression of Akt1 stimulated the procaspase-9 and procaspase-3 expression but blocked their self-cleavages. Overexpression of Akt2, however, had little effect on Bim, Bax and caspase-3, while prevented caspase-9 from self-cleavage at the late stage of CVB3 infection. As stated above, our results demonstrated that overexpression of 4EBP1, p70S6K, Akt1 or Akt2 could promote the CVB3-induced apoptosis in diverse degree via different mediating ways in viral replication and proapoptotic factors in BcL-2 and caspase families. As 4EBP1, p70S6K and Akt are the important substrates of PI3K and mammalian target of rapamycin (mTOR), we further illustrated the role of PI3K/Akt/mTOR signaling pathway in the process of CVB3-induced apoptosis. 相似文献
7.
Curcumin has a potent anticancer effect and is a promising new therapeutic strategy. We previously demonstrated that curcumin induced non-apoptotic autophagic cell death in malignant glioma cells in vitro and in vivo. This compound inhibited the Akt/mammalian target of rapamycin/p70 ribosomal protein S6 kinase pathway and activated the extracellular signal-regulated kinases 1/2 thereby inducing autophagy. Interestingly, activation of the first pathway inhibited curcumin-induced autophagy and cytotoxicity, whereas inhibition of the latter pathway inhibited curcumin-induced autophagy and induced apoptosis, thus augmenting the cytotoxicity of curcumin. These results imply that these two autophagic pathways have opposite effects on curcumin's cytotoxicity. However, inhibition of nuclear factor kappaB, which is the main target of curcumin for its anticancer effect, was not observed in malignant glioma cells. These results suggest that autophagy but not nuclear factor kappaB plays a central role in curcumin anticancer therapy and warrant further investigation toward application in patients with malignant gliomas. Here, we discuss the therapeutic role of two autophagic pathways influenced by curcumin. 相似文献
8.
《Autophagy》2013,9(6):635-637
Curcumin has a potent anticancer effect and is a promising new therapeutic strategy. We previously demonstrated that curcumin induced non-apoptotic autophagic cell death in malignant glioma cells in vitro and in vivo. This compound inhibited the Akt/mammalian target of rapamycin/p70 ribosomal protein S6 kinase pathway and activated the extracellular signal-regulated kinases 1/2 thereby inducing autophagy. Interestingly, activation of the first pathway inhibited curcumin-induced autophagy and cytotoxicity, whereas inhibition of the latter pathway inhibited curcumin-induced autophagy and induced apoptosis, thus augmenting the cytotoxicity of curcumin. These results imply that these two autophagic pathways have opposite effects on curcumin’s cytotoxicity. However, inhibition of nuclear factor κB, which is the main target of curcumin for its anticancer effect, was not observed in malignant glioma cells. These results suggest that autophagy but not nuclear factor κB plays a central role in curcumin anticancer therapy and warrant further investigation toward application in patients with malignant gliomas. Here, we discuss the therapeutic role of two autophagic pathways influenced by curcumin.Addendum to:Evidence That Curcumin Suppresses the Growth of Malignant Gliomas in Vitro and in Vivo through Induction of Autophagy: Role of Akt and Extracellular Signal-Regulated Kinase Signaling PathwaysH. Aoki, Y. Takada, S. Kondo, R. Sawaya, B. B. Aggarwal and Y. KondoMol Pharmacol 2007; 72:29-39 相似文献
9.
Selenium has been shown to prevent cancer in animal models, and recent data indicate it is likely to be effective in humans as well. One selenium-containing protein, the cytoplasmic form of glutathione peroxidase (GPx-1), has been implicated in cancer risk and development by genetic studies identifying at-risk alleles and loss of heterozygosity in tumors. In order to evaluate the biological consequences of GPx-1 overexpression, human MCF-7 cells were stably transfected with a GPx-1 expression construct and the effects of GPx-1 on protein kinases associated with stress responses were determined. GPx-1 overexpression affected phosphorylation of p70S6K, whereas Erk1/2 and p38 MAPK were not affected. Site-specific phosphorylation of Akt declined and the levels of Gadd45, a DNA damage response protein, increased significantly as a consequence of elevated GPx-1 expression. Effects on p70S6K and Gadd45 after selenium supplementation have been reported, and given previous data demonstrating a role for GPx-1 in cancer etiology, these results support the concept that the chemopreventive properties of selenium may be due, at least in part, to its role in regulating GPx-1. 相似文献
10.
Elin Karlsson Ivana Magi? Josefine Bostner Christine Dyrager Fredrik Lysholm Anna-Lotta Hallbeck Olle St?l Patrik Lundstr?m 《PloS one》2015,10(12)
Background
The AKT/mTORC1/S6K pathway is frequently overstimulated in breast cancer, constituting a promising therapeutic target. The benefit from mTOR inhibitors varies, likely as a consequence of tumour heterogeneity, and upregulation of several compensatory feed-back mechanisms. The mTORC1 downstream effectors S6K1, S6K2, and 4EBP1 are amplified and overexpressed in breast cancer, associated with a poor outcome and divergent endocrine treatment benefit. S6K1 and S6K2 share high sequence homology, but evidence of partly distinct biological functions is emerging. The aim of this work was to explore possible different roles and treatment target potentials of S6K1 and S6K2 in breast cancer.Materials and methods
Whole-genome expression profiles were compared for breast tumours expressing high levels of S6K1, S6K2 or 4EBP1, using public datasets, as well as after in vitro siRNA downregulation of S6K1 and/or S6K2 in ZR751 breast cancer cells. In silico homology modelling of the S6K2 kinase domain was used to evaluate its possible structural divergences to S6K1.Results
Genome expression profiles were highly different in S6K1 and S6K2 high tumours, whereas S6K2 and 4EBP1 profiles showed significant overlaps, both correlated to genes involved in cell cycle progression, among these the master regulator E2F1. S6K2 and 4EBP1 were inversely associated with IGF1 levels, and their prognostic value was shown to be restricted to tumours positive for IGFR and/or HER2. In vitro, S6K1 and S6K2 silencing resulted in upregulation of genes in the mTORC1 and mTORC2 complexes. Isoform-specific silencing also showed distinct patterns, e.g. S6K2 downregulation lead to upregulation of several cell cycle associated genes. Structural analyses of the S6K2 kinase domain showed unique structure patterns, deviating from those of S6K1, facilitating the development of isoform-specific inhibitors. Our data support emerging proposals of distinct biological features of S6K1 and S6K2, suggesting their importance as separate oncogenes and clinical markers, where specific targeting in different breast cancer subtypes could facilitate further individualised therapies. 相似文献11.
《Cell cycle (Georgetown, Tex.)》2013,12(17):3159-3165
The 40S ribosomal S6 kinase 1 (S6K1) is a conserved serine/threonine protein kinase that belongs to the AGC family of protein kinases, which also includes Akt and many others. S6K1 is the principal kinase effector downstream of the mammalian target of rapamycin complex 1 (mTORC1). S6K1 is sensitive to a wide range of signaling inputs, including growth factors, amino acids, energy levels and hypoxia. S6K1 relays these signals to regulate a growing list of substrates and interacting proteins in control of oncogenic processes, such as cell growth and proliferation, cell survival and apoptosis and cell migration and invasion. Several lines of evidence suggest an important role for S6K1 in estrogen receptor (ER)-positive breast cancer. S6K1 directly phosphorylates and activates ERα. Furthermore, S6K1 expression is estrogenically regulated. Therefore, hyperactivation of mTORC1/S6K1 signaling may be closely related to ER-positive status in breast cancer and may be utilized as a marker for prognosis and a therapeutic target. 相似文献
12.
Zhang Xiang Li Xiaoyin Sheng Zhijie Wang Shuai Li Bingyan Tao Shasha Zhang Zengli 《Biological trace element research》2020,193(2):434-444
Biological Trace Element Research - This study investigated the effects of combined exposure to low-dose cadmium and high-fat diet on femoral bone quality in male mice. Eight-week-old male SPF... 相似文献
13.
Marina K. Holz 《Cell cycle (Georgetown, Tex.)》2012,11(17):3159-3165
The 40S ribosomal S6 kinase 1 (S6K1) is a conserved serine/threonine protein kinase that belongs to the AGC family of protein kinases, which also includes Akt and many others. S6K1 is the principal kinase effector downstream of the mammalian target of rapamycin complex 1 (mTORC1). S6K1 is sensitive to a wide range of signaling inputs, including growth factors, amino acids, energy levels and hypoxia. S6K1 relays these signals to regulate a growing list of substrates and interacting proteins in control of oncogenic processes, such as cell growth and proliferation, cell survival and apoptosis and cell migration and invasion. Several lines of evidence suggest an important role for S6K1 in estrogen receptor (ER)-positive breast cancer. S6K1 directly phosphorylates and activates ERα. Furthermore, S6K1 expression is estrogenically regulated. Therefore, hyperactivation of mTORC1/S6K1 signaling may be closely related to ER-positive status in breast cancer and may be utilized as a marker for prognosis and a therapeutic target. 相似文献
14.
15.
S6K (ribosomal S6 kinase p70, p70S6K) activation requires phosphorylation at two stages. The first phosphorylation is independent of insulin stimulation and mediated by an unknown kinase. The second phosphorylation is mediated by mTOR in insulin dependent manner. In this study, we identified JNK1 (c-Jun N-terminal kinase 1) as a kinase in the first phosphorylation. S6K protein was phosphorylated by JNK1 at S411 and S424 in the carboxyl terminal autoinhibitory domain. The phosphorylation was observed in kinase assay with purified S6K as a substrate, and in cells after JNK1 activation by TNF-α or MEKK1 expression. The phosphorylation was detected in JNK2 null cells, but not in JNK1 null cells after TNF-α treatment. When JNK1 activation was inhibited by MKK7 knockdown, the phosphorylation was blocked in cells. The phosphorylation led to S6K protein degradation in NF-κB deficient cells. The degradation was blocked by inhibition of proteasome activity with MG132. In wide type cells, the phosphorylation did not promote S6K degradation when IKK2 (IKKβ, IκB kinase beta) was activated. Instead, the phosphorylation allowed S6K activation by mTOR, which stabilizes S6K protein. In IKK2 null cells or cells treated by IKK2 inhibitor, the phosphorylation led to S6K degradation. These data suggest that S6K is phosphorylated by JNK1 and the phosphorylation makes S6K protein unstable in the absence of IKK2 activation. This study provides a mechanism for regulation of S6K protein stability. 相似文献
16.
Manning BD 《The Journal of cell biology》2004,167(3):399-403
Proper regulation of the phosphoinositide 3-kinase-Akt pathway is critical for the prevention of both insulin resistance and tumorigenesis. Many recent studies have characterized a negative feedback loop in which components of one downstream branch of this pathway, composed of the mammalian target of rapamycin and ribosomal S6 kinase, block further activation of the pathway through inhibition of insulin receptor substrate function. These findings form a novel basis for improved understanding of the pathophysiology of metabolic diseases (e.g., diabetes and obesity), tumor syndromes (e.g., tuberous sclerosis complex and Peutz-Jegher's syndrome), and human cancers. 相似文献
17.
Identification of S6K2 as a centrosome-located kinase 总被引:1,自引:0,他引:1
Ribosomal S6 kinase 2 (S6K2) acts downstream of the mammalian target of rapamycin (mTOR). Here, we show that some S6K2 localize at the centrosome throughout the cell cycle. S6K2 is found in the pericentriolar area of the centrosome. S6K2 centrosomal localization is unaffected by serum withdrawal or treatment with rapamycin, wortmannin, U0126, or phorbol-12-myristate-13-acetate (PMA). Unlike S6K2, S6 kinase 1 (S6K1) does not localize at the centrosome, suggesting the two kinases may also have nonoverlapping functions. Our data suggest that centrosomal S6K2 may have a role in the phosphoinositide-3-kinase (PI3K)/Akt/mTOR signaling pathway that has also been detected in the centrosome. 相似文献
18.
PI3K induced actin filament remodeling through Akt and p70S6K1: implication of essential role in cell migration 总被引:7,自引:0,他引:7
Qian Y Corum L Meng Q Blenis J Zheng JZ Shi X Flynn DC Jiang BH 《American journal of physiology. Cell physiology》2004,286(1):C153-C163
This study was designed to identify the molecular mechanisms of phosphatidylinositol 3-kinase (PI3K)-induced actin filament remodeling and cell migration. Expression of active forms of PI3K, v-P3k or Myr-P3k, was sufficient to induce actin filament remodeling to lead to an increase in cell migration, as well as the activation of Akt in chicken embryo fibroblast (CEF) cells. Either the inhibition of PI3K activity using a PI3K-specific inhibitor, LY-294002, or the disruption of Akt activity restored the integrity of actin filaments in CEF cells and inhibited PI3K-induced cell migration. We also found that expression of an activated form of Akt (Myr-Akt) was sufficient to remodel actin filaments to lead to an increase in cell migration, which was unable to be inhibited by the presence of LY-294002. Furthermore, we found that p70S6K1 kinase was a downstream molecule that can mediate the effects of both PI3K and Akt on actin filaments and cell migration. Overexpression of an active form of p70S6K1 was sufficient to induce actin filament remodeling and cell migration in CEF cells, which requires Rac activity. These results demonstrate that activation of PI3K activity alone is sufficient to remodel actin filaments to increase cell migration through the activation of Akt and p70S6K1 in CEF cells. phosphatidylinositol 3-kinase; Rac; actin filaments 相似文献
19.
《Translational oncology》2020,13(4):100767
Two isoforms of the 70-kDa ribosomal protein S6 kinase, S6K1 and S6K2, have been identified and are considered key downstream effectors of the mTOR signaling pathway, which is involved in tumor growth and progression. However, their biological roles in the tumor microenvironment are poorly understood. In this study, utilizing tumor xenograft models in S6k1−/− and S6k2−/− mice, we show that loss of S6K1 but not S6K2 in the tumor stroma suppresses tumor growth, accompanied by attenuated tumor angiogenesis. We found that while S6K1 depletion had no effect on the proangiogenic phenotype of endothelial cells, the growth and angiogenesis of tumor xenografts were significantly reduced in wild-type mice upon reconstitution with S6K1-deficient bone marrow cells. Furthermore, upon S6K1 loss, induction of both mRNA and protein levels of Hif-1α and those of the downstream target, Vegf, was compromised in bone marrow–derived macrophages stimulated with lactate. These findings indicate that S6K1 but not S6K2 contributes to establishing a microenvironment that favors tumor growth through mediating angiogenesis, and suggest that attenuated tumor angiogenesis upon loss of S6K1 in the tumor stroma is, at least in part, attributable to impaired upregulation of Vegf in tumor-associated macrophages. 相似文献
20.
Sanguine Byun Semi Lim Ji Young Mun Ki Hyun Kim Timothy R. Ramadhar Lee Farrand Seung Ho Shin N. R. Thimmegowda Hyong Joo Lee David A. Frank Jon Clardy Sam W. Lee Ki Won Lee 《The Journal of biological chemistry》2015,290(39):23553-23562
Bioactive phytochemicals can suppress the growth of malignant cells, and investigation of the mechanisms responsible can assist in the identification of novel therapeutic strategies for cancer therapy. Ginger has been reported to exhibit potent anti-cancer effects, although previous reports have often focused on a narrow range of specific compounds. Through a direct comparison of various ginger compounds, we determined that gingerenone A selectively kills cancer cells while exhibiting minimal toxicity toward normal cells. Kinase array screening revealed JAK2 and S6K1 as the molecular targets primarily responsible for gingerenone A-induced cancer cell death. The effect of gingerenone A was strongly associated with relative phosphorylation levels of JAK2 and S6K1, and administration of gingerenone A significantly suppressed tumor growth in vivo. More importantly, the combined inhibition of JAK2 and S6K1 by commercial inhibitors selectively induced apoptosis in cancer cells, whereas treatment with either agent alone did not. These findings provide rationale for dual targeting of JAK2 and S6K1 in cancer for a combinatorial therapeutic approach. 相似文献