共查询到20条相似文献,搜索用时 0 毫秒
1.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2023,1870(8):119525
BackgroundPsoriasis is a common inflammatory skin disease characterized by the excessive proliferation and abnormal differentiation of keratinocytes. Protein kinases could act on intracellular signaling pathways associated with cell proliferation.ObjectiveIdentifying more hub protein kinases affecting cellular and molecular processes in psoriasis, and exploring the dynamic effects of baicalin and NEK2 on the IL-22-induced cellular inflammation and IMQ-induced psoriasis-like mice.Methods and resultsIn this study, differentially expressed protein kinases playing a hub role in psoriasis initiation and development were identified using integrative bioinformatics analyses, and NEK2 has been chosen. NEK2 was significantly up-regulated in psoriatic samples according to online datasets and experimental analyses. In IL-22-induced cellular inflammation model in HaCaT cells, NEK2 overexpression promoted, whereas NEK2 knockdown partially abolished IL-22-induced alterations in cell viability, DNA synthesis, cytokine levels, as well as STAT3 phosphorylation and p-RB, cyclin D1, CDK4, and CDK6 protein contents. Baicalin treatment partially suppressed IL-22-induced HaCaT cell viability, DNA synthesis, and increases in cytokine levels, whereas NEK2 overexpression significantly abolished Baicalin-induced protection against cellular inflammation. In IMQ-induced psoriasis-like skin inflammation model in mice, baicalin markedly ameliorated IMQ-induced psoriasis-like symptoms and local skin inflammation, whereas NEK2 overexpression partially eliminated the therapeutic effects of baicalin.ConclusionNEK2, up-regulated in psoriatic lesion skin, could aggravate IMQ-induced psoriasis-like dermatitis and attenuate the therapeutic efficiency of baicalin through promoting keratinocyte proliferation and cytokine levels. The STAT3 signaling might be involved. 相似文献
2.
Neuregulin (NRG), a member of the epidermal growth factor family, plays important roles in the development of the nervous system and heart, and in cancer progression. Recent reports have suggested that NRG is involved in wound healing in keratinocytes, although the cellular mechanisms remain unclear. Here, we showed that NRG treatment increased slingshot-1L (SSH-1L)-mediated cofilin dephosphorylation and activation in HaCaT keratinocytes. Additionally, Rac1 activation and NADPH-oxidase (Nox)-dependent reactive oxygen species (ROS) generation, both known to be upstream regulators of the SSH-cofilin pathway, were increased in NRG-stimulated HaCaT cells. Inhibition of Rac1 or Nox activity blocked NRG-induced cofilin activation and cell migration by HaCaT cells. Moreover, the effects of Rac1 on cofilin activation were dependent on Nox activity. These findings indicate that NRG-induced HaCaT cell migration via the ROS-SSH-1L-cofilin pathway is activated as a consequence of Rac1 and Nox activation. 相似文献
3.
Christine Caron Kathleen Spring Mélanie Laramée Catherine Chabot Monikca Cloutier Haihua Gu Isabelle Royal 《Cellular signalling》2009,21(6):943-953
Gab1 was previously described as a positive modulator of Akt, Src, ERK1/2, endothelial cell migration, and capillary formation in response to vascular endothelial growth factor (VEGF). However, its involvement in endothelial cell survival, as well as the potential contribution of the other family member Gab2 to signalling and biological responses remained unknown. Here, we show that Gab2 is tyrosine phosphorylated in a Grb2-dependent manner downstream of activated VEGF receptor-2 (VEGFR2), and that it associates with signalling proteins including PI3K and SHP2, but apparently not with the receptor. Similarly to Gab1, over-expression of Gab2 induces endothelial cell migration in response to VEGF, whereas its depletion using siRNAs results in its reduction. Importantly, depletion of both Gab1 and Gab2 leads to an even greater inhibition of VEGF-induced cell migration. However, contrary to what has been reported for Gab1, the silencing of Gab2 results in increased Src, Akt and ERK1/2 activation, slightly reduced p38 phosphorylation, and up-regulation of Gab1 protein levels. Accordingly, re-expression of Gab2 in Gab2?/? fibroblasts leads to opposite results, suggesting that the modulation of both Gab2 and Gab1 expression in these conditions might contribute to the impaired signalling observed. Consistent with their opposite roles on Akt, the depletion of Gab1, but not of Gab2, results in reduced FOXO1 phosphorylation and VEGF-mediated endothelial cell survival. Mutation of VEGFR2 Y801 and Y1214, which abrogates the phosphorylation of Gab1, also correlates with inhibition of Akt. Altogether, these results underscore the non-redundant and essential roles of Gab1 and Gab2 in endothelial cells, and suggest major contributions of these proteins during in vivo angiogenesis. 相似文献
4.
Paracrine regulation of keratinocyte proliferation and differentiation 总被引:15,自引:0,他引:15
5.
Bae JS Lee SH Kim JE Choi JY Park RW Yong Park J Park HS Sohn YS Lee DS Bae Lee E Kim IS 《Biochemical and biophysical research communications》2002,294(5):940-948
betaig-h3 is an extracellular matrix protein and its expression is highly induced by TGF-beta and it has also been suggested to play important roles in skin wound healing. In this paper, we demonstrate that betaig-h3 is present in the papillary layer of dermis and synthesized in the basal keratinocytes in vivo and its expression is induced by TGF-beta in normal human keratinocytes (NHEK) and HaCaT cells. betaig-h3 mediates not only adhesion and spreading of keratinocytes but also supports migration and proliferation. These activities are mediated through interacting with alpha3beta1 integrin. Previously identified two alpha3beta1 integrin-interacting motifs of betaig-h3, EPDIM, and NKDIL, are responsible for these activities. The results suggest that betaig-h3 may regulate keratinocyte functions in normal skin and potentially during wound-healing process. 相似文献
6.
Podar K Mostoslavsky G Sattler M Tai YT Hayashi T Catley LP Hideshima T Mulligan RC Chauhan D Anderson KC 《The Journal of biological chemistry》2004,279(20):21658-21665
Interleukin-6 (LI-6) is a known growth and survival factor in multiple myeloma via activation of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling cascade. In this report we show that Grb2-associated binder (Gab) family adapter proteins Gab1 and Gab2 are expressed by multiple myeloma cells; and that interleukin-6 induces their tyrosine phosphorylation and association with downstream signaling molecules. We further demonstrate that these events are Src family tyrosine kinase-dependent and specifically identify the role of hematopoietic cell kinase (Hck) as a new Gab family adapter protein kinase. Conversely, inhibition of Src family tyrosine kinases by the pyrazolopyrimidine PP2, as in kinase-inactive Hck mutants, significantly reduces IL-6-triggered activation of extracellular signal-regulated kinase and AKT-1, leading to significant reduction of multiple myeloma cell proliferation and survival. Taken together, these results delineate a key role for Hck-mediated phosphorylation of Gab1 and Gab2 docking proteins in IL-6-induced proliferation and survival of multiple myeloma cells and identify tyrosine kinases and downstream adapter proteins as potential new therapeutic targets in multiple myeloma. 相似文献
7.
A Wickrema S Uddin A Sharma F Chen Y Alsayed S Ahmad S T Sawyer G Krystal T Yi K Nishada M Hibi T Hirano L C Platanias 《The Journal of biological chemistry》1999,274(35):24469-24474
Several signaling cascades are activated during engagement of the erythropoietin receptor to mediate the biological effects of erythropoietin. The members of the insulin receptor substrate (IRS) family of proteins play a central role in signaling for various growth factor receptors and cytokines by acting as docking proteins for the SH2 domains of signaling elements, linking cytokine receptors to diverse downstream pathways. In the present study we provide evidence that the recently cloned IRS-related proteins, Gab1 and Gab2, of the Gab family of proteins, are rapidly phosphorylated on tyrosine during erythropoietin treatment of erythropoietin-responsive cells and provide docking sites for the engagement of the SHP2 phosphatase and the p85 subunit of the phosphatidylinositol 3'-kinase. Furthermore, our data show that Gab1 is the primary IRS-related protein activated by erythropoietin in primary erythroid progenitor cells. In studies to identify the erythropoietin receptor domains required for activation of Gab proteins, we found that tyrosines 425 and 367 in the cytoplasmic domain of the erythropoietin receptor are required for the phosphorylation of Gab2. Taken together, our data demonstrate that Gab proteins are engaged in erythropoietin signaling to mediate downstream activation of the SHP2 and phosphatidylinositol 3'-kinase pathways and possibly participate in the generation of the erythropoietin-induced mitogenic responses. 相似文献
8.
IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes 总被引:19,自引:0,他引:19
Boniface K Bernard FX Garcia M Gurney AL Lecron JC Morel F 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(6):3695-3702
IL-22 belongs to a family of cytokines structurally related to IL-10, including IL-19, IL-20, IL-24, and IL-26. In contrast to IL-10, IL-22 has proinflammatory activities. IL-22 signals through a class II cytokine receptor composed of an IL-22-binding chain, IL-22RA1, and the IL-10RB subunit, which is shared with the IL-10R. In the present study, we show that short-term cultured human epidermal keratinocytes express a functional IL-22R but no IL-10R. Accordingly, IL-22 but not IL-10 induces STAT3 activation in keratinocytes. Using a cDNA array screening approach, real-time RT-PCR, and Western blot analysis, we demonstrate that IL-22 up-regulates, in a dose-dependent manner, the expression of S100A7, S100A8, S100A9, a group of proinflammatory molecules belonging to the S100 family of calcium-binding proteins, as well as the matrix metalloproteinase 3, the platelet-derived growth factor A, and the CXCL5 chemokine. In addition, IL-22 induces keratinocyte migration in an in vitro injury model and down-regulates the expression of at least seven genes associated with keratinocyte differentiation. Finally, we show that IL-22 strongly induces hyperplasia of reconstituted human epidermis. Taken together, these results suggest that IL-22 plays an important role in skin inflammatory processes and wound healing. 相似文献
9.
Hyaluronan (HA) is a glycosaminoglycan composed of N-acetylglucosamine and glucuronic acid subunits. Previous studies have suggested that CD44 expressed by T cells bind exogenous HA for their proliferation. However, HA endogenously synthesized by T cells may participate in their autocrine proliferation. In this study, we examined the role of endogenous HA in T cell proliferation using the highly specific HA synthase inhibitor, 4-methylumbelliferone (4-MU). We found that 4-MU inhibited the mitogen-induced synthesis of HA by T cells. Moreover, 4-MU inhibited T cell proliferation in a dose-dependent manner when cells were cultured with different stimuli, including Con A, PMA/ionomycin, and allogeneic spleen cells. Furthermore, 4-MU inhibited mitogen-stimulated IL-2 secretion, suggesting that HA may play a role in the production of this cytokine. Addition of IL-2 to T cells treated with 4-MU and Con A reversed the block in cell proliferation, showing that impaired IL-2 production is a likely mechanism for the inhibited division of T cells. Surprisingly, an anti-CD44 Ab antagonistic for HA binding did not reduce IL-2 secretion or T cell proliferation. Importantly, 4-MU did not alter the surface expression of CD44 or the ability of CD44 to bind to HA. Thus, HA-mediated IL-2 production and T cell proliferation are CD44 independent. Our results strongly suggest that HA synthesized by T cells themselves is critical for their IL-2-mediated proliferation and have revealed a previously unrecognized role for endogenous HA in T cell biology. 相似文献
10.
Han Wang Qian Zhang BinBin Wang WangJun Wu Julong Wei Pinghua Li Ruihua Huang 《European journal of cell biology》2018,97(4):257-268
Recently, miR-22 was found to be differentially expressed in different skeletal muscle growth period, indicated that it might have function in skeletal muscle myogenesis. In this study, we found that the expression of miR-22 was the most in skeletal muscle and was gradually up-regulated during mouse myoblast cell (C2C12 myoblast cell line) differentiation. Overexpression of miR-22 repressed C2C12 myoblast proliferation and promoted myoblast differentiation into myotubes, whereas inhibition of miR-22 showed the opposite results. During myogenesis, we predicted and verified transforming growth factor beta receptor 1 (TGFBR1), a key receptor of the TGF-β/Smad signaling pathway, was a target gene of miR-22. Then, we found miR-22 could regulate the expression of TGFBR1 and down-regulate the Smad3 signaling pathway. Knockdown of TGFBR1 by siRNA suppressed the proliferation of C2C12 cells but induced its differentiation. Conversely, overexpression of TGFBR1 significantly promoted proliferation but inhibited differentiation of the myoblast. Additionally, when C2C12 cells were treated with different concentrations of transforming growth factor beta 1 (TGF-β1), the level of miR-22 in C2C12 cells was reduced. The TGFBR1 protein level was significantly elevated in C2C12 cells treated with TGF-β1. Moreover, miR-22 was able to inhibit TGF-β1-induced TGFBR1 expression in C2C12 cells. Altogether, we demonstrated that TGF-β1 inhibited miR-22 expression in C2C12 cells and miR-22 regulated C2C12 cell myogenesis by targeting TGFBR1. 相似文献
11.
Gab1 and Gab2 are members of the Gab family which act as adapters for transmitting various signals in response to stimuli through cytokine and growth factor receptors, and T- and B-cell antigen receptors. We determined chromosome locations of the two genes in human, mouse and rat by fluorescence in situ hybridization. The Gab1 gene was localized to chromosome 4q31.1 in human, 8C3 in mouse and 19q11.1--> q11.2 in rat, and the Gab2 gene was located on chromosome 11q13.4-->q13.5 in human, 7E2 in mouse and 1q33.2-->q33.3 in rat. All human, mouse and rat Gab1 and Gab2 genes were localized to chromosome regions where conserved homology has been identified among the three species. 相似文献
12.
Owaki T Asakawa M Morishima N Mizoguchi I Fukai F Takeda K Mizuguchi J Yoshimoto T 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(5):2903-2911
IL-27, a member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in augmentation of Th1 differentiation and suppression of proinflammatory cytokine production. In the present study, we investigated the role of STAT3 in the IL-27-mediated immune functions. IL-27 induced phosphorylation of STAT1, -2, -3 and -5 in wild-type naive CD4+ T cells, but failed to induce that of STAT3 and STAT5 in STAT3-deficient cohorts. IL-27 induced not only proinflammatory responses including up-regulation of ICAM-1, T-box expressed in T cells, and IL-12Rbeta2 and Th1 differentiation, but also anti-inflammatory responses including suppression of proinflammatory cytokine production such as IL-2, IL-4, and IL-13 even in STAT3-deficient naive CD4+ T cells. In contrast, IL-27 augmented c-Myc and Pim-1 expression and induced cell proliferation in wild-type naive CD4+ T cells but not in STAT3-deficient cohorts. Moreover, IL-27 failed to activate STAT3, augment c-Myc and Pim-1 expression, and induce cell proliferation in pro-B BaF/3 transfectants expressing mutant gp130, in which the putative STAT3-binding four Tyr residues in the YXXQ motif of the cytoplasmic region was replaced by Phe. These results suggest that STAT3 is activated through gp130 by IL-27 and is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. Thus, IL-27 may be a cytokine, which activates both STAT1 and STAT3 through distinct receptor subunits, WSX-1 and gp130, respectively, to mediate its individual immune functions. 相似文献
13.
CD28 costimulation accelerates IL-4 receptor sensitivity and IL-4-mediated Th2 differentiation. 总被引:6,自引:0,他引:6
M Kubo M Yamashita R Abe T Tada K Okumura J T Ransom T Nakayama 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(5):2432-2442
The development of Th1 and Th2 cells is determined by the type of antigenic stimulation involved in the initial cell activation step. Evidence indicates that costimulatory signals, such as those delivered by CD28, play an important role in Th2 development, but little is known about how CD28 costimulation contributes to Th2 development. In this study, TCR cross-linking was insufficient for Th2 development, while the addition of CD28 costimulation drastically increased Th2 generation through the IL-4-mediated pathway. Th2 generation following CD28 costimulation was not simply explained by the enhancement of IL-4 production in naive T cells. To generate Th2 cells after TCR cross-linking only, it was necessary to add a 20- to 200-fold excess of IL-4 generated after TCR and CD28 stimulation. TCR cross-linking increased the expression level and binding property of the IL-4R, but enhanced the sensitivity to IL-4 only slightly. In contrast, as evidenced by the enhanced phosphorylation of Jak3, the IL-4Ralpha-chain, and STAT6 following IL-4 stimulation, CD28 costimulation increased IL-4R sensitivity without affecting its expression and binding property. This evidence of the enhancement of IL-4R sensitivity increases our understanding of how CD28 costimulation accelerates Th2 development. 相似文献
14.
15.
Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion. 相似文献
16.
In epidermis, Ras can influence proliferation and differentiation; however, regulators of epidermal Ras function are not fully characterized, and Ras effects on growth and differentiation are controversial. EGF induced Ras activation in epidermal cells along with phosphorylation of the multisubstrate docking protein Gab1 and its binding to SHP-2. Expression of mutant Gab1Y627F deficient in SHP-2 binding or dominant-negative SHP-2C459S reduced basal levels of active Ras and downstream MAPK proteins and initiated differentiation. Differentiation triggered by both Gab1Y627F and SHP-2C459S could be blocked by coexpression of active Ras, consistent with Gab1 and SHP-2 action upstream of Ras in this process. To study the role of Gab1 and SHP-2 in tissue, we generated human epidermis overexpressing active Gab1 and SHP-2. Both proteins stimulated proliferation. In contrast, Gab1Y627F and SHP-2C459S inhibited epidermal proliferation and enhanced differentiation. Consistent with a role for Gab1 and SHP-2 in sustaining epidermal Ras/MAPK activity, Gab1-/- murine epidermis displayed lower levels of active Ras and MAPK with postnatal Gab1-/- epidermis, demonstrating the hypoplasia and enhanced differentiation seen previously with transgenic epidermal Ras blockade. These data provide support for a Ras role in promoting epidermal proliferation and opposing differentiation and indicate that Gab1 and SHP-2 promote the undifferentiated epidermal cell state by facilitating Ras/MAPK signaling. 相似文献
17.
Qi He Nian Liu Feng Hu Quan Shi Xianming Pi Hongxiang Chen Jiawen Li Bo Zhang 《Bioscience reports》2021,41(1)
Psoriasis is a chronic inflammation-associated skin disorder featured by excessive proliferation and abnormal differentiation of keratinocytes. Here, we intended to investigate the role of circular RNA 0061012 (circ_0061012) in psoriasis progression. The expression of circ_0061012, SLMO2-ATP5E readthrough (SLMO2-ATP5E) messenger RNA (mRNA), microRNA-194-5p (miR-194-5p) and GRB2 associated binding protein 1 (GAB1) mRNA was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation and metastasis were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays. Western blot assay was used to measure the protein levels of Ki67, matrix metallopeptidase 9 (MMP9) and GAB1. Dual-luciferase reporter assay and RNA immune co-precipitation (RIP) assay were used to verify the interaction between miR-194-5p and circ_0061012 or GAB1. Circ_0061012 abundance was significantly enhanced in lesional skin samples from psoriasis patients than that in normal skin specimens from healthy volunteers. Interleukin-22 (IL-22) treatment increased the expression of circ_0061012 in a dose-dependent manner. Circ_0061012 silencing alleviated IL-22-induced promoting effects in the proliferation, migration and invasion of HaCaT cells. Circ_0061012 interacted with miR-194-5p, and miR-194-5p knockdown counteracted circ_0061012 silencing-mediated influences in IL-22-induced HaCaT cells. GAB1 was a target of miR-194-5p in HaCaT cells, and miR-194-5p hampered proliferation and metastasis which were induced by IL-22 partly through targeting GAB1. Circ_0061012 elevated the expression of GAB1 through sponging miR-194-5p in HaCaT cells. Circ_0061012 accelerated IL-22-induced proliferation and metastasis in HaCaT cells through enhancing GAB1 expression via sponging miR-194-5p in psoriasis. 相似文献
18.
betaig-h3 is an extracellular matrix (ECM) protein whose expression is highly induced by transforming growth factor beta1 (TGF-beta1). We previously demonstrated that betaig-h3 has two alpha3beta1 integrin-interacting motifs, which promote adhesion, migration, and proliferation of human keratinocytes. Both betaig-h3 and TGF-beta1 have been suggested to play important roles in the healing of skin wounds. In this study, we demonstrate that TGF-beta1 enhances keratinocyte adhesion and migration toward betaig-h3 through the alpha3beta1 integrin. TGF-beta1 did not increase the amount of the alpha3beta1 integrin on the cell surface, but rather increased its affinity for betaig-h3. LY294002, an inhibitor of PI3K, blocked the basal and TGF-beta1-enhanced cell migration but not adhesion to betaig-h3. A constitutively active mutant of PI3K stimulated cell migration but not adhesion to betaig-h3. The PI3K pathway is also not associated with the affinity of the alpha3beta1 integrin to betaig-h3. TGF-beta1 induced phosphorylation of AKT and FAK. Taken together, these data suggest that TGF-beta1 increases affinity of the alpha3beta1 integrin to betaig-h3, resulting in enhanced adhesion and migration of keratinocytes toward betaig-h3. TGF-beta1 also enhances migration through PI3K, but PI3K is not associated with either the binding affinity of the alpha3beta1 integrin or its adhesion to betaig-h3. 相似文献
19.
Kansra S Stoll SW Elder JT 《Biochemical and biophysical research communications》2002,295(5):1108-1117
ErbB1 and ErbB2 display differential subcellular localization in human skin and cultured keratinocytes. To determine whether ErbB1 and ErbB2 also differ in cytoskeletal binding properties, normal human keratinocytes grown under conditions favoring a basal or differentiated phenotype were repeatedly extracted in a non-ionic detergent buffer. In basaloid keratinocytes, cytoskeletal association of ErbB1 and ErbB2 was limited. ErbB1 ( approximately 5%) was tightly associated with the cytoskeleton, compared to <1% of ErbB2 (p=0.004). After EGF stimulation, activated ErbB1 and ERK associated with the cytoskeleton to a greater extent than did total ErbB1 and total ERK. Association of ErbB2 increased markedly in differentiated keratinocytes, whereas association of ErbB1 was similar in basaloid and differentiated cells. Cytoskeletal association of ErbB2 correlated with plasma membrane localization. These results suggest that ErbB1 and ErbB2 employ different mechanisms of plasma membrane targeting during keratinocyte differentiation, and that cytoskeletal association may facilitate the coupling of activated ErbB1 and ERK. 相似文献
20.
Suppressive oligodeoxynucleotides inhibit Th1 differentiation by blocking IFN-gamma- and IL-12-mediated signaling 总被引:4,自引:0,他引:4
Repetitive TTAGGG motifs present at high frequency in mammalian telomeres can suppress Th1-mediated immune responses. Synthetic oligonucleotides (ODN) containing TTAGGG motifs mimic this activity and have proven effective in the prevention/treatment of certain Th1-dependent autoimmune diseases. This work explores the mechanism by which suppressive ODN block the induction of Th1 immunity. Findings indicate that these ODN inhibit IFN-gamma-induced STAT1 phosphorylation and IL-12-induced STAT3 and STAT4 phosphorylation. As a result, T-bet expression is reduced as is the maturation of naive CD4+ cells into Th1 effectors. These changes indirectly support the generation of Th2-dominated immune responses. Suppressive ODN may thus represent a novel approach to influence the Th1:Th2 balance in vivo. 相似文献