共查询到20条相似文献,搜索用时 15 毫秒
1.
Low-threshold voltage-gated M-type potassium channels (M channels) are tetraheteromers, commonly of two Kv7.2 and two Kv7.3 subunits. Though gated by voltage, the channels have an absolute requirement for binding of the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)) to open. We have investigated the quantitative relation between the concentration of a water-soluble PI(4,5)P(2) analog, dioctanoyl-PI(4,5)P(2) (DiC(8)-PI(4,5)P(2)), and channel open probability (P(open)) by fast application of increasing concentrations of DiC(8)-PI(4,5)P(2) to the inside face of membrane patches excised from Chinese hamster ovary cells expressing M channels as heteromeric Kv7.2/7.3 subunits. The rationale for the experiments is that this will mimic the effect of changes in membrane PI(4,5)P(2) concentration. Single-channel conductances from channel current-voltage relations in cell-attached mode were 9.2 ± 0.1 pS with a 2.5-mM pipette [K(+)]. Plots of P(open) against DiC(8)-PI(4,5)P(2) concentration were best fitted using a two-component concentration-P(open) relationship with high and low affinity, half-maximal effective concentration (EC(50)) values of 1.3 ± 0.14 and 75.5 ± 2.5 μM, respectively, and Hill slopes of 1.4 ± 0.06. In contrast, homomeric channels from cells expressing only Kv7.2 or Kv7.3 constructs yielded single-component curves with EC(50) values of 76.2 ± 19.9 or 3.6 ± 1.0 μM, respectively. When wild-type (WT) Kv7.2 was coexpressed with a mutated Kv7.3 subunit with >100-fold reduced sensitivity to PI(4,5)P(2), the high-affinity component of the activation curve was lost. Fitting the data for WT and mutant channels to an activation mechanism with independent PI(4,5)P(2) binding to two Kv7.2 and two Kv7.3 subunits suggests that the two components of the M-channel activation curve correspond to the interaction of PI(4,5)P(2) with the Kv7.3 and Kv7.2 subunits, respectively, that channels can open when only the two Kv7.3 subunits have bound DiC(8)-PI(4,5)P(2), and that maximum channel opening requires binding to all four subunits. 相似文献
2.
TRPV3 is a thermosensitive channel that is robustly expressed in skin keratinocytes and activated by innocuous thermal heating, membrane depolarization, and chemical agonists such as 2-aminoethyoxy diphenylborinate, carvacrol, and camphor. TRPV3 modulates sensory thermotransduction, hair growth, and susceptibility to dermatitis in rodents, but the molecular mechanisms responsible for controlling TRPV3 channel activity in keratinocytes remain elusive. We show here that receptor-mediated breakdown of the membrane lipid phosphatidylinositol (4,5) bisphosphate (PI(4,5)P(2)) regulates the activity of both native TRPV3 channels in primary human skin keratinocytes and expressed TRPV3 in a HEK-293-derived cell line stably expressing muscarinic M(1)-type acetylcholine receptors. Stimulation of PI(4,5)P(2) hydrolysis or pharmacological inhibition of PI 4 kinase to block PI(4,5)P(2) synthesis potentiates TRPV3 currents by causing a negative shift in the voltage dependence of channel opening, increasing the proportion of voltage-independent current and causing thermal activation to occur at cooler temperatures. The activity of single TRPV3 channels in excised patches is potentiated by PI(4,5)P(2) depletion and selectively decreased by PI(4,5)P(2) compared with related phosphatidylinositol phosphates. Neutralizing mutations of basic residues in the TRP domain abrogate the effect of PI(4,5)P(2) on channel function, suggesting that PI(4,5)P(2) directly interacts with a specific protein motif to reduce TRPV3 channel open probability. PI(4,5)P(2)-dependent modulation of TRPV3 activity represents an attractive mechanism for acute regulation of keratinocyte signaling cascades that control cell proliferation and the release of autocrine and paracrine factors. 相似文献
3.
Mandy L. Roberts-Crowley Tora Mitra-Ganguli Liwang Liu Ann R. Rittenhouse 《Cell calcium》2009,45(6):589-601
Great skepticism has surrounded the question of whether modulation of voltage-gated Ca2+ channels (VGCCs) by the polyunsaturated free fatty acid arachidonic acid (AA) has any physiological basis. Here we synthesize findings from studies of both native and recombinant channels where micromolar concentrations of AA consistently inhibit both native and recombinant activity by stabilizing VGCCs in one or more closed states. Structural requirements for these inhibitory actions include a chain length of at least 18 carbons and multiple double bonds located near the fatty acid's carboxy terminus. Acting at a second site, AA increases the rate of VGCC activation kinetics, and in CaV2.2 channels, increases current amplitude. We present evidence that phosphatidylinositol 4,5-bisphosphate (PIP2), a palmitoylated accessory subunit (β2a) of VGCCs and AA appear to have overlapping sites of action giving rise to complex channel behavior. Their actions converge in a physiologically relevant manner during muscarinic modulation of VGCCs. We speculate that M1 muscarinic receptors may stimulate multiple lipases to break down the PIP2 associated with VGCCs and leave PIP2's freed fatty acid tails bound to the channels to confer modulation. This unexpectedly simple scheme gives rise to unanticipated predictions and redirects thinking about lipid regulation of VGCCs. 相似文献
4.
Regulation of PI4,5P2 synthesis by nuclear-cytoplasmic shuttling of the Mss4 lipid kinase 总被引:7,自引:0,他引:7
The essential phospholipid PI4,5P(2) is generated by a well conserved PI4P 5-kinase, Mss4, in yeast. Balanced production and turnover of PI4,5P(2) is important for normal organization of the actin cytoskeleton and cell viability. Previous studies have shown that multiple PI phosphatases can regulate PI4,5P(2) levels. We report a new, unexpected regulatory mechanism for PI4,5P(2) homeostasis, directed by nuclear-cytoplasmic shuttling of the lipid kinase. We show that Mss4 is a phosphoprotein, which contains a functional nuclear localization signal (NLS) and can shuttle between the cytoplasm and the nucleus. Temperature-conditional mss4 cells that accumulate Mss4 protein in the nucleus exhibit reduced levels of PI4,5P(2), depolarization of the actin cytoskeleton and a block in Mss4 phosphorylation, suggesting an essential role for phosphorylated Mss4 at the plasma membrane. Through the isolation of gene dosage-dependent suppressors of mss4 mutants, we identified Bcp1, a protein enriched in the nucleus, which is required for Mss4 nuclear export and is related to the mammalian BRCA2-interacting protein BCCIP. Together, these studies suggest a new mechanism for lipid kinase regulation through regulated nuclear-cytoplasmic shuttling. 相似文献
5.
Molecular determinants of PI(4,5)P2 and PI(3,4,5)P3 regulation of the epithelial Na+ channel
下载免费PDF全文

Pochynyuk O Tong Q Medina J Vandewalle A Staruschenko A Bugaj V Stockand JD 《The Journal of general physiology》2007,130(4):399-413
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) are physiologically important second messengers. These molecules bind effector proteins to modulate activity. Several types of ion channels, including the epithelial Na(+) channel (ENaC), are phosphoinositide effectors capable of directly interacting with these signaling molecules. Little, however, is known of the regions within ENaC and other ion channels important to phosphoinositide binding and modulation. Moreover, the molecular mechanism of this regulation, in many instances, remains obscure. Here, we investigate modulation of ENaC by PI(3,4,5)P(3) and PI(4,5)P(2) to begin identifying the molecular determinants of this regulation. We identify intracellular regions near the inner membrane interface just following the second transmembrane domains in beta- and gamma- but not alpha-ENaC as necessary for PI(3,4,5)P(2) but not PI(4,5)P(2) modulation. Charge neutralization of conserved basic amino acids within these regions demonstrated that these polar residues are critical to phosphoinositide regulation. Single channel analysis, moreover, reveals that the regions just following the second transmembrane domains in beta- and gamma-ENaC are critical to PI(3,4,5)P(3) augmentation of ENaC open probability, thus, defining mechanism. Unexpectedly, intracellular domains within the extreme N terminus of beta- and gamma-ENaC were identified as being critical to down-regulation of ENaC activity and P(o) in response to depletion of membrane PI(4,5)P(2). These regions of the channel played no identifiable role in a PI(3,4,5)P(3) response. Again, conserved positive-charged residues within these domains were particularly important, being necessary for exogenous PI(4,5)P(2) to increase open probability. We conclude that beta and gamma subunits bestow phosphoinositide sensitivity to ENaC with distinct regions of the channel being critical to regulation by PI(3,4,5)P(3) and PI(4,5)P(2). This argues that these phosphoinositides occupy distinct ligand-binding sites within ENaC to modulate open probability. 相似文献
6.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2), is a key component of the inner leaflet of the plasma membrane in eukaryotic cells. In model membranes, PIP2 has been reported to form clusters, but whether these locally different conditions could give rise to distinct pools of unclustered and clustered PIP2 is unclear. By use of both fluorescence self-quenching and Förster resonance energy transfer assays, we have discovered that PIP2 self-associates at remarkably low concentrations starting below 0.05 mol% of total lipids. Formation of these clusters was dependent on physiological divalent metal ions, such as Ca2+, Mg2+, Zn2+, or trivalent ions Fe3+ and Al3+. Formation of PIP2 clusters was also headgroup-specific, being largely independent of the type of acyl chain. The similarly labeled phospholipids phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol exhibited no such clustering. However, six phosphoinositide species coclustered with PIP2. The degree of PIP2 cation clustering was significantly influenced by the composition of the surrounding lipids, with cholesterol and phosphatidylinositol enhancing this behavior. We propose that PIP2 cation-bridged cluster formation, which might be similar to micelle formation, can be used as a physical model for what could be distinct pools of PIP2 in biological membranes. To our knowledge, this study provides the first evidence of PIP2 forming clusters at such low concentrations. The property of PIP2 to form such clusters at such extremely low concentrations in model membranes reveals, to our knowledge, a new behavior of PIP2 proposed to occur in cells, in which local multivalent metal ions, lipid compositions, and various binding proteins could greatly influence PIP2 properties. In turn, these different pools of PIP2 could further regulate cellular events. 相似文献
7.
Nuclear PI(4,5)P(2): a new place for an old signal 总被引:5,自引:0,他引:5
8.
《Current biology : CB》2014,24(10):1071-1079
- Download : Download high-res image (273KB)
- Download : Download full-size image
9.
The last decade has witnessed an exponential increase in interest in one of the great mysteries of nerve cell biology: Specifically, how do neurons know where to place the ion channels that control their excitability? Many of the most important insights have been gleaned from studies on the voltage-gated potassium channels (Kvs) which underlie the shape, duration and frequency of action potentials. In this review, we gather recent evidence on the expression, trafficking and maintenance mechanisms which control the surface density of Kvs in different subcellular compartments of neurons and how these may be regulated to control cell excitability. 相似文献
10.
11.
The last decade has witnessed an exponential increase in interest in one of the great mysteries of nerve cell biology: Specifically, how do neurons know where to place the ion channels that control their excitability? Many of the most important insights have been gleaned from studies on the voltage-gated potassium channels (Kvs) which underlie the shape, duration and frequency of action potentials. In this review, we gather recent evidence on the expression, trafficking and maintenance mechanisms which control the surface density of Kvs in different subcellular compartments of neurons and how these may be regulated to control cell excitability. 相似文献
12.
Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels
下载免费PDF全文

Loussouarn G Park KH Bellocq C Baró I Charpentier F Escande D 《The EMBO journal》2003,22(20):5412-5421
Phosphatidylinositol-4,5-bisphosphate (PIP(2)) is a major signaling molecule implicated in the regulation of various ion transporters and channels. Here we show that PIP(2) and intracellular MgATP control the activity of the KCNQ1/KCNE1 potassium channel complex. In excised patch-clamp recordings, the KCNQ1/KCNE1 current decreased spontaneously with time. This rundown was markedly slowed by cytosolic application of PIP(2) and fully prevented by application of PIP(2) plus MgATP. PIP(2)-dependent rundown was accompanied by acceleration in the current deactivation kinetics, whereas the MgATP-dependent rundown was not. Cytosolic application of PIP(2) slowed deactivation kinetics and also shifted the voltage dependency of the channel activation toward negative potentials. Complex changes in the current characteristics induced by membrane PIP(2) was fully restituted by a model originally elaborated for ATP-regulated two transmembrane-domain potassium channels. The model is consistent with stabilization by PIP(2) of KCNQ1/KCNE1 channels in the open state. Our data suggest a striking functional homology between a six transmembrane-domain voltage-gated channel and a two transmembrane-domain ATP-gated channel. 相似文献
13.
Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate 总被引:38,自引:0,他引:38
Phosphatidylinositol 4,5-bisphosphate is a signaling phospholipid of the plasma membrane that has a dynamically changing concentration. In addition to being the precursor of inositol trisphosphate and diacylglycerol, it complexes with and regulates many cytoplasmic and membrane proteins. Recent work has characterized the regulation of a wide range of ion channels by phosphatidylinositol 4,5-bisphosphate, helping to redefine the role of this lipid in cells and in neurobiology. In most cases, phosphatidylinositol 4,5-bisphosphate increases channel activity, and its hydrolysis by phospholipase C reduces channel activity. 相似文献
14.
Horacio Poblete Ingrid Oyarzún Pablo Olivero Jeffrey Comer Matías Zu?iga Romina V. Sepulveda David Báez-Nieto Carlos González Leon Fernando González-Nilo Ramón Latorre 《The Journal of biological chemistry》2015,290(4):2086-2098
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been recognized as an important activator of certain transient receptor potential (TRP) channels. More specifically, TRPV1 is a pain receptor activated by a wide range of stimuli. However, whether or not PI(4,5)P2 is a TRPV1 agonist remains open to debate. Utilizing a combined approach of mutagenesis and molecular modeling, we identified a PI(4,5)P2 binding site located between the TRP box and the S4-S5 linker. At this site, PI(4,5)P2 interacts with the amino acid residues Arg-575 and Arg-579 in the S4-S5 linker and with Lys-694 in the TRP box. We confirmed that PI(4,5)P2 behaves as a channel agonist and found that Arg-575, Arg-579, and Lys-694 mutations to alanine reduce PI(4,5)P2 binding affinity. Additionally, in silico mutations R575A, R579A, and K694A showed that the reduction in binding affinity results from the delocalization of PI(4,5)P2 in the binding pocket. Molecular dynamics simulations indicate that PI(4,5)P2 binding induces conformational rearrangements of the structure formed by S6 and the TRP domain, which cause an opening of the lower TRPV1 channel gate. 相似文献
15.
Molecular diversity and function of voltage-gated (Kv) potassium channels in epithelial cells 总被引:2,自引:0,他引:2
Voltage-gated K+ channels belonging to Kv1-9 subfamilies are widely expressed in excitable cells where they play an essential role in membrane hyperpolarization during an action potential and in the propagation of action potentials along the plasma membrane. Early patch clamp studies on epithelial cells revealed the presence of K+ currents with biophysical and pharmacologic properties characteristic of Kv channels expressed in excitable cells. More recently, molecular approaches including PCR and the availability of more selective antibodies directed against Kv alpha and auxiliary subunits, have demonstrated that epithelial cells from various organ systems, express a remarkable diversity Kv channel subunits. Unlike neurons and myocytes however, epithelial cells do not typically generate action potentials or exhibit dynamic changes in membrane potential necessary for activation of Kv alpha subunits. Moreover, the fact that many Kv channels expressed in epithelial cells exhibit inactivation suggest that their activities are relatively transient, making it difficult to ascribe a functional role for these channels in transepithelial electrolyte or nutrient transport. Other proposed functions have included (i) cell migration and wound healing, (ii) cell proliferation and cancer, (iii) apoptosis and (iv) O2 sensing. Certain Kv channels, particularly Kv1 and Kv2 subfamily members, have been shown to be involved in the proliferation of prostate, colon, lung and breast carcinomas. In some instances, a significant increase in Kv channel expression has been correlated with tumorogenesis suggesting the possibility of using these proteins as markers for transformation and perhaps reducing the rate of tumor growth by selectively inhibiting their functional activity. 相似文献
16.
17.
Several important new findings have furthered the development of voltage-gated and calcium-activated potassium channel pharmacology. The molecular constituents of several members of these large ion channel families were identified. Small-molecule modulators of some of these channels were reported, including correolide, the first potent, small-molecule, natural product inhibitor of the Shaker family of voltage-gated potassium channels to be disclosed. The initial crystal structure of a bacterial potassium channel was determined; this work gives a physical basis for understanding the mechanisms of ion selectivity and ion conduction. With the recent molecular characterization of a potassium channel structure and the discovery of new templates for channel modulatory agents, the ability to rationally identify and develop potassium channel agonists and antagonists may become a reality in the near future. 相似文献
18.
Ruth Kabeche Marisa Madrid José Cansado James B. Moseley 《The Journal of biological chemistry》2015,290(43):25960-25973
Eisosomes are multiprotein structures that generate linear invaginations at the plasma membrane of yeast cells. The core component of eisosomes, the BAR domain protein Pil1, generates these invaginations through direct binding to lipids including phosphoinositides. Eisosomes promote hydrolysis of phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) by functioning with synaptojanin, but the cellular processes regulated by this pathway have been unknown. Here, we found that PI(4,5)P2 regulation by eisosomes inhibits the cell integrity pathway, a conserved MAPK signal transduction cascade. This pathway is activated by multiple environmental conditions including osmotic stress in the fission yeast Schizosaccharomyces pombe. Activation of the MAPK Pmk1 was impaired by mutations in the phosphatidylinositol (PI) 5-kinase Its3, but this defect was suppressed by removal of eisosomes. Using fluorescent biosensors, we found that osmotic stress induced the formation of PI(4,5)P2 clusters that were spatially organized by eisosomes in both fission yeast and budding yeast cells. These cortical clusters contained the PI 5-kinase Its3 and did not assemble in the its3-1 mutant. The GTPase Rho2, an upstream activator of Pmk1, also co-localized with PI(4,5)P2 clusters under osmotic stress, providing a molecular link between these novel clusters and MAPK activation. Our findings have revealed that eisosomes regulate activation of MAPK signal transduction through the organization of cortical lipid-based microdomains. 相似文献
19.
Sequence similarity among known potassium channels indicates the voltage-gated potassium channels consist of two modules: the N-terminal portion of the channel up to and including transmembrane segment S4, called in this paper the 'sensor' module, and the C-terminal portion from transmembrane segment S5 onwards, called the 'pore' module. We investigated the functional role of these modules by constructing chimeric channels which combine the 'sensor' from one native voltage-gated channel, mKv1.1, with the 'pore' from another, Shaker H4, and vice versa. Functional studies of the wild type and chimeric channels show that these modules can operate outside their native context. Each channel has a unique conductance-voltage relation. Channels incorporating the mKv1.1 sensor module have similar rates of activation while channels having the Shaker pore module show similar rates of deactivation. This observation suggests the mKv1.1 sensor module limits activation and the Shaker pore module determines deactivation. We propose a model that explains the observed equilibrium and kinetic properties of the chimeric constructs in terms of the characteristics of the native modules and a novel type of intrasubunit cooperativity. The properties ascribed to the modules are the same whether the modules function in their native context or have been assembled into a chimera. 相似文献
20.
Wenk MR Pellegrini L Klenchin VA Di Paolo G Chang S Daniell L Arioka M Martin TF De Camilli P 《Neuron》2001,32(1):79-88
Disruption of the presynaptically enriched polyphosphoinositide phosphatase synaptojanin 1 leads to an increase of clathrin-coated intermediates and of polymerized actin at endocytic zones of nerve terminals. These changes correlate with elevated levels of PI(4,5)P(2) in neurons. We report that phosphatidylinositol phosphate kinase type Igamma (PIPKIgamma), a major brain PI(4)P 5-kinase, is concentrated at synapses. Synaptojanin 1 and PIPKIgamma antagonize each other in the recruitment of clathrin coats to lipid membranes. Like synaptojanin 1 and other proteins involved in endocytosis, PIPKIgamma undergoes stimulation-dependent dephosphorylation. These results implicate PIPKIgamma in the synthesis of a PI(4,5)P(2) pool that acts as a positive regulator of clathrin coat recruitment and actin function at the synapse. 相似文献