首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Store-operated calcium entry (SOCE) channels play an important role in Ca2+ signaling. Recently, excessive SOCE was proposed to play a central role in the pathogenesis of malignant hyperthermia (MH), a pharmacogenic disorder of skeletal muscle. We tested this hypothesis by characterizing SOCE current (ISkCRAC) magnitude, voltage dependence, and rate of activation in myotubes derived from two mouse models of anesthetic- and heat-induced sudden death: 1) type 1 ryanodine receptor (RyR1) knock-in mice (Y524S/+) and 2) calsequestrin 1 and 2 double knock-out (dCasq-null) mice. ISkCRAC voltage dependence and magnitude at -80 mV were not significantly different in myotubes derived from wild type (WT), Y524S/+ and dCasq-null mice. However, the rate of ISkCRAC activation upon repetitive depolarization was significantly faster at room temperature in myotubes from Y524S/+ and dCasq-null mice. In addition, the maximum rate of ISkCRAC activation in dCasq-null myotubes was also faster than WT at more physiological temperatures (35-37°C). Azumolene (50 µM), a more water-soluble analog of dantrolene that is used to reverse MH crises, failed to alter ISkCRAC density or rate of activation. Together, these results indicate that while an increased rate of ISkCRAC activation is a common characteristic of myotubes derived from Y524S/+ and dCasq-null mice and that the protective effects of azumolene are not due to a direct inhibition of SOCE channels.  相似文献   

2.
Depolarization-induced entry of divalent ions into skeletal muscle has been attributed to a process termed Excitation-Coupled Ca2+ Entry (ECCE), which is hypothesized to require the interaction of the ryanodine receptor (RyR1), the L-type Ca2+ channel (DHPR) and another unidentified cation channel. Thus, ECCE is absent in myotubes lacking either the DHPR (dysgenic) or RyR1 (dyspedic). Furthermore, ECCE, as measured by Mn2+ quench of Fura-2, is reconstituted by expression of a mutant DHPR α1S subunit (SkEIIIK) thought to be impermeable to divalent cations. Previously, we showed that the bulk of depolarization-induced Ca2+ entry could be explained by the skeletal L-type current. Accordingly, one would predict that any Ca2+ current similar to the endogenous current would restore such entry and that this entry would not require coupling to either the DHPR or RyR1. Here, we show that expression of the cardiac α1C subunit in either dysgenic or dyspedic myotubes does result in Ca2+ entry similar to that ascribed to ECCE. We also demonstrate that, when potentiated by strong depolarization and Bay K 8644, SkEIIIK supports entry of Mn2+. These results strongly support the idea that the L-type channel is the major route of Ca2+ entry in response to repetitive or prolonged depolarization of skeletal muscle.  相似文献   

3.
The past five years have witnessed the discovery of the endoplasmic reticulum calcium (Ca2+) sensor STIM1 and the plasma membrane Ca2+ channel Orai1 as the bona fide molecular components of the store-operated Ca2+ entry (SOCE) and the Ca2+ release-activated Ca2+ current (I CRAC). It has been known for two decades that SOCE and I CRAC are required for lymphocyte activation as evidenced by severe immunodeficient phenotypes in patients lacking I CRAC. In recent years however, studies have uncovered expression of STIM1 and Orai1 proteins in various tissues and described additional roles for these proteins in physiological functions and pathophysiological conditions. Here, we will summarize novel findings pertaining to the role of STIM1 and Orai1 in the vascular system and discuss their potential use as targets in the therapy of vascular disease.  相似文献   

4.
Cheng KT  Liu X  Ong HL  Swaim W  Ambudkar IS 《PLoS biology》2011,9(3):e1001025
Store-operated Ca2+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca2+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent ISOC, activated in response to Ca2+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated ICRAC; the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(684EE685). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca2+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd3+, removal of extracellular Ca2+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca2+-containing, but not Ca2+-free, medium. Consistent with this, ICRAC is activated in cells pretreated with thapsigargin in Ca2+-free medium while ISOC is activated in cells pretreated in Ca2+-containing medium. Significantly, TRPC1 function is required for sustained KCa activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca2+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca2+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE.  相似文献   

5.
The molecular basis for excitation-contraction coupling in skeletal muscle is generally thought to involve conformational coupling between the L-type voltage-gated Ca2+ channel (CaV1.1) and the type 1 ryanodine receptor (RyR1). This coupling is bidirectional; in addition to the orthograde signal from CaV1.1 to RyR1 that triggers Ca2+ release from the sarcoplasmic reticulum, retrograde signaling from RyR1 to CaV1.1 results in increased amplitude and slowed activation kinetics of macroscopic L-type Ca2+ current. Orthograde coupling was previously shown to be ablated by a glycine for glutamate substitution at RyR1 position 4242. In this study, we investigated whether the RyR1-E4242G mutation affects retrograde coupling. L-type current in myotubes homozygous for RyR1-E4242G was substantially reduced in amplitude (∼80%) relative to that observed in myotubes from normal control (wild-type and/or heterozygous) myotubes. Analysis of intramembrane gating charge movements and ionic tail current amplitudes indicated that the reduction in current amplitude during step depolarizations was a consequence of both decreased CaV1.1 membrane expression (∼50%) and reduced channel Po (∼55%). In contrast, activation kinetics of the L-type current in RyR1-E4242G myotubes resembled those of normal myotubes, unlike dyspedic (RyR1 null) myotubes in which the L-type currents have markedly accelerated activation kinetics. Exogenous expression of wild-type RyR1 partially restored L-type current density. From these observations, we conclude that mutating residue E4242 affects RyR1 structures critical for retrograde communication with CaV1.1. Moreover, we propose that retrograde coupling has two distinct and separable components that are dependent on different structural elements of RyR1.  相似文献   

6.
Deviations from physiological pH (∼pH 7.2) as well as altered Ca2+ signaling play important roles in immune disease and cancer. One of the most ubiquitous pathways for cellular Ca2+ influx is the store-operated Ca2+ entry (SOCE) or Ca2+ release-activated Ca2+ current (ICRAC), which is activated upon depletion of intracellular Ca2+ stores. We here show that extracellular and intracellular changes in pH regulate both endogenous ICRAC in Jurkat T lymphocytes and RBL2H3 cells, and heterologous ICRAC in HEK293 cells expressing the molecular components STIM1/2 and Orai1/2/3 (CRACM1/2/3). We find that external acidification suppresses, and alkalization facilitates IP3-induced ICRAC. In the absence of IP3, external alkalization did not elicit endogenous ICRAC but was able to activate heterologous ICRAC in HEK293 cells expressing Orai1/2/3 and STIM1 or STIM2. Similarly, internal acidification reduced IP3-induced activation of endogenous and heterologous ICRAC, while alkalization accelerated its activation kinetics without affecting overall current amplitudes. Mutation of two aspartate residues to uncharged alanine amino acids (D110/112A) in the first extracellular loop of Orai1 significantly attenuated both the inhibition of ICRAC by external acidic pH as well as its facilitation by alkaline conditions. We conclude that intra- and extracellular pH differentially regulates ICRAC. While intracellular pH might affect aggregation and/or binding of STIM to Orai, external pH seems to modulate ICRAC through its channel pore, which in Orai1 is partially mediated by residues D110 and D112.  相似文献   

7.
We studied cation regulation of wild-type ryanodine receptor type 1 (WTRyR1), type 3 (WTRyR3), and RyR3/RyR1 chimeras (Ch) expressed in 1B5 dyspedic myotubes. Using [3H]ryanodine binding to sarcoplasmic reticulum (SR) membranes, Ca2+ titrations with WTRyR3 and three chimeras show biphasic activation that is allosterically coupled to an attenuated inhibition relative to WTRyR1. Chimeras show biphasic Mg2+ inhibition profiles at 3 and 10 μM Ca2+, no observable inhibition at 20 μM Ca2+ and monophasic inhibition at 100 μM Ca2+. Ca2+ imaging of intact myotubes expressing Ch-4 exhibit caffeine-induced Ca2+ transients with inhibition kinetics that are significantly slower than those expressing WTRyR1 or WTRyR3. Four new aspects of RyR regulation are evident: (1) high affinity (H) activation and low affinity (L) inhibition sites are allosterically coupled, (2) Ca2+ facilitates removal of the inherent Mg2+ block, (3) WTRyR3 exhibits reduced cooperativity between H activation sites when compared to WTRyR1, and (4) uncoupling of these sites in Ch-4 results in decreased rates of inactivation of caffeine-induced Ca2+ transients.  相似文献   

8.
Store-operated calcium (Ca2+) entry (SOCE) mediated by STIM/Orai proteins is a ubiquitous pathway that controls many important cell functions including proliferation and migration. STIM proteins are Ca2+ sensors in the endoplasmic reticulum and Orai proteins are channels expressed at the plasma membrane. The fall in endoplasmic reticulum Ca2+ causes translocation of STIM1 to subplasmalemmal puncta where they activate Orai1 channels that mediate the highly Ca2+-selective Ca2+ release-activated Ca2+ current (ICRAC). Whereas Orai1 has been clearly shown to encode SOCE channels in many cell types, the role of Orai2 and Orai3 in native SOCE pathways remains elusive. Here we analyzed SOCE in ten breast cell lines picked in an unbiased way. We used a combination of Ca2+ imaging, pharmacology, patch clamp electrophysiology, and molecular knockdown to show that native SOCE and ICRAC in estrogen receptor-positive (ER+) breast cancer cell lines are mediated by STIM1/2 and Orai3 while estrogen receptor-negative (ER) breast cancer cells use the canonical STIM1/Orai1 pathway. The ER+ breast cancer cells represent the first example where the native SOCE pathway and ICRAC are mediated by Orai3. Future studies implicating Orai3 in ER+ breast cancer progression might establish Orai3 as a selective target in therapy of ER+ breast tumors.  相似文献   

9.
Physiological mechanisms associated with interleukin-13 (IL-13), a key cytokine in asthma, in intracellular Ca2+ signaling in airway smooth muscle cells (ASMCs) remain unclear. The aim of this study was to assess effects of IL-13 on Ca2+ oscillations in response to leukotriene D4 (LTD4) in human cultured ASMCs.LTD4-induced Ca2+ oscillations in ASMCs pretreated with IL-13 were imaged by confocal microscopy. mRNA expressions of cysteinyl leukotriene 1 receptors (CysLT1R), CD38, involved with the ryanodine receptors (RyR) system, and transient receptor potential canonical (TRPC), involved with store-operated Ca2+ entry (SOCE), were determined by real-time PCR. In IL-13-pretreated ASMCs, frequency of LTD4-induced Ca2+ oscillations and number of oscillating cells were significantly increased compared with untreated ASMCs. Both xestospongin C, a specific inhibitor of inositol 1,4,5-triphosphate receptors (IP3R), and ryanodine or ruthenium red, inhibitors of RyR, partially blocked LTD4-induced Ca2+ oscillations. Ca2+ oscillations were almost completely inhibited by 50 μM of 2-aminoethoxydiphenyl borate (2-APB), which dominantly blocks SOCE but not IP3R at this concentration. Pretreatment with IL-13 increased the mRNA expressions of CysLT1R and CD38, but not of TRPC1 and TRPC3.We conclude that IL-13 enhances frequency of LTD4-induced Ca2+ oscillations in human ASMCs, which may be cooperatively modulated by IP3R, RyR systems and possibly by SOCE.  相似文献   

10.
Skeletal muscle fibres support store-operated Ca2+-entry (SOCE) across the t-tubular membrane upon exhaustive depletion of Ca2+ from the sarcoplasmic reticulum (SR). Recently we demonstrated the presence of a novel mode of SOCE activated under conditions of maintained [Ca2+]SR. This phasic SOCE manifested in a fast and transient manner in synchrony with excitation contraction (EC)-coupling mediated SR Ca2+-release (Communications Biology 1:31, doi: https://doi.org/10.1038/s42003-018-0033-7). Stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel 1 (ORAI1), positioned at the SR and t-system membranes, respectively, are the considered molecular correlate of SOCE. The evidence suggests that at the triads, where the terminal cisternae of the SR sandwich a t-tubule, STIM1 and ORAI1 proteins pre-position to allow for enhanced SOCE transduction.Here we show that phasic SOCE is not only shaped by global [Ca2+]SR but provide evidence for a local activation within nanodomains at the terminal cisternae of the SR. This feature may allow SOCE to modulate [Ca2+]SR during EC coupling. We define SOCE to occur on the same timescale as EC coupling and determine the temporal coherence of SOCE activation to SR Ca2+ release. We derive a delay of 0.3 ms reflecting diffusive Ca2+-equilibration at the luminal ryanodine receptor 1 (RyR1) channel mouth upon SR Ca2+-release. Numerical simulations of Ca2+-calsequestrin binding estimates a characteristic diffusion length and confines an upper limit for the spatial distance between STIM1 and RyR1. Experimental evidence for a 4- fold change in t-system Ca2+-permeability upon prolonged electrical stimulation in conjunction with numerical simulations of Ca2+-STIM1 binding suggests a Ca2+ dissociation constant of STIM1 below 0.35 mM. Our results show that phasic SOCE is intimately linked with RyR opening and closing, with only μs delays, because [Ca2+] in the terminal cisternae is just above the threshold for Ca2+ dissociation from STIM1 under physiological resting conditions.This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.  相似文献   

11.
12.
Store-operated Ca2+ entry (SOCE) is a universal mechanism to increase intracellular Ca2+ concentrations in non-excitable cells. It is initiated by the depletion of ER Ca2+ stores, activation of stromal interaction molecule (STIM) 1 and gating of the Ca2+ release activated Ca2+ (CRAC) channel ORAI1 in the plasma membrane. We identified a minimal activation domain in the cytoplasmic region of STIM1 (CCb9) which activated Ca2+ influx and CRAC currents (ICRAC) in the absence of store depletion similar to but more potently than the entire C terminus of STIM1. A STIM1 fragment (CCb7) that is longer by 31 amino acids than CCb9 at its C terminal end showed reduced ability to constitutively activate ICRAC consistent with our observation that CCb9 but not CCb7 efficiently colocalized with and bound to ORAI1. Intracellular application of a 31 amino acid peptide contained in CCb7 but not CCb9 inhibited constitutive and store-dependent CRAC channel activation. In summary, these findings suggest that CCb9 represents a minimal ORAI1 activation domain within STIM1 that is masked by an adjacent 31 amino acid peptide preventing efficient CRAC channel activation in cells with replete Ca2+ stores.  相似文献   

13.
Store-operated calcium entry (SOCE) is a ubiquitous Ca2+ entry pathway that is activated in response to depletion of ER-Ca2+ stores and critically controls the regulation of physiological functions in miscellaneous cell types. The transient receptor potential canonical 1 (TRPC1) is the first member of the TRPC channel subfamily to be identified as a molecular component of SOCE. While TRPC1 has been shown to contribute to SOCE and regulate various functions in many cells, none of the reported TRPC1-mediated currents resembled ICRAC, the highly Ca2+-selective store-dependent current first identified in lymphocytes and mast cells. Almost a decade after the cloning of TRPC1 two proteins were identified as the primary components of the CRAC channel. The first, STIM1, is an ER-Ca2+ sensor protein involved in activating SOCE. The second, Orai1 is the pore-forming component of the CRAC channel. Co-expression of STIM1 and Orai1 generated robust ICRAC. Importantly, STIM1 was shown to also activate TRPC1 via its C-terminal polybasic domain, which is distinct from its Orai1-activating domain, SOAR. In addition, TRPC1 function critically depends on Orai1-mediated Ca2+ entry which triggers recruitment of TRPC1 into the plasma membrane where it is then activated by STIM1. TRPC1 and Orai1 form discrete STIM1-gated channels that generate distinct Ca2+ signals and regulate specific cellular functions. Surface expression of TRPC1 can be modulated by trafficking of the channel to and from the plasma membrane, resulting in changes to the phenotype of TRPC1-mediated current and [Ca2+]i signals. Thus, TRPC1 is activated downstream of Orai1 and modifies the initial [Ca2+]i signal generated by Orai1 following store depletion. This review will summarize the important findings that underlie the current concepts for activation and regulation of TRPC1, as well as its impact on cell function.  相似文献   

14.
To better understand the role of the transient expression of ryanodine receptor (RyR) type 3 (RyR3) on Ca2+ homeostasis during the development of skeletal muscle, we have analyzed the effect of expression levels of RyR3 and RyR1 on the overall physiology of cultured myotubes and muscle fibers. Dyspedic myotubes were infected with RyR1 or RyR3 containing virions at 0.2, 0.4, 1.0, and 4.0 moieties of infection (MOI), and analysis of their pattern of expression, caffeine sensitivity, and resting free Ca2+ concentration ([Ca2+]r) was performed. Although increased MOI resulted in increased expression of each receptor isoform, it did not significantly affect the immunopattern of RyRs or the expression levels of calsequestrin, triadin, or FKBP-12. Interestingly, myotubes expressing RyR3 always had significantly higher [Ca2+]r and lower caffeine EC50 than did cells expressing RyR1. Although some of the increased sensitivity of RyR3 to caffeine could be attributed to the higher [Ca2+]r in RyR3-expressing cells, studies of [3H]ryanodine binding demonstrated intrinsic differences in caffeine sensitivity between RyR1 and RyR3. Tibialis anterior (TA) muscle fibers at different stages of postnatal development exhibited a transient increase in [Ca2+]r coordinately with their level of RyR3 expression. Similarly, adult soleus fibers, which also express RyR3, had higher [Ca2+]r than did adult TA fibers, which exclusively express RyR1. These data show that in skeletal muscle, RyR3 increases [Ca2+]r more than RyR1 does at any expression level. These data suggest that the coexpression of RyR1 and RyR3 at different levels may constitute a novel mechanism by which to regulate [Ca2+]r in skeletal muscle. ryanodine receptor; calcium release; ryanodine binding; muscle fibers  相似文献   

15.
In cardiomyocytes, Ca2+ entry through voltage-dependent Ca2+ channels (VDCCs) binds to and activates RyR2 channels, resulting in subsequent Ca2+ release from the sarcoplasmic reticulum (SR) and cardiac contraction. Previous research has documented the molecular coupling of small-conductance Ca2+-activated K+ channels (SK channels) to VDCCs in mouse cardiac muscle. Little is known regarding the role of RyRs-sensitive Ca2+ release in the SK channels in cardiac muscle. In this study, using whole-cell patch clamp techniques, we observed that a Ca2+-activated K+ current (IK,Ca) recorded from isolated adult C57B/L mouse atrial myocytes was significantly decreased by ryanodine, an inhibitor of ryanodine receptor type 2 (RyR2), or by the co-application of ryanodine and thapsigargin, an inhibitor of the sarcoplasmic reticulum calcium ATPase (SERCA) (p<0.05, p<0.01, respectively). The activation of RyR2 by caffeine increased the IK,Ca in the cardiac cells (p<0.05, p<0.01, respectively). We further analyzed the effect of RyR2 knockdown on IK,Ca and Ca2+ in isolated adult mouse cardiomyocytes using a whole-cell patch clamp technique and confocal imaging. RyR2 knockdown in mouse atrial cells transduced with lentivirus-mediated small hairpin interference RNA (shRNA) exhibited a significant decrease in IK,Ca (p<0.05) and [Ca2+]i fluorescence intensity (p<0.01). An immunoprecipitated complex of SK2 and RyR2 was identified in native cardiac tissue by co-immunoprecipitation assays. Our findings indicate that RyR2-mediated Ca2+ release is responsible for the activation and modulation of SK channels in cardiac myocytes.  相似文献   

16.
We have investigated the molecular basis of intracellular Ca2+ handling in human colon carcinoma cells (HT29) versus normal human mucosa cells (NCM460) and its contribution to cancer features. We found that Ca2+ stores in colon carcinoma cells are partially depleted relative to normal cells. However, resting Ca2+ levels, agonist-induced Ca2+ increases, store-operated Ca2+ entry (SOCE), and store-operated currents (ISOC) are largely enhanced in tumor cells. Enhanced SOCE and depleted Ca2+ stores correlate with increased cell proliferation, invasion, and survival characteristic of tumor cells. Normal mucosa cells displayed small, inward Ca2+ release-activated Ca2+ currents (ICRAC) mediated by ORAI1. In contrast, colon carcinoma cells showed mixed currents composed of enhanced ICRAC plus a nonselective ISOC mediated by TRPC1. Tumor cells display increased expression of TRPC1, ORAI1, ORAI2, ORAI3, and STIM1. In contrast, STIM2 protein was nearly depleted in tumor cells. Silencing data suggest that enhanced ORAI1 and TRPC1 contribute to enhanced SOCE and differential store-operated currents in tumor cells, whereas ORAI2 and -3 are seemingly less important. In addition, STIM2 knockdown decreases SOCE and Ca2+ store content in normal cells while promoting apoptosis resistance. These data suggest that loss of STIM2 may underlie Ca2+ store depletion and apoptosis resistance in tumor cells. We conclude that a reciprocal shift in TRPC1 and STIM2 contributes to Ca2+ remodeling and tumor features in colon cancer.  相似文献   

17.
Calcium (Ca2+)-mediated signaling is fueled by two sources for Ca2+: Ca2+ can enter through Ca2+ channels located in the plasma membrane and can also be released from intracellular stores. In the present study the intracellular Ca2+ release channel/ryanodine receptor (RyR) from zebrafish skeletal muscle was characterized. Two RyR isoforms could be identified using immunoblotting and single-channel recordings. Biophysical properties as well as the regulation by modulators of RyR, ryanodine, ruthenium red and caffeine, were measured. Comparison with other RyRs showed that the zebrafish RyRs have features observed with all RyRs described to date and thus, can serve as a model system in future genetic and physiological studies. However, some differences in the biophysical properties were observed. The slope conductance for both isoforms was higher than that of the mammalian RyR type 1 (RyR1) measured with divalent ions. Also, inhibition by millimolar Ca2+ concentrations of the RyR isoform that is inhibited by high Ca2+ concentrations (teleost α RyR isoform) was attenuated when compared to mammalian RyRs. Due to the widespread expression of RyR these findings have important implications for the interpretation of the role of the RyR in Ca2+ signaling when comparing zebrafish with mammalian physiology, especially when analyzing mutations underlying physiological changes in zebrafish. Received: 15 February 2001/Revised: 1 June 2001  相似文献   

18.
Differentiating H19‐7 hippocampal precursor cells up‐regulate (~4.3‐fold) store‐operated channel (SOC) activity; relatively linear current‐voltage curves indicate an ISOC subtype of SOC. In differentiated H19‐7 neurons, the majority of agonist (arginine vasopressin, AVP)‐stimulated Ca2+ entry occurs via SOCs, based on 2‐aminoethyldiphenylborinate (2‐APB) inhibition data and the observation that transient receptor potential C1 (TRPC1) channel knock down cells show a dramatic reduction of thapsigargin‐stimulated store‐operated Ca2+ entry (SOCE) and inhibition of AVP‐stimulated Ca2+ entry. Treatment of H19‐7 cells with the rat stress hormone corticosterone during differentiation induces a significant increase in AVP‐stimulated Ca2+ entry, which is virtually eliminated by 2‐APB, suggesting a corticosterone‐induced increase of SOCE. Corticosterone also enhances AVP‐stimulated Mn2+ entry, confirming an elevated Ca2+ entry pathway, rather than a decreased Ca2+ extrusion. When corticosterone addition is delayed until after H19‐7 cells have fully differentiated, it still elevates SOCE. In corticosterone‐treated H19‐7 cells, the knock down of TRPC1 no longer blocks thapsigargin‐stimulated Ca2+ entry suggesting that the subtype of SOCs expressed in H19‐7 cells is altered by corticosterone treatment. Electrophysiological studies demonstrate that store‐operated currents in corticosterone‐treated H19‐7 cells exhibit a highly inward rectifying current‐voltage curve consistent with an ICRAC subtype of SOCs. Consistent with this finding is the observation that corticosterone treatment of H19‐7 cells increases the expression of the ICRAC channel subunit Orai1. Thus, the subtype of SOCs expressed in H19‐7 hippocampal neurons can be altered from ISOC to ICRAC by chronic treatment with stress hormones. J. Cell. Physiol. 228: 1332–1343, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Regulation of the cardiac ryanodine receptor (RyR2) by intracellular Ca2+ and Mg2+ plays a key role in determining cardiac contraction and rhythmicity, but their role in regulating the human RyR2 remains poorly defined. The Ca2+- and Mg2+-dependent regulation of human RyR2 was recorded in artificial lipid bilayers in the presence of 2 mM ATP and compared with that in two commonly used animal models for RyR2 function (rat and sheep). Human RyR2 displayed cytoplasmic Ca2+ activation (Ka = 4 µM) and inhibition by cytoplasmic Mg2+ (Ki = 10 µM at 100 nM Ca2+) that was similar to RyR2 from rat and sheep obtained under the same experimental conditions. However, in the presence of 0.1 mM Ca2+, RyR2s from human were 3.5-fold less sensitive to cytoplasmic Mg2+ inhibition than those from sheep and rat. The Ka values for luminal Ca2+ activation were similar in the three species (35 µM for human, 12 µM for sheep, and 10 µM for rat). From the relationship between open probability and luminal [Ca2+], the peak open probability for the human RyR2 was approximately the same as that for sheep, and both were ∼10-fold greater than that for rat RyR2. Human RyR2 also showed the same sensitivity to luminal Mg2+ as that from sheep, whereas rat RyR2 was 10-fold more sensitive. In all species, modulation of RyR2 gating by luminal Ca2+ and Mg2+ only occurred when cytoplasmic [Ca2+] was <3 µM. The activation response of RyR2 to luminal and cytoplasmic Ca2+ was strongly dependent on the Mg2+ concentration. Addition of physiological levels (1 mM) of Mg2+ raised the Ka for cytoplasmic Ca2+ to 30 µM (human and sheep) or 90 µM (rat) and raised the Ka for luminal Ca2+ to ∼1 mM in all species. This is the first report of the regulation by Ca2+ and Mg2+ of native RyR2 receptor activity from healthy human hearts.  相似文献   

20.
The large and rapidly increasing number of potentially pathological mutants in the type 1 ryanodine receptor (RyR1) prompts the need to characterize their effects on voltage-activated sarcoplasmic reticulum (SR) Ca2+ release in skeletal muscle. Here we evaluated the function of the R4892W and G4896V RyR1 mutants, both associated with central core disease (CCD) in humans, in myotubes and in adult muscle fibers. For both mutants expressed in RyR1-null (dyspedic) myotubes, voltage-gated Ca2+ release was absent following homotypic expression and only partially restored following heterotypic expression with wild-type (WT) RyR1. In muscle fibers from adult WT mice, both mutants were expressed in restricted regions of the fibers with a pattern consistent with triadic localization. Voltage-clamp-activated confocal Ca2+ signals showed that fiber regions endowed with G4896V-RyR1s exhibited an ∼30% reduction in the peak rate of SR Ca2+ release, with no significant change in SR Ca2+ content. Immunostaining revealed no associated change in the expression of either α1S subunit (Cav1.1) of the dihydropyridine receptor (DHPR) or type 1 sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1), indicating that the reduced Ca2+ release resulted from defective RyR1 function. Interestingly, in spite of robust localized junctional expression, the R4892W mutant did not affect SR Ca2+ release in adult muscle fibers, consistent with a low functional penetrance of this particular CCD-associated mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号