首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. Although exact causes and mechanisms of AV calcification are unclear, previous studies suggest that mechanical forces play a role. Since calcium deposits occur almost exclusively on the aortic surfaces of AV leaflets, it has been hypothesized that adverse patterns of fluid shear stress on the aortic surface of AV leaflets promote calcification. The current study characterizes AV leaflet aortic surface fluid shear stresses using Laser Doppler velocimetry and an in vitro pulsatile flow loop. The valve model used was a native porcine valve mounted on a suturing ring and preserved using 0.15% glutaraldehyde solution. This valve model was inserted in a mounting chamber with sinus geometries, which is made of clear acrylic to provide optical access for measurements. To understand the effects of hemodynamics on fluid shear stress, shear stress was measured across a range of conditions: varying stroke volumes at the same heart rate and varying heart rates at the same stroke volume. Systolic shear stress magnitude was found to be much higher than diastolic shear stress magnitude due to the stronger flow in the sinuses during systole, reaching up to 20 dyn/cm2 at mid-systole. Upon increasing stroke volume, fluid shear stresses increased due to stronger sinus fluid motion. Upon increasing heart rate, fluid shear stresses decreased due to reduced systolic duration that restricted the formation of strong sinus flow. Significant changes in the shear stress waveform were observed at 90 beats/min, most likely due to altered leaflet dynamics at this higher heart rate. Overall, this study represents the most well-resolved shear stress measurements to date across a range of conditions on the aortic side of the AV. The data presented can be used for further investigation to understand AV biological response to shear stresses.  相似文献   

2.
The bicuspid aortic valve (BAV) is a common congenital malformation of the aortic valve (AV) affecting 1% to 2% of the population. The BAV is predisposed to early degenerative calcification of valve leaflets, and BAV patients constitute 50% of AV stenosis patients. Although evidence shows that genetic defects can play a role in calcification of the BAV leaflets, we hypothesize that drastic changes in the mechanical environment of the BAV elicit pathological responses from the valve and might be concurrently responsible for early calcification. An in vitro model of the BAV was constructed by surgically manipulating a native trileaflet porcine AV. The BAV valve model and a trileaflet AV (TAV) model were tested in an in vitro pulsatile flow loop mimicking physiological hemodynamics. Laser Doppler velocimetry was used to make measurements of fluid shear stresses on the leaflet of the valve models using previously established methodologies. Furthermore, particle image velocimetry was used to visualize the flow fields downstream of the valves and in the sinuses. In the BAV model, flow near the leaflets and fluid shear stresses on the leaflets were much more unsteady than for the TAV model, most likely due to the moderate stenosis in the BAV and the skewed forward flow jet that collided with the aorta wall. This additional unsteadiness occurred during mid- to late-systole and was composed of cycle-to-cycle magnitude variability as well as high-frequency fluctuations about the mean shear stress. It has been demonstrated that the BAV geometry can lead to unsteady shear stresses under physiological flow and pressure conditions. Such altered shear stresses could play a role in accelerated calcification in BAVs.  相似文献   

3.
Recent studies have reported the presence of a microcirculation within the tissue of aortic valves. To test the hypothesis that this vascular bed is needed to satisfy the oxygen demands of the cusp tissue, a two-dimensional (2D) finite difference model of oxygen diffusion was developed. The in vivo environment was modeled for vascular and avascular cusps using thickness data from precise radiographic measurements of fresh porcine valves, and O2 diffusivity (DO2) and O2 consumption (VO2) values from experimental data. The location and density of the cusp vasculature were determined by the model to prevent oxygen levels from falling to zero. Validation of the model was performed by simulation of the experimental measurements of cusp DO2 and VO2. For a test cusp with uniform thickness, the model returned simulated DO2 and VO2 measurements within 1.43% and 0.18% difference of the true parameter values, respectively. For native cusps, the simulated DO2 measurements were sensitive to thickness variations (-38 to +21% difference), whereas the VO2 measurements were minimally affected (8% difference). An improved DO2 measurement technique was found to reduce these errors to <5% and is recommended for analysis of experimental data. In the avascular case, the model predicted large regions of hypoxic tissue, whereas in the vascular case, the model predicted vessel locations and densities similar to what was experimentally observed in porcine cusps. Overall, the in vivo model developed in this study confirmed the need for an intrinsic microcirculation in the thicker basal regions of aortic cusps.  相似文献   

4.
The cusps of native aortic valve (AV) are composed of collagen bundles embedded in soft tissue, creating a heterogenic tissue with asymmetric alignment in each cusp. This study compares native collagen fiber networks (CFNs) with a goal to better understand their influence on stress distribution and valve kinematics. Images of CFNs from five porcine tricuspid AVs are analyzed and fluid-structure interaction models are generated based on them. Although the valves had similar overall kinematics, the CFNs had distinctive influence on local mechanics. The regions with dilute CFN are more prone to damage since they are subjected to higher stress magnitudes.  相似文献   

5.
The first full-length hexon protein DNA and deduced amino acid sequences of a subgenus D adenovirus (AV) were determined from candidate AV48 (85-0844). Comprehensive comparison of this sequence with hexon protein sequences from human subgenera A, B, C, D, F, bovine AV3, and mouse AV1 revealed seven discrete hypervariable regions (HVRs) among the 250 variable residues in loops 1 and 2. These regions differed in length between serotypes, from 2 to 38 residues, and contained > 00% of hexon serotype-specific residues among human serotypes. Alignment with the published crystal structure of AV2 established the location and structure of the type-specific regions. Five HVRs were shown to be part of linear loops on the exposed surfaces of the protein, analogous to the serotype-specific loops or "puffs" in picornavirus capsid proteins. The HVRs were supported by a common framework of conserved residues, of which 68 to 75% were hydrophobic. Unique sequences were limited to the seven HVRs, so that one or more of these regions contain the type-specific neutralization epitopes. A neutralizing AV48 hexon-specific antiserum recognized linear peptides that corresponded to six HVRs by enzyme immunoassay. Affinity-purification removal of all peptide-reactive antibodies did not significantly decrease the neutralization titer. Eluted peptide-reactive antibodies did not neutralize. Human antisera that neutralized AV48 did not recognize linear peptides. Purified trimeric native hexon inhibited neutralization, but monomeric heat-denatured hexon did not. We conclude that the AV48 neutralization epitope(s) is complex and conformational.  相似文献   

6.
7.
Mitral effective regurgitant orifice area (EROA) using the flow convergence (FC) method is used to quantify the severity of mitral regurgitation (MR). However, it is challenging and prone to interobserver variability in complex valvular pathology. We hypothesized that real-time three-dimensional (3D) transesophageal echocardiography (RT3D TEE) derived anatomic regurgitant orifice area (AROA) can be a reasonable adjunct, irrespective of valvular geometry. Our goals were to 1) to determine the regurgitant orifice morphology and distance suitable for FC measurement using 3D computational flow dynamics and finite element analysis (FEA), and (2) to measure AROA from RT3D TEE and compare it with 2D FC derived EROA measurements. We studied 61 patients. EROA was calculated from 2D TEE images using the 2D-FC technique, and AROA was obtained from zoomed RT3DE TEE acquisitions using prototype software. 3D computational fluid dynamics by FEA were applied to 3D TEE images to determine the effects of mitral valve (MV) orifice geometry on FC pattern. 3D FEA analysis revealed that a central regurgitant orifice is suitable for FC measurements at an optimal distance from the orifice but complex MV orifice resulting in eccentric jets yielded nonaxisymmetric isovelocity contours close to the orifice where the assumptions underlying FC are problematic. EROA and AROA measurements correlated well (r = 0.81) with a nonsignificant bias. However, in patients with eccentric MR, the bias was larger than in central MR. Intermeasurement variability was higher for the 2D FC technique than for RT3DE-based measurements. With its superior reproducibility, 3D analysis of the AROA is a useful alternative to quantify MR when 2D FC measurements are challenging.  相似文献   

8.
To date, there are no constitutive models for either the natural or bioprosthetic aortic valve (AV), in part due to experimental complications related to the AV's small size and heterogeneous fibrous structure. In this study, we developed specialized biaxial testing techniques for the AV cusp, including a method to determine the local structure-strain relationship to assess the effects of boundary tethering forces. Natural and glutaraldehyde (GL) treated cusps were subjected to an extensive biaxial testing protocol in which the ratios of the axial tensions were held at constant values. Results indicated that the local fiber architecture clearly dominated cuspal deformation, and that the tethering effects at the specimen boundaries were negligible. Due to unique aspects of cuspal fiber architecture, the most uniform region of deformation was found at the lower portion as opposed to the center of the cuspal specimen. In general, the circumferential strains were much smaller than the radial strains, indicating a profound degree of mechanical anisotropy, and that natural cusps were significantly more extensible than the GL treated cusps. Strong mechanical coupling between biaxial stretch axes produced negative circumferential strains under equibiaxial tension. Further, the large radial strains observed could not be explained by uncrimping of the collagen fibers, but may be due to large rotations of the highly aligned, circumferential-oriented collagen fibers in the fibrosa. In conclusion, this study provides new insights into the AV cusp's structure-function relationship in addition to requisite data for constitutive modeling.  相似文献   

9.
Understanding how physical signals guide biological processes requires qualitative and quantitative knowledge of the mechanical forces generated and sensed by cells in a physiologically realistic three-dimensional (3D) context. Here, we used computational modeling and engineered epithelial tissues of precise geometry to define the experimental parameters that are required to measure directly the mechanical stress profile of 3D tissues embedded within native type I collagen. We found that to calculate the stresses accurately in these settings, we had to account for mechanical heterogeneities within the matrix, which we visualized and quantified using confocal reflectance and atomic force microscopy. Using this technique, we were able to obtain traction forces at the epithelium-matrix interface, and to resolve and quantify patterns of mechanical stress throughout the surrounding matrix. We discovered that whereas single cells generate tension by contracting and pulling on the matrix, the contraction of multicellular tissues can also push against the matrix, causing emergent compression. Furthermore, tissue geometry defines the spatial distribution of mechanical stress across the epithelium, which communicates mechanically over distances spanning hundreds of micrometers. Spatially resolved mechanical maps can provide insight into the types and magnitudes of physical parameters that are sensed and interpreted by multicellular tissues during normal and pathological processes.  相似文献   

10.
The surface geometry of an organism represents the boundary of its three-dimensional (3D) form and can be used as a proxy for the phenotype. A mathematical approach is presented that describes surface morphology using parametric 3D equations with variables expressed as x, y, z in terms of parameters u, v. Partial differentiation of variables with respect to parameters yields elements of the Jacobian representing tangent lines and planes of every point on the surface. Jacobian elements provide a compact size-free summary of the entire surface, and can be used as variables in principal components analysis to produce a morphospace. Mollusk and echinoid models are generated to demonstrate that whole organisms can be represented in a common morphospace, regardless of differences in size, geometry, and taxonomic affinity. Models can be used to simulate theoretical forms, novel morphologies, and patterns of phenotypic variation, and can also be empirically-based by designing them with reference to actual forms using reverse engineering principles. Although this study uses the Jacobian to summarize models, they can also be analyzed with 3D methods such as eigensurface, spherical harmonics, wavelet analysis, and geometric morphometrics. This general approach should prove useful for exploring broad questions regarding morphological evolution and variation.  相似文献   

11.
12.
Cytotoxic T lymphocytes (CTL) for autologous malignant melanoma in culture of a patient AV were induced by restimulation of PBL (peripheral blood leukocytes) with AV melanoma cells in vitro and subcultured in interleukin 2 (IL-2) conditioned media. Monoclonal antibodies detecting six antigenic systems on melanoma cell surfaces were tested for blocking activity on the effector function of subcultured cytolytic T lymphocytes for autologous melanoma cells. The monoclonal antibodies R24 (γ3), specific for the GD3 disialoganglioside on melanoma cell surfaces and I24 (γM), detecting a similar antigenic determinant, blocked autologous T lymphocytotoxicity for malignant melanoma cells on the target level. The effector function of alloantigen activated cytolytic T lymphocytes generated by coculture of allogeneic PBL with Epstein-Barr virus (EBV) transformed AV B lymphocytes, was blocked by monoclonal antibody R24 when tested against AV melanoma targets, but not when tested against AV B lymphocyte targets. It is concluded that blocking by mAb R24 occurs in this system as a nonspecific effect, unrelated to the specific target antigen recognition by cytotoxic T lymphocytes. Steric hindrance or antibody induced membrane changes may account for the blocking effect of monoclonal antibody R24.  相似文献   

13.
The interaction between the two main competing geometric determinants of teeth (the geometry of function and the geometry of occlusion) were investigated through the construction of three-dimensional spatial models of several mammalian tooth forms (carnassial, insectivore premolar, zalambdodont, dilambdodont, and tribosphenic). These models aim to emulate the shape and function of mammalian teeth. The geometric principles of occlusion relating to single- and double-crested teeth are reviewed. Function was considered using engineering principles that relate tooth shape to function. Substantial similarity between the models and mammalian teeth were achieved. Differences between the two indicate the influence of tooth strength, geometric relations between upper and lower teeth (including the presence of the protocone), and wear on tooth morphology. The concept of "autocclusion" is expanded to include any morphological features that ensure proper alignment of cusps on the same tooth and other teeth in the tooth row. It is concluded that the tooth forms examined are auto-aligning, and do not require additional morphological guides for correct alignment. The model of therian molars constructed by Crompton and Sita-Lumsden ([1970] Nature 227:197-199) is reconstructed in 3D space to show that their hypothesis of crest geometry is erroneous, and that their model is a special case of a more general class of models.  相似文献   

14.
Embryonic heart valves develop under continuous and demanding hemodynamic loading. The particular contributions of fluid pressure and shear tractions in valve morphogenesis are difficult to decouple experimentally. To better understand how fluid loads could direct valve formation, we developed a computational model of avian embryonic atrioventricular (AV) valve (cushion) growth and remodeling using experimentally derived parameters for the blood flow and the cushion stiffness. Through an iterative scheme, we first solved the fluid loads on the axisymmetric AV canal and cushion model geometry. We then applied the fluid loads to the cushion and integrated the evolution equations to determine the growth and remodeling. After a set time of growth, we updated the fluid domain to reflect the change in cushion geometry and resolved for the fluid forces. The rate of growth and remodeling was assumed to be a function of the difference between the current stress and an isotropic homeostatic stress state. The magnitude of the homeostatic stress modulated the rate of volume addition during the evolution. We found that the pressure distribution on the AV cushion was sufficient to generate leaflet-like elongation in the direction of flow, through inducing tissue resorption on the inflow side of cushion and expansion on the outflow side. Conversely, shear tractions minimally altered tissue volume, but regulated the remodeling of tissue near the cushion surface, particular at the leading edge. Significant shear and circumferential residual stresses developed as the cushion evolved. This model offers insight into how natural and perturbed mechanical environments may direct AV valvulogenesis and provides an initial framework on which to incorporate more mechano-biological details.  相似文献   

15.
近年来,根据三维软件虚拟复原的头骨来获取测量数据的方法被越来越多地应用在古生物,特别是古人类学的研究中,然而对于三维软件不同精度虚拟复原的头骨,其测量数值是否有差异,研究者并不是很清楚。本文以Mimics软件为例,根据其复原模型简化规则,选择未精简的最佳精度模型作为标准进行配对t检验或非参数检验,通过对43例云南人头骨的顶骨矢状弦长、颅周长、头盖部面积、乳突小房表面积、颅容量、乳突小房体积等六个测量项目的对比和分析,对Mimics软件低、中、高、最佳四种精度3D虚拟复原头骨间的测量差异进行了研究。结果显示:颅周长、头盖部面积、颅容量、乳突小房体积四项的所有简化精度模型的测量数据均与最佳精度模型测量数据的差异具有显著性;而除高精度组外,顶骨矢状弦长及乳突小房表面积的其余精度组测量数据均与最佳精度组差异具有显著性;此外,顶骨矢状弦长、颅周长、头盖部面积、颅容量的简化精度与最佳精度的测量差异占比均小于3%.而乳突小房表面积的低精度与最佳精度测量差异占比可超过50%,乳突小房体积的低精度与最佳精度测量差异占比可超过120%。这一结果提示我们,在测量Mimics复原的三维模型时,体量大差异小的测量项可以在较低精度的复原模型上进行测量;而对头骨内部腔窦这样体量小表面粗糙的结构,复原模型的精度选择及测量数据比较需要格外谨慎。  相似文献   

16.
This paper investigates an alternative explanation for widely reported paradoxical intracellular water properties. The most frequent biological explanation assumes water structure extending multiple layers from surfaces of compactly folded macromolecules to explain large amounts of perturbed water. Long range water structuring, however, contradicts molecular models widely accepted by the scientific majority. This study questions whether the paradoxical cell water could result from larger than expected amounts of first layer interfacial water on internal protein surfaces rather than structured multilayers. Native mammalian tendon is selected for the study because (1) the organ consists of highly compact structures of a single macromolecular protein--collagen, (2) molecular structure and geometry of collagen is well characterized by X-ray diffraction, (3) molecular structure extends to the macroscopic tendon level and (4) perturbed water behavior similar to cellular water is reported on tendon. Native tendon holds 1.6 g water/g dry mass. The 62% native water content simulates the water content of many cell types. MicroCT studies of tendon dilatometry as a function of hydration are measured and correlated to X-ray diffraction measurements of interaxial separation. Correlations show that native tendon has sufficient water for only a single monolayer of interfacial water. Thus the paradoxical properties of water in native tendon are first-layer interfacial water properties. Similar water behavior on globular proteins suggests that paradoxical cell water behavior could be caused by larger than expected amounts of first layer interfacial water on internal and external macromolecular surfaces of cell components.  相似文献   

17.
By generalizing a previous model proposed in the literature, a new spatial kinematic model of the knee joint passive motion is presented. The model is based on an equivalent spatial parallel mechanism which relies upon the assumption that fibers within the anterior cruciate ligament (ACL), the medial collateral ligament (MCL) and the posterior cruciate ligament (PCL) can be considered as isometric during the knee flexion in passive motion (virtually unloaded motion). The articular surfaces of femoral and tibial condyles are modelled as 3-D surfaces of general shapes. In particular, the paper presents the closure equations of the new mechanism both for surfaces represented by means of scalar equations that have the Cartesian coordinates of the points of the surface as variables and for surfaces represented in parametric form. An example of simulation is presented in the case both femoral condyles are modelled as ellipsoidal surfaces and tibial condyles as spherical surfaces. The results of the simulation are compared to those of the previous models and to measurements. The comparison confirms the expectation that a better approximation of the tibiofemoral condyle surfaces leads to a more accurate model of the knee passive motion.  相似文献   

18.
Dental casts of 160 Greek subjects (80 males, 80 females) were scanned by a structured‐light scanner. The upper and lower right first molar occlusal surface 3D meshes were processed using geometric morphometric methods. A total of 265 and 274 curve and surface sliding semilandmarks were placed on the upper and lower molar surfaces, respectively. Principal component analysis and partial least square analysis were performed to assess shape parameters. Molars tended to vary between an elongated and a more square form. The first two principal components (PCs), comprising almost 1/3 of molar shape variation, were related to mesiodistal–buccolingual ratios and relative cusp position. Distal cusps displayed the greatest shape variability. Molars of males were larger than those of females (2.8 and 3.2% for upper and lower molars respectively), but no shape dimorphism was observed. Upper and lower molar sizes were significantly correlated (r2 = 0.689). Allometry was observed for both teeth. Larger lower molars were associated with shorter cusps, expansion of the distal cusp, and constriction of the mesial cusps (predicted variance 3.25%). Upper molars displayed weaker allometry (predicted variance 1.59%). Upper and lower molar shape covariation proved significant (RV = 17.26%, P < 0.0001). The main parameter of molar covariation in partial least square axis 1, contributing to 30% of total covariation, was cusp height, in contrast to the primary variability traits exhibited by PC1 and PC2. The aim of this study was to evaluate shape variation and covariation, including allometry and sexual dimorphism, of maxillary and mandibular first permanent molar occlusal surfaces. Am J Phys Anthropol 152:186–196, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
A new three-dimensional (3D) multiscale micromechanical model has been suggested as adept at predicting the overall linear anisotropic mechanical properties of a vertebral trabecular bone (VTB) highly porous microstructure. A nested 3D modeling analysis framework spanning the multiscale nature of the VTB is presented herein. This hierarchical analysis framework employs the following micromechanical methods: the 3D parametric high-fidelity generalized method of cells (HFGMC) as well as the 3D sublaminate model. At the nanoscale level, the 3D HFGMC method is applied to obtain the effective elastic properties of a representative unit cell (RUC) representing the mineral collagen fibrils composite. Next at the submicron scale level, the 3D sublaminate model is used to generate the effective elastic properties of a repeated stack of multilayered lamellae demonstrating the nature of the trabeculae (bone-wall). Thirdly, at the micron scale level, the 3D HFGMC method is used again on a RUC of the highly porous VTB microstructure. The VTB-RUC geometries are taken from microcomputed tomography scans of VTB samples harvested from different vertebrae of human cadavers \((n=10)\). The predicted anisotropic overall elastic properties for native VTBs are, then, examined as a function of age and sex. The predicted results of the VTBs longitudinal Young’s modulus are compared to reported values found in the literature. The proposed 3D nested modeling analysis framework provides a good agreement with reported values of Young’s modulus of single trabeculae as well as for VTB-RUC in the literature.  相似文献   

20.
Nonnative speech poses a challenge to speech perception, especially in challenging listening environments. Audiovisual (AV) cues are known to improve native speech perception in noise. The extent to which AV cues benefit nonnative speech perception in noise, however, is much less well-understood. Here, we examined native American English-speaking and native Korean-speaking listeners'' perception of English sentences produced by a native American English speaker and a native Korean speaker across a range of signal-to-noise ratios (SNRs;−4 to −20 dB) in audio-only and audiovisual conditions. We employed psychometric function analyses to characterize the pattern of AV benefit across SNRs. For native English speech, the largest AV benefit occurred at intermediate SNR (i.e. −12 dB); but for nonnative English speech, the largest AV benefit occurred at a higher SNR (−4 dB). The psychometric function analyses demonstrated that the AV benefit patterns were different between native and nonnative English speech. The nativeness of the listener exerted negligible effects on the AV benefit across SNRs. However, the nonnative listeners'' ability to gain AV benefit in native English speech was related to their proficiency in English. These findings suggest that the native language background of both the speaker and listener clearly modulate the optimal use of AV cues in speech recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号