首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of specific binding of SEA with membranes of lymphocytes from rabbit thymus is established. Components of a glycolipid nature are absent in the composition of the receptor complex for SEA on T-lymphocytes. Suitable conditions for the solubilization of the receptor membrane fraction by Triton X-100 are described. The SEA-binding membrane fraction is isolated by means of an affinity-chromatography method. The main component of the fraction is a protein with molecular mass 42 kd. The isolated protein inhibits the specific binding of [125I] SEA on cell (T-lymphocytes) and subcell (membrane) levels.  相似文献   

2.
Antibody-induced antigenic modulation occurs after binding of antibodies to a variety of cell surface proteins. It is characterized by aggregation and subsequent loss of the molecules from the cell surface, usually by internalization. In this study we have investigated the effect of modulation of the T-cell antigen receptor complex (TCR) and the transferrin receptor (TFR) on the distribution of cholera toxin (CTx)- and pertussis toxin (PTx)-sensitive GTP binding proteins in human T-lymphocytes. Modulation of both the TCR and the TFR induced a selective shift of PTx-sensitive G-proteins from the plasma membrane to a high density membrane fraction enriched for lysosomal membranes. The distribution of CTx-sensitive G-proteins was unaffected. This shift was found in both the T-cell leukemia line Jurkat and in normal T-cells. The loss of PTx-sensitive G-proteins from the plasma membrane required approximately 15 h to be complete and was not inhibited by cycloheximide. It had no influence on T-cell triggering via anti-T-cell receptor antibodies and is unrelated to the inactivating effect of TCR-modulation on T-cell signalling. The loss of PTx-sensitive G-proteins was not accompanied by greater sensitivity to stimuli raising cAMP concentration. These results show that PTx-sensitive G-proteins can be selectively depleted from the plasma membrane by antibody treatment of T-cells.  相似文献   

3.
Crystal structure of the superantigen staphylococcal enterotoxin type A.   总被引:2,自引:1,他引:1  
Staphylococcal enterotoxins are prototype superantigens characterized by their ability to bind to major histocompatibility complex (MHC) class II molecules and subsequently activate a large fraction of T-lymphocytes. The crystal structure of staphylococcal enterotoxin type A (SEA), a 27 kDa monomeric protein, was determined to 1.9 A resolution with an R-factor of 19.9% by multiple isomorphous replacement. SEA is a two domain protein composed of a beta-barrel and a beta-grasp motif demonstrating the same general structure as staphylococcal enterotoxins SEB and TSST-1. Unique for SEA, however, is a Zn2+ coordination site involved in MHC class II binding. Four amino acids including Ser1, His187, His225 and Asp227 were found to be involved in direct coordination of the metal ion. SEA is the first Zn2+ binding enterotoxin that has been structurally determined.  相似文献   

4.
Lipopolysaccharide (LPS) is a major constituent of bacterial outer membranes where it makes up the bulk of the outer leaflet and plays a key role as determinant of bacterial interactions with the host. Membrane-free LPS is known to activate T-lymphocytes through interactions with Toll-like receptor 4 via multiprotein complexes. In the present study, we investigate the role of cholesterol and membrane heterogeneities as facilitators of receptor-independent LPS binding and insertion, which underpin bacterial interactions with the host in symbiosis, pathogenesis and cell invasion. We use fluorescence spectroscopy to investigate the interactions of membrane-free LPS from intestinal gram-negative organisms with cholesterol-containing model membranes and with T-lymphocytes. LPS preparations from Klebsiella pneumoniae and Salmonella enterica were found to bind preferentially to mixed lipid membranes by comparison to pure PC bilayers. The same was observed for LPS from the symbiote Escherichia coli but with an order of magnitude higher dissociation constant. Insertion of LPS into model membranes confirmed the preference for sphimgomyelin/cholesterol-containing systems. LPS insertion into Jurkat T-lymphocyte membranes reveals that they have a significantly greater LPS-binding capacity by comparison to methyl-β-cyclodextrin cholesterol-depleted lymphocyte membranes, albeit at slightly lower binding rates.  相似文献   

5.
The staphylococcal enterotoxins are a family of bacterial toxins that are thought to exert their pathogenic effects by the massive activation of T lymphocytes to produce lymphokines. Activation of T cells by these toxins is dependent on MHC class II+ APC. Recent studies from a number of laboratories have implicated MHC class II proteins as the APC surface receptor for a number of the staphylococcal enterotoxins. The present report shows that staphylococcal enterotoxin A, (SEA) binds to the purified murine MHC class II molecule I-Ed reconstituted in supported planar membranes, indicating that no other cell surface proteins are required for SEA binding. The Kd for SEA binding to I-Ed was determined to be 3.5 +/- 1.6 x 10(-6) M. Specific binding of SEA to I-Ad was also observed, but the interaction was of significantly lower affinity. Binding of SEA to purified I-Ed was blocked by antibodies against both the alpha- and the beta-chain of the I-Ed molecule, but not by antibodies specific for an unrelated MHC class II protein. Binding of SEA to I-Ad was blocked by an A beta d but not by an A alpha d-specific antibody. Planar membranes containing only lipid and purified I-Ed molecules were sufficient for activation of a V beta 1 expressing T hybrid by SEA. The T cells responded to as few as 180 toxin molecules per T cell.  相似文献   

6.
To study the binding of (Tyr3-125I)-labelled neurotensin to intestinal muscle, plasma membranes have been purified from dog intestinal circular smooth muscle. Purification was done by differential centrifugation followed by separation on a sucrose gradient. Electron microscopic study revealed that the dissected circular muscles used as the source of membranes were free of myenteric plexus and that the plasma membrane fraction obtained was free of any mitochondria or synaptosomes. The fraction used was obtained at the interface of 14%-33% sucrose density on the gradient and was 25-times enriched in the plasma membrane marker enzyme 5'-nucleotidase activity as compared to post-nuclear supernatant. This fraction contained negligible activity of mitochondrial membrane marker enzyme cytochrome c oxidase and low activity of a putative endoplasmic reticulum marker enzyme NADPH-cytochrome-c reductase. This membrane fraction contained a high density of neurotensin binding sites. This binding was studied by kinetic and by saturation approaches. Analysis of data from saturation binding studies by the computer programs (EBDA and LIGAND) suggested the presence of a two-site model (Kd1 = 0.118 nM, Kd2 = 3.18 nM, Bmax1 = 9.73 fmol/mg and Bmax2 = 129.8 fmol/mg). A part of specifically bound neurotensin was rapidly dissociated. No cooperativity between the two receptor types could be detected. A kinetic analysis of binding gave the Kd value equal to 0.107 nM. Carboxy terminal amino acid residues 8-13 were found to be essential for the binding activity and replacement of Tyr11 by tryptophan reduced the affinity of the peptide by 10 times in displacement studies. Binding was modulated by sodium ions and a guanine nucleotide Gpp[NH]p. MgCl2, CaCl2 and KCl were also found to reduce the specific binding. Evidence was found of a high specific binding to another membrane fraction poor in plasma membranes and rich in synaptosomes. We concluded that plasma membrane of canine intestinal circular muscle contains neurotensin receptors with recognition properties distinct from those obtained in previous studies of neurotensin binding sites in murine tissues. Another neurotensin binding site may be present on neuronal membranes.  相似文献   

7.
The role of the surrounding membrane structure on the binding characteristics of the insulin receptor was studied by using several digestive enzymes. The effects observed with particulate membrane preparations are compared with those from soluble receptor preparations. beta-Galactosidase and neuraminidase had no effect on insulin binding to either particulate or soluble receptors from human placentae. Exposure to 2 units of phospholipase C/ml increased insulin binding to particulate membranes, but was without effect on the soluble receptor preparation. The increase in binding to particulate membranes was shown to be due to an increase in apparent receptor number. After 5 min exposure to 500 microgram of trypsin/ml there was an increase in insulin binding to the particulate membrane fraction, owing to an increase in receptor affinity. After 15 min exposure to this amount of trypsin, binding decreased, owing to a progressive decrease in receptor availability. In contrast, this concentration of trypsin had no effect on the solubilized receptor preparation. Because of the differential effects of phospholipase C and trypsin on the particulate compared with the solubilized receptor preparations, it is concluded that the effects of these enzymes were due to an effect on the surrounding membrane structure. Changes in receptor configuration due to alterations within the adjoining membrane provide a potential mechanism for mediating short-term alterations in receptor function.  相似文献   

8.
The role of the low density lipoprotein (LDL) receptor in the binding of chylomicron remnants to liver membranes and in their uptake by hepatocytes was assessed using a monospecific polyclonal antibody to the LDL receptor of the rat liver. The anti-LDL receptor antibody inhibited the binding and uptake of chylomicron remnants and LDL by the poorly differentiated rat hepatoma cell HTC 7288C as completely as did unlabeled lipoproteins. The antireceptor antibody, however, decreased binding of chylomicron remnants to liver membranes from normal rats by only about 10%. This was true for intact membranes and for solubilized reconstituted membranes and with both a crude membrane fraction as well as with purified sinusoidal membranes. Further, complete removal of the LDL receptor from solubilized membranes by immunoprecipitation with antireceptor antibody only decreased remnant binding to the reconstituted supernatant by 10% compared to solubilized, nonimmunoprecipitated membranes. Treatment of rats with ethinyl estradiol induced an increase in remnant binding by liver membranes. All of the increased binding could be inhibited by the antireceptor antibody. The LDL receptor-independent remnant binding site was not EDTA sensitive and was not affected by ethinyl estradiol treatment. LDL receptor-independent remnant binding was competed for by beta-VLDL = HDLc greater than rat LDL greater than human LDL (where VLDL is very low density lipoprotein, and HDL is high density lipoprotein). There was weak and incomplete competition by apoE-free HDL, probably due to removal of apoE from the remnant. The LDL receptor-independent remnant-binding site was also present in membranes prepared from isolated hepatocytes and had the same characteristics as the site on membranes prepared from whole liver. In contrast, when chylomicron remnants were incubated with a primary culture of rat hepatocytes, the anti-LDL receptor antibody prevented specific cell association by 84% and degradation of chylomicron remnants completely. Based on these studies, we conclude that although binding of chylomicron remnants to liver cell membranes is not dependent on the LDL receptor, their intact uptake by hepatocytes is.  相似文献   

9.
3-Quinuclidinyl benzilate (QNB), a potent antagonist of muscarinic acetylcholine receptors, has been demonstrated to inhibit specifically the zona pellucida (ZP)-inducud acrosome reaction (AR) in mouse sperm (Florman and Storey, 1982; Dev Biol 91:121–130). In this study we describe the solubilization and partial purification of the mouse sperm QNB binding activity which may represent a component of the putative receptor complex for ZP on the sperm plasma membrane. Sperm membranes were isolated from cell homogenates of washed, capacitated, epididymal mouse sperm. Scatchard plots of QNB binding to these membranes indicated a single class of binding sites with KD = 7.2 nM and Bmax = 8700 sites/cell. These binding characteristics are similar to those seen with QNB binding to whole cells (Florman and Storey, 1982, J Androl 3:157–164). Sperm membranes were solubilized using 1% digitonin/0.2% cholate, and the resultant detergent-soluble fraction possessed QNB binding activity similar to that of intact membranes. The detergent-soluble fraction maintained intact ZP receptor(s)–G protein coupling in that treatment of this fraction with either ZP or mastoparan resulted in a 35% or 65% increase in specific GTPγS binding, respectively. The solubilized membrane preparation was fractionated by gel permeation HPLC. A majority of specific QNB binding activity was confined to one HPLC fraction. Analysis of this fraction by SDS–PAGE revealed a complex of approximately 5 proteins unique to this fraction. The most prominent protein had a Mr of 72 kDa, which is within the Mr range for muscarinic receptors. A protein with Mr = 41 kDa was also present within this fraction. Subsequent pertussis toxin (PTX)-catalyzed ADP-ribosylation of this fraction revealed this protein to be the α subunit of the Gi class of G proteins. Although the QNB binding activity could not be positively identified, we propose that it is contained in one or more of the proteins unique to this fraction and that these proteins, including Gi, may act as part of a sperm receptor complex for the ZP. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The binding of 125I-labelled human growth hormone (hGH) to a purified plasma membrane preparation from the liver of pregnant rabbit, and to receptors solubilized from this fraction with Triton X-100, was dependent on time, temperature, the cations used and the receptor concentration. Solubilization did not affect the binding properties of the receptors at low concentrations of Triton X-100. Some somatogenic hormones, such as bovine GH, and some lactogenic hormones, such as ovine prolactin, displaced 125I-labelled hGH from purified plasma membranes and solubilized receptor preparations, but GHs and prolactins from various other species were rather ineffective. The results indicate that although there are binding sites for hGH in these pregnant rabbit liver membranes, few of these are specifically somatogenic or lactogenic. The binding properties of the purified plasma membranes are similar to those of a microsomal preparation studied previously, suggesting that the complex nature of the binding of hGH is not due to the heterogeneity of cellular membranes used to study binding, but is a property of the receptors associated with plasma membranes.  相似文献   

11.
A method is described for the subfractionation of plasma membranes from thymus lymphocytes by means of affinity chromatography on concanavalin A-Sepharose. Thymus lymphocytes were disrupted by nitrogen cavitation, microsomal membranes isolated by differential centrifugation, and plasma membranes purified from microsomes by sucrose gradient ultracentrifugation. Plasma membranes were highly purified as indicated by marker enzymes and chemical analysis. To obtain membrane preparations suited for lectin-dependent affinity chromatography, sucrose was removed slowly by gradient dialysis. Plasma membranes were then equilibrated for 20 min at 4°C with concanavalin A-Sepharose, which allowed the separation of membranes into a fraction eluting freely (MF1) and a second fraction binding to the affinity absorbent (MF2), with a total recovery of about 90%. Increasing the temperature or binding time did not alter the fractionation of the plasma membrane into the two subfractions. Fractionation required the binding of matrix-bound concanavalin A to plasma membrane binding sites. Both plasma membrane subfractions proved to have preserved their original orientation (right-side out). The method described is suited to isolate different domains of the lymphocyte plasma membrane.  相似文献   

12.
Insulin stimulates the accumulation of iron by isolated fat cells by increasing the uptake of diferric transferrin. Analysis of the cell-surface binding of diferric 125I-transferrin indicated that insulin caused a 3-fold increase in the cell surface number of transferrin receptors. This result was confirmed by the demonstration that insulin increases the binding of an anti-rat transferrin receptor monoclonal antibody (OX-26) to the surface of fat cells. The basis of this effect of insulin was examined by investigating the number of transferrin receptors in membrane fractions isolated from disrupted fat cells. Two methods were employed. First the binding isotherm of diferric 125I-transferrin to the isolated membranes was studied. Second, the membranes were solubilized with detergent, and the number of transferrin receptors was measured by immunoblotting using the monoclonal antibody OX-26. It was observed that insulin treatment of intact fat cells resulted in an increase in the number of transferrin receptors located in the isolated plasma membrane fraction of the disrupted fat cells. Furthermore, the increase in the number of plasma membrane transferrin receptors was associated with a concomitant decrease in the transferrin receptor number in a low density microsome fraction previously shown to consist of intracellular membranes. This redistribution of transferrin receptors between cellular membrane fractions in response to insulin is remarkably similar to the regulation by insulin of glucose transporters and type II insulin-like growth factor receptors. We conclude that insulin stimulates fat cell iron uptake by a mechanism that may involve the redistribution of transferrin receptors from an internal membrane compartment (low density microsomes) to the cell surface (plasma membrane).  相似文献   

13.
We have attempted to identify a surface component of echinoderm eggs that is involved in the species-specific binding of sperm. Cell surface membranes from eggs of the sea urchins Strongylocentrotus purpuratus or Arbacia punctulata were radioiodinated, detergent-treated, and subjected to density-gradient centrifugation. In the presence of bindin, the complementary binding protein isolated from sperm, one component of the membranes sedimented to a different density. This membrane component bound-species specifically to sperm that had undergone the acrosome reaction. This binding led to an inhibition of the ability of treated sperm to fertilize eggs. Exhaustive proteolytic digestion of this receptor fraction yields a high molecular weight glycopeptide that can also bind to bindin. It therefore appears that this egg surface membrane fraction contains a functionally intact, species-specific receptor for sperm.  相似文献   

14.
The neuropeptide substance P (SP) stimulates human T-lymphocyte function in vitro. Human blood T-lymphocytes and cultured human IM-9 B-lymphoblasts express 7,000-10,000 and 25,000-30,000 substance P receptors per cell, respectively. The specific binding of 125I-SP is retained in IM-9 lymphoblast membranes solubilized in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS) at a detergent-to-protein ratio of 1.0. In addition, specific and reversible SP binding to soluble IM-9 cell membrane proteins is demonstrated by gel filtration. The saturation of binding of 125I-SP to both intact and solubilized IM-9 cell membranes attained a steady state after 40-50 min at 4 degrees C. Scatchard analysis of the concentration dependence of 125I-SP binding to IM-9 cell membranes revealed a KD of 0.87 +/- 0.8 nM (mean +/- S.D., n = 4), which is similar to that observed in intact cells, and a density of receptors of 21 +/- 3 fmol/mg of membrane protein (mean +/- S.D.). Binding of 125I-SP to solubilized membranes demonstrated a KD of 0.75 +/- 0.33 nM (mean +/- S.D., n = 3) and a density of receptors of 3.7 +/- 1.5 fmol/mg of membrane protein (mean +/- S.D., n = 3). Affinity cross-linking of 125I-SP by disuccinimidyl suberate to intact IM-9 cells and membranes revealed specifically labeled proteins of Mr 58,000 and 33,000 in cells, and 58,000, 33,000, and 16,000 in membranes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both reducing and nonreducing conditions. Competitive effects of substituent peptides of SP on cross-linking and 125I-SP binding to membranes demonstrated that the SP receptor recognized the carboxyl-terminal domain of the peptide. Membranes from cells preincubated in vitro for 12 h at 37 degrees C with 10(-8) M SP demonstrated a decrease in SP receptor density to 13 +/- 2 fmol/mg (mean +/- S.D., n = 2), and a parallel diminution in the specific labeling of membrane proteins of Mr 58,000 and 33,000. These observations suggest that solubilization in CHAPS preserves the binding characteristics of the IM-9 lymphoblast receptor for SP, and that affinity cross-linking techniques identify by sodium dodecyl sulfate-polyacrylamide gel electrophoresis membrane proteins that are specifically labeled by SP.  相似文献   

15.
《The Journal of cell biology》1987,105(6):2959-2971
Previous studies have indicated that the receptor for N-formylated peptides present on human neutrophils can exist in several ligand- dissociation states at least one of which is sensitive to guanine nucleotides. Human neutrophil membranes rich in cell surface enzyme markers have been isolated from cells pretreated at 37 degrees C with 5 nM fluoresceinated chemotactic peptide (N-formyl-Nle-Leu-Phe-Nle-Tyr- Lys-fluorescein; Fl-peptide) or a buffer control and analyzed for receptor-ligand dissociation states using a previously published fluorescence assay for estimating ligand binding and dissociation rates (Sklar, L. A., et al. 1984. J. Biol. Chem. 259:5661-5669). Fractionation of crude microsomes derived from homogenates of unstimulated cells by ultracentrifugation on linear D2O gradients yielded two plasma membrane-rich fractions termed fast and slow microsomes. Analysis of Fl-peptide dissociation rates from receptor present in fast membrane fractions of unstimulated cells yielded data that could be best fit by assuming that the receptor exists in three distinct ligand-dissociation states. The intermediate ligand- dissociation state (state B) accounted for 47% of the total and was converted to the fastest ligand-dissociation state (state A) by incubation of membranes with GTP or GTP-gamma-S. The remainder of the receptor (17%) present in unstimulated membranes was in a state from which ligand was virtually nondissociable (state C). This form of the receptor was insensitive to GTP-gamma-S. When cells were stimulated with Fl-peptide, most of the receptor present in slow and fast membranes was of the state C type. In contrast to unstimulated cells, slow membranes derived from cells exposed to Fl-peptide contained the majority of the recoverable receptor indicating that receptor was transferred to a physically isolatable membrane domain after ligand binding to the intact cell. The ligand-induced formation of state C in both fast and slow microsome fractions was inhibited by treatment of cells with dihydrocytochalasin B. However, the drug had no effect on translocation of the receptor to slow membranes. Pertussis toxin treatment of intact cells had no effect on ligand-induced formation of state C in either fraction even though other cellular responses were inhibited. Both slow and fast membranes contained a 41-kD G protein as assayed by immunoblot analysis. The data suggest that ligand induces a segregation of receptor-ligand complexes into a membrane domain in which the receptor is functionally uncoupled from the 41-kD neutrophil G protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
A simple large-scale purification of alpha 2-adrenergic receptor-enriched membranes from human platelets is described. Binding of the antagonist [3H]yohimbine is enriched 3-5-fold compared to a crude membrane fraction. Binding of low concentrations of the partial agonist 3-H-rho-aminoclonidine is increased 15-20-fold due to a higher binding affinity for the purified membranes. A soluble inhibitor of 3H-rho-aminoclonidine binding to purified membranes is found even in thrice-washed crude platelet membranes. The guanine nucleotides GDP and GTP are found to account for this inhibitory activity. Forskolin-stimulated adenylate cyclase activity is also enriched in the purified membrane fraction. Adenylate cyclase activity is inhibited by alpha 2-agonist to a comparable extent in all membrane fractions. This membrane preparation should prove useful in studies of alpha 2-adrenergic receptor mechanisms.  相似文献   

17.
Using the membranes treated with Triton X-100, we studied the interaction between gamma-aminobutyric acid (GABA)B receptors and the GTP-binding proteins which are the substrates for ADP-ribosylation by the islet-activating protein (IAP), pertussis toxin. The addition of guanine nucleotides to the membranes markedly decreased the binding of GABA to GABAB receptors. Preincubation of the membranes with IAP plus NAD caused ADP-ribosylation of the 41,000- and 39,000-Da proteins selectively and decreased GABA binding to GABAB receptors in a time- and dose-dependent manner. This decrease of binding appeared to be due to the reduction of receptor affinity for agonist. The GTP-binding proteins which are ADP-ribosylated by IAP were purified from the membrane fraction of bovine cerebral cortex. The addition of the purified GTP-binding proteins to IAP-treated membranes restored the high affinity binding of GABA to GABAB receptor. The two GTP-binding proteins which were resolved by octyl-Sepharose column chromatography showed similar efficacy in restoring GABA binding. Thus, GABAB receptors are coupled to GTP-binding proteins, IAP-specific substrates, in the brain membranes.  相似文献   

18.
Transferrin receptors in detergent extracts of subcellular membrane fractions prepared from 3T3-L1 adipocytes were measured by a binding assay. There was a small but significant increase (1.2-fold) in the amount of receptor in a crude plasma membrane fraction and a 40% decrease in the number of transferrin receptors in microsomal membranes prepared from insulin-treated cells, when compared with corresponding fractions from control cells. Intracellular vesicles containing insulin-responsive glucose transporters (GT) have been isolated by immunoadsorption from the microsomal fraction (Biber, J. W., and G. E. Lienhard. 1986. J. Biol. Chem. 261:16180-16184). All of the transferrin receptors in this fraction were localized in these vesicles; however, because the GT vesicles contain approximately 30-fold fewer transferrin receptors than GT, on the average only one vesicle in three contains a transferrin receptor. The binding of 125I-pentamannose 6-phosphate BSA to 3T3-L1 adipocytes at 4 degrees C was used to monitor surface insulin-like growth factor II (IGF-II)/mannose 6-phosphate receptors. Exposure of cells to insulin at 37 degrees C for 5 min resulted in a 2.5-4.5-fold increase in surface receptors. There was a corresponding 20% decrease in the amount of IGF-II receptors in the microsomal membranes prepared from insulin-treated cells, as assayed by immunoblotting. Moreover, the IGF-II receptors and GT were located in the same intracellular vesicles, since antibodies to the carboxyterminal peptide of either protein immunoadsorbed vesicles containing 70-95% of both proteins initially present in the microsomal fraction. In conjunction with other studies, these results indicate that in 3T3-L1 adipocytes, three membrane proteins (the GT, the transferrin receptor, and the IGF-II receptor) respond similarly to insulin, by redistributing to the surface from intracellular compartment(s) in which they are colocalized.  相似文献   

19.
The hemimethylated oriC binding activity of the E. coli heavy density membrane fraction (outer membrane) was investigated by DNase I footprinting experiments using membranes obtained from different replication stages of PC-2 (dnaCts) cells. The maximal binding activity was found at the beginning of replication cycle and then decreased gradually. The same pattern of variation was observed with SeqA protein detected in the membranes by immunoblotting. Both binding activity and the presence of SeqA were conserved in the outer membrane even after floating centrifugation of the heavy density membrane fraction in a sucrose gradient, indicating that SeqA in fact can associate with the membrane and that this association varies according to replication cycle. Site specific binding to hemimethylated oriC, of the heavy density membrane obtained from seqA mutant, could be restored by addition of a low amount of His-tagged SeqA protein.  相似文献   

20.
A membrane-associated receptor involved in a specific uptake of formaldehyde-treated serum albumin (f-Alb) was purified from rat livers by Triton X-100 solubilization of a 105,000 X g membrane preparation and affinity chromatography on an f-Alb-Sepharose column. The purified receptor exhibited Mr = 125,000, consisting of two noncovalently linked glycoprotein components with Mr = 53,000 and Mr = 30,000, respectively. Incubation of 125I-receptor with f-Alb, but not with native albumin, resulted in a marked shift of pI value from 5.9 to 5.1, reflecting the presence of a specific ligand-receptor interaction. The receptor incorporated into liposomes displayed a saturable binding to 125I-f-Alb and the binding was effectively replaced by the presence of unlabeled f-Alb, with binding parameters being similar to those obtained from 125I-f-Alb binding to the sinusoidal liver cell membrane (Horiuchi, S., Takata, K., and Morino, Y. (1985) J. Biol. Chem. 260, 475-481). Reaction of anti-f-Alb receptor antibody with extracts of sinusoidal cells resulted in a specific precipitation of two proteins whose molecular weights were identical to those for the purified receptor. The anti-receptor IgG fraction effectively blocked 125I-f-Alb binding to the sinusoidal cell membranes. These results indicate that the purified protein represents the membrane-associated receptor which is presumably involved in a specific uptake of this ligand from the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号