首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cao Y  Shen D  Lu Y  Huang Y 《Annals of botany》2006,97(6):1091-1094
BACKGROUND AND AIMS: Raman spectroscopy can be used to examine the orientation of biomacromolecules using relatively thick samples of material, whereas more traditional means of analysing molecular structure require prior isolation of the components, which often destroys morphological features. In this study, Raman spectroscopy was used to examine the outer epidermal cell walls of wheat stems. METHODS: Polarized Raman spectra from the epidermal cell walls of wheat stem were obtained using near-infrared-Fourier transform Raman scattering. By comparing spectra taken with Raman light polarized perpendicular or parallel to the longitudinal axis of the cell, the orientation of macromolecules in the cell wall was investigated. KEY RESULTS: The net orientation of macromolecules varies in the epidermal cell walls of the different components of wheat stem. The net orientation of cellulose is parallel to the longitudinal axis of the cells, whereas the xylan and the phenylpropane units of lignin tend to lie perpendicular to the longitudinal axis of the cells, i.e. perpendicular to the net orientation of cellulose in the epidermal cell walls. CONCLUSIONS: The results imply that cellulose, lignin and xylan form a relatively ordered network that defines the mechanical and structural properties of the cell wall. Such results are likely to have a significant impact on the formulation of definitive models for the static and growing cell wall.  相似文献   

2.
Chemical imaging by confocal Raman microscopy has been used for the visualization of the cellulose and lignin distribution in wood cell walls. Lignin reduction in wood can be achieved by, for example, transgenic suppression of a monolignol biosynthesis gene encoding 4-coumarate-CoA ligase (4CL). Here, we use confocal Raman microscopy to compare lignification in wild type and lignin-reduced 4CL transgenic Populus trichocarpa stem wood with spatial resolution that is sub-μm. Analyzing the lignin Raman bands in the spectral region between 1,600 and 1,700 cm−1, differences in lignin signal intensity and localization are mapped in situ. Transgenic reduction of lignin is particularly pronounced in the S2 wall layer of fibers, suggesting that such transgenic approach may help overcome cell wall recalcitrance to wood saccharification. Spatial heterogeneity in the lignin composition, in particular with regard to ethylenic residues, is observed in both samples. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Agarwal UP 《Planta》2006,224(5):1141-1153
A detailed understanding of the structural organization of the cell wall of vascular plants is important from both the perspectives of plant biology and chemistry and of commercial utilization. A state-of-the-art 633-nm laser-based confocal Raman microscope was used to determine the distribution of cell wall components in the cross section of black spruce wood in situ. Chemical information from morphologically distinct cell wall regions was obtained and Raman images of lignin and cellulose spatial distribution were generated. While cell corner (CC) lignin concentration was the highest on average, lignin concentration in compound middle lamella (CmL) was not significantly different from that in secondary wall (S2 and S2–S3). Images generated using the 1,650 cm−1 band showed that coniferaldehyde and coniferyl alcohol distribution followed that of lignin and no particular cell wall layer/region was therefore enriched in the ethylenic residue. In contrast, cellulose distribution showed the opposite pattern—low concentration in CC and CmL and high in S2 regions. Nevertheless, cellulose concentration varied significantly in some areas, and concentrations of both lignin and cellulose were high in other areas. Though intensity maps of lignin and cellulose distributions are currently interpreted solely in terms of concentration differences, the effect of orientation needs to be carefully considered to reveal the organization of the wood cell wall.The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This article was written and prepared by U.S. Government employees on official time, and it is therefore in the public domain and not subject to copyright. The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.  相似文献   

4.
Analysis of cell-wall polymers during cotton fiber development   总被引:2,自引:0,他引:2  
Although the fibers of cotton (Gossypium hirsutum L.) are single cells with a secondary wall composed primarily of cellulose, the cell-wall polymers of the fibers are technically difficult to characterize with respect to molecular weights. This limitation hinders understanding how the fiber wall composition changes during development, particularly with respect to genotypic variations, and how the molecular composition is related to physical properties. We analyzed cell-wall polymers from cotton fibers (cultivar, Texas Marker-1) at several developmental stages (8–60 days post-anthesis; DPA) by gel-permeation chromatography of components soluble in dimethyl acetamide and lithium chloride. This procedure solubilizes fiber cell-wall components directly without prior extraction or derivatization, processes that could lead to degradation of high-molecular-weight components. Cellwall polymers from fibers at primary cell-wall stages had lower molecular weights than the cellulose from fibers at the secondary wall stages; however, the high-molecularweight cellulose characteristic of mature cotton was detected as early as 8 DPA. High-molecular-weight material decreased during the period of 10–18 DPA with concomitant increase in lower-molecular-weight wall components, possibly indicating hydrolysis during the later stages of elongation.Abbreviations DMAC dimethyl acetamide - DP degree of polymerization - DPA days post anthesis - GPC gel-permeation chromatography - MW molecular weight - MWD molecular-weight distribution - TM-1 Texas Marker 1  相似文献   

5.
Joseleau JP  Imai T  Kuroda K  Ruel K 《Planta》2004,219(2):338-345
The occurrence of lignin in the additional gelatinous (G-) layer that differentiates in the secondary wall of hardwoods during tension wood formation has long been debated. In the present work, the ultrastructural distribution of lignin in the cell walls of normal and tension wood fibres from poplar (Populus deltoides Bartr. ex Marshall) was investigated by transmission electron microscopy using cryo-fixation–freeze-substitution in association with immunogold probes directed against typical structural motifs of lignin. The specificity of the immunological probes for condensed and non-condensed guaiacyl and syringyl interunit linkages of lignin, and their high sensitivity, allowed detection of lignin epitopes of definite chemical structures in the G-layer of tension wood fibres. Semi-quantitative distribution of the corresponding epitopes revealed the abundance of syringyl units in the G-layer. Predominating non-condensed lignin sub-structures appeared to be embedded in the crystalline cellulose matrix prevailing in the G-layer. The endwise mode of polymerization that is known to lead to these types of lignin structures appears consistent with such an organized cellulose environment. Immunochemical labelling provides the first visualization in planta of lignin structures within the G-layer of tension wood. The patterns of distribution of syringyl epitopes indicate that syringyl lignin is deposited more intensely in the later phase of fibre secondary wall assembly. The data also illustrate that syringyl lignin synthesis in tension wood fibres is under specific spatial and temporal regulation targeted differentially throughout cell wall layers.Abbreviations G-layer Gelatinous layer - G Guaiacyl monomeric unit - PATAg Periodic acid–thiocarbohydrazide–silver proteinate - S Syringyl monomeric unit  相似文献   

6.
U. Kutschera 《Planta》1990,181(3):316-323
The relationship between growth and increase in cell-wall material (wall synthesis) was investigated in hypocotyls of sunflower seedlings (Helianthus annuus L.) that were either grown in the dark or irradiated with continuous white light (WL). The peripheral three to four cell layers comprised 30–50% of the entire wall material of the hypocotyl. The increase in wall material during growth in the dark and WL, respectively, was larger in the inner tissues than in the peripheral cell layers. The wall mass per length decreased continuously, indicating that wall thinning occurs during growth of the hypocotyl. When dark-grown seedlings were transfered to WL, a 70% inhibition of growth was observed, but the increase in wall mass was unaffected. Likewise, the composition of the cell walls (cellulose, hemicellulose, pectic substances) was not affected by WL irradiation. Upon transfer of dark-grown seedlings into WL a drastic increase in wall thickness and a concomitant decrease in cell-wall plasticity was measured. The results indicate that cell-wall synthesis and cell elongation are independent processes and that, as a result, WL irradiation of etiolated hypocotyls leads to a thickening and mechanical stiffening of the cell walls.  相似文献   

7.
Jean-Pierre Métraux 《Planta》1982,155(6):459-466
Changes in the uronide, neutral-polysacharide, and cellulose composition of the cell wall ofNitella axillaris Braun were followed throughout development of the internodes and correlated with changes in growth rate. As the cells increased in length from 4 to 80 mm during development, the relative growth rate decreased. Cell wall thickness, as measured by wall density, increased in direct proportion to diameter, indicating that cell-wall stress did not change during elogation. Cell-wall analyses were adapted to allow determination of the composition of the wall of single cells. The total amounts of uronides, neutral sugars and cellulose all increased during development. However, as the growth rate decreased, the relative proportions of uronides and neutral sugars, expressed as percent of the dry weight of the wall, decreased, while the proportion of cellulose increased. The neutral sugars liberated upon hydrolysis ofNitella walls are qualitatively similar to those found in hydrolysates of higher plant cell walls: glucose, xylose, mannose, galactose, arabinose fucose and rhamnose. Only the percentage of galactose was found to increase in walls of mature cells, while the percentage of all other sugars decreased. The rate of apposition (g of wall material deposited per unit wall surface area per hour) of neutral polysaccharides decreased rapidly with decreasing growth rate during the early stages of development. The rate of apposition of uronides decreased more steadily throughout development, while that of cellulose, after an early decline, remained constant until dropping off at the end of the elongation period. These correlations between decreasing growth rate and decreasing rate of apposition of neutral sugars and uronides indicate that synthesis of these cell-wall components could be involved in the regulation of the rate of cell elongation inNitella.  相似文献   

8.
The crystalline ultrastructure and orientation of cellulose microfibrils in the cell wall of Valonia macrophysa were investigated by means of high-resolution electron microscopy of ultrathin (approx. 28 nm) sections. With careful selection of imaging conditions, ultrastructural aspects of the cell wall that had remained unresolved in previous studies were worked out by direct imaging of crystal lattice of cellulose microfibrils. It was confirmed that each microfibril is a single crystal having a lateral dimension of 20·20 nm2, because lattice images of 0.39 nm resolution were clearly recorded with no major disruption in the whole area of the cross section of the microfibril. There was no evidence for the existence of 3.5-nm elementary fibrils which have been considered to be basic crystallographic and morphological units of cellulose in general. It was also confirmed that the axial directions (crystallographic fiber direction) of adjacent microfibrils in each single lamella of the cell wall are opposite to each other.  相似文献   

9.
The cell-wall formation in the egg of Pelvetia fastigiata (J.G. Agardh) DeToni (Fucaceae) was studied with freeze-fracture. 1. The wall is lamellated with microfibrils approximately parallel in each lamella. The average orientation of microfibrils turns about 35° in each subsequent lamella. This slow turn gives rise to bow-shaped arcs when the wall is obliquely cross fractured. 2. The organization of the fibrils in the innermost lamellae is visualized by their imprints on the plasma membrane. These imprints are the result of both turgor pressure and adhesion of fibrils to the membrane. 3. Strings of membrane particles appear on the plasma membrane shortly after fertilization. They seem to be formed by a fertilization-induced aggregation of isolated membrane particles. Later each string comes to lie under a fibril and along its imprint. Peculiar lateral rips indicate that some strings are tightly bound to a fibril and may be involved in its orientation. 4. Wall formation in Pelvetia is marked by pronounced secretory activities. Following fertilization, the fusion of cortical vesicles and other vesicles make numerous loci in the plasma membrane. In older embryos, fibril-free patches in the plasma membrane mark the position of microfibril elongation centers in the wall matrix. Prior to germination, these elongation centers and their corresponding membrane patches reach a high density at the presumptive rhizoid end.We wish dedicate this paper to R.D. Preston  相似文献   

10.
Confocal Raman microscopy was used to illustrate changes of molecular composition in secondary plant cell wall tissues of poplar (Populus nigra x Populus deltoids) wood. Two-dimensional spectral maps were acquired and chemical images calculated by integrating the intensity of characteristic spectral bands. This enabled direct visualization of the spatial variation of the lignin content without any chemical treatment or staining of the cell wall. A small (0.5 microm) lignified border toward the lumen was observed in the gelatinous layer of poplar tension wood. The variable orientation of the cellulose was also characterized, leading to visualization of the S1 layer with dimensions smaller than 0.5 mum. Scanning Raman microscopy was thus shown to be a powerful, nondestructive tool for imaging changes in molecular cell wall organization with high spatial resolution.  相似文献   

11.
Two different types of contacts (or interfaces) exist between the plant host and the fungus during the vesicular-arbuscular mycorrhizal symbiosis, depending on whether the fungus is intercellular or intracellular. In the first case, the walls of the partners are in contact, while in the second case the fungal wall is separated from the host cytoplasm by the invaginated host plasmamembrane and by an interfacial material. In order to verify the origin of the interfacial material, affinity techniques which allow identification in situ of cell-wall components, were used. Cellobiohydrolase (CBH I) that binds to cellulose and a monoclonal antibody (JIM 5) that reacts with pectic components were tested on roots ofAllium porrum L. (leek) colonized byGlomus versiforme (Karst.) Berch. Both probes gave a labelling specific for the host cell wall, but each probe labelled over specific and distinct areas. The CBH I-colloidal gold complex heavily labelled the thick epidermal cell walls, whereas JIM 5 only labelled this area weakly. Labelling of the hypodermis was mostly on intercellular material after treatment with JIM 5 and only on the wall when CBH I was used. Suberin bands found on the radial walls were never labelled. Cortical cells were mostly labelled on the middle lamella with JIM 5 and on the wall with CBH I. Gold granules from the two probes were found in interfacial material both near the point where the fungus enters the cell and around the thin hyphae penetrating deep into the cell. The ultrastructural observations demonstrate that cellulose and pectic components have different but complementary distributions in the walls of root cells involved in the mycorrhizal symbiosis. These components show a similar distribution in the interfacial material laid down around the vesicular-arbuscular mycorrhizal fungus indicating that the interfacial material is of host origin.  相似文献   

12.
Plants use the orientation of cellulose microfibrils to create cell walls with anisotropic properties related to specific functions. This enables organisms to control the shape and size of cells during growth, to adjust the mechanical performance of tissues, and to perform bending movements of organs. We review the key function of cellulose orientation in defining structural-functional relationships in cell walls from a biomechanics perspective, and illustrate this by examples mainly from our own work. First, primary cell-wall expansion largely depends on the organization of cellulose microfibrils in newly deposited tissue and model calculations allow an estimate of how their passive re-orientation may influence the growth of cells. Moreover, mechanical properties of secondary cell walls depend to a large extent on the orientation of cellulose fibrils and we discuss strategies whereby plants utilize this interrelationship for adaptation. Lastly, we address the question of how plants regulate complex organ movements by designing appropriate supramolecular architectures at the level of the cell wall. Several examples, from trees to grasses, show that the cellulose architecture in the cell wall may be used to direct the swelling or shrinking of cell walls and thereby generate internal growth stress or movement of organs.  相似文献   

13.
Crystalline features of cellulose microfibrils in the cell walls of Glaucocystis (Glaucophyta) were studied by combined spectroscopy and diffraction techniques, and the results were compared with those of Oocystis (Chlorophyta). Although these algae are grouped into two different classes, by the composition of their chloroplasts for instance, their cell walls are quite similar in size and morphology. The most striking features of their cellulose crystallites are that they have the highest cellulose Iα contents reported to date. In particular, the Iα fraction of cellulose from Glaucocystis was found to be as high as 90% from 13C NMR analysis. The mode of preferential orientation of cellulose crystallites in their cell walls is also interesting; equatorial 0.53-nm lattice planes were oriented parallel to the cell surface in the case of Glaucocystis, while the 0.62-nm planes were parallel to the Oocystis cell surface. Such a structural variation provides another link to the evolution of cellulose structure, biosynthesis, and its biocrystallization mechanism.  相似文献   

14.
In dark-grown hypocotyls of the Arabidopsis procuste mutant, a mutation in the CesA6 gene encoding a cellulose synthase reduces cellulose synthesis and severely inhibits elongation growth. Previous studies had left it uncertain why growth was inhibited, because cellulose synthesis was affected before, not during, the main phase of elongation. We characterised the quantity, structure and orientation of the cellulose remaining in the walls of affected cells. Solid-state NMR spectroscopy and infrared microscopy showed that the residual cellulose did not differ in structure from that of the wild type, but the cellulose content of the prc-1 cell walls was reduced by 28%. The total mass of cell-wall polymers per hypocotyl was reduced in prc-1 by about 20%. Therefore, the fourfold inhibition of elongation growth in prc-1 does not result from aberrant cellulose structure, nor from uniform reduction in the dimensions of the cell-wall network due to reduced cellulose or cell-wall mass. Cellulose orientation was quantified by two quantitative methods. First, the orientation of newly synthesised microfibrils was measured in field-emission scanning electron micrographs of the cytoplasmic face of the inner epidermal cell wall. The ordered transverse orientation of microfibrils at the inner face of the cell wall was severely disrupted in prc-1 hypocotyls, particularly in the early growth phase. Second, cellulose orientation distributions across the whole cell-wall thickness, measured by polarised infrared microscopy, were much broader. Analysis of the microfibril orientations according to the theory of composite materials showed that during the initial growth phase, their anisotropy at the plasma membrane was sufficient to explain the anisotropy of subsequent growth.  相似文献   

15.
16.
In the Arabidopsis mutant irx3, truncation of the AtCesA7 gene encoding a xylem-specific cellulose synthase results in reduced cellulose synthesis in the affected xylem cells and collapse of mature xylem vessels. Here we describe spectroscopic experiments to determine whether any cellulose, normal or abnormal, remained in the walls of these cells and whether there were consequent effects on other cell-wall polysaccharides. Xylem cell walls from irx3 and its wild-type were prepared by anatomically specific isolation and were examined by solid-state NMR spectroscopy and FTIR microscopy. The affected cell walls of irx3 contained low levels of crystalline cellulose, probably associated with primary cell walls. There was no evidence that crystalline cellulose was replaced by less ordered glucans. From the molecular mobility of xylans and lignin it was deduced that these non-cellulosic polymers were cross-linked together in both irx3 and the wild-type. The disorder previously observed in the spatial pattern of non-cellulosic polymer deposition in the secondary walls of irx3 xylem could not be explained by any alteration in the structure or cross-linking of these polymers and may be attributed directly to the absence of cellulose microfibrils which, in the wild-type, scaffold the organisation of the other polymers into a coherent secondary cell wall.  相似文献   

17.
The assembly of the two major cell wall components, cellulose and lignin, were investigated at the atomistic scale using molecular dynamics simulations. To this end, a molecular model of a cellulose crystal corresponding to the allomorph Ibeta and exhibiting different surfaces was considered to mimic the carbohydrate matrix present in native wood cell wall. The lignin model compound considered here is a threo guaiacyl beta-O-4 dimer. The dynamical process of adsorption of the lignin dimer onto the different surfaces of the cellulose crystal was examined. The modes of association between the two constituents were analyzed; energies of adsorption of the dimer are calculated favorable and of the same order of magnitude on all sides of the cellulosic model, suggesting that the deposition of lignin precursors onto cellulose fibers is non-specific from an enthalpic point of view. Interestingly, geometrical characteristics and energetical details of the adsorption are surface-dependent. Computed data have underlined the predominant contribution of van der Waals interactions for adsorption onto the (200) face, as well as the major influence of H-bonding interactions in the dynamical process of adsorption onto (110) and (1-10) faces. A large number of adsorption sites have been identified and a noticeable "flat" geometry of adsorption of the lignin dimer has been observed, as a consequence of the stacking interactions between lignin aromatic rings and C-H groups of cellulose. Importantly, these dispersive interactions lead to a preferential parallel orientation of lignin aromatic rings relative to the cellulose surface, notably on the (200) face. Such a parallel orientation is consistent with previously reported experimental observations.  相似文献   

18.
Lignification limits grass cell-wall digestion by herbivores. Lignification is spatially and temporally regulated, and lignin characteristics differ between cell walls, plant tissues, and plant parts. Grass lignins are anchored within walls by ferulate and diferulate cross-links, p-coumarate cyclodimers, and possibly benzyl ester and ether cross-links. Cell-wall degradability is regulated by lignin concentration, cross-linking, and hydrophobicity but not directly by most variations in lignin composition or structure. Genetic manipulation of lignification can improve grass cell-wall degradability, but the degree of success will depend on genetic background, plant modification techniques employed, and analytical methods used to characterize cell walls.  相似文献   

19.
The accumulation and cross-linking of hydroxyproline-rich glycoproteins (HRGPs) in cell walls of dicotyledonous plants has been correlated with a number of wall-strengthening phenomena. Polyclonal antibodies raised against glycosylated extensin-1, the most abundant HRGP in carrot (Daucus carota L.) cell walls, recognize this antigen on gel and dot blots and on thin sections of epoxy-embedded carrot-root cell walls. Since wall labeling can be largely reduced by preincubating the antibodies with purified extensin-1, most labeling can be attributed to recognition of this antigen. The remaining label may be the result of recognition of extensin-2, a second carrot HRGP, or other wall components (cellulose, hemicellulose and pectin are not recognized). Extensin-1 label was distributed quite uniformly across the cell wall but was absent from the expanded middle lamella at the intersection of three or more cells and was reduced in the narrow middle lamella between two cells. This distribution is essentially the same as that of cellulose. Because of limitations of this labeling technique, it is not possible to construct a complete model of the structure of the cross-linked extensin matrix. Nonetheless, short, linear arrays of gold particles may represent small portions of the extensin matrix or of individual extensin molecules as they are exposed on the surface of sections. These and other results presented here indicate that: a) newly synthesized extensin is added to the wall by intussusception; b) extensin cannot cross the middle lamella separating the walls of adjacent cells; and c) incorporation of extensin is a late event in the development of phloem-parenchyma cell walls in carrot.Abbreviations dE-1 antibodies antibodies raised against deglycosylated extensin 1 - ELISA enzyme-linked immunosorbant assay - gE-1 antibodies antibodies raised against glycosylated extensin 1 - HRGP hydroxyproline-rich glycoprotein - PAGE polyacrylamide gel electrophoresis - RG-1 rhamnogalacturonan I - SDS sodium dodecyl sulfate  相似文献   

20.
The forage brassicas are a useful model system for the study of wood formation because the thickened cell walls of their vascular tissue can vary widely in lignin content. Solid-state 13C NMR spectroscopy was used to quantify lignin, and determine features of its structure, in the vascular cell walls of forage rape (Brassica napus L.), and Thousandhead and marrowstem cultivars of kale (Brassica oleracea L. var. acephala). During the first season of vegetative growth, lignin levels in these cell walls remained low in the upper part of the stems despite the physical resemblance of this tissue to wood. The extended flowering stems produced in the following year were thinner and their vascular tissue contained much more strongly lignified cell walls. The structure of the lignin was typical of angiosperm wood. It showed only small variations in syringyl/guaiacyl ratio, but this ratio increased with lignin content and thus with the proportion of the lignin that was associated with secondary cell-wall layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号