首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barnea E  Sorkin R  Ziv T  Beer I  Admon A 《Proteomics》2005,5(13):3367-3375
Prefractionations of proteins prior to their proteolysis, chromatography, and MS/MS analyses help reduce complexity and increase the yield of protein identifications. A number of methods were evaluated here for prefractionating serum samples distributed to the participating laboratories as part of the human Plasma Proteome Project. These methods include strong cation exchange (SCX) chromatography, slicing of SDS-PAGE gel bands, and liquid-phase IEF of the proteins. The fractionated proteins were trypsinized and the resulting peptides were resolved and analyzed by multidimensional protein identification technology coupled to IT MS/MS. The MS/MS spectra were clustered, combined, and searched against the IPI protein databank using Pep-Miner. The identification results were evaluated for the efficacy of the different prefractionation methodologies to identify larger numbers of proteins at higher confidence and to achieve the best coverage of the proteins with the identified peptides. Prefractionation based on SCX resulted in the largest number of identified proteins, followed by gel slices and then the liquid-phase IEF. An important observation was that each of the methods revealed a set of unique proteins, some identified with high confidence. Therefore, for comprehensive identification of the serum proteins, several different prefractionation approaches should be used in parallel.  相似文献   

2.
Echan LA  Tang HY  Ali-Khan N  Lee K  Speicher DW 《Proteomics》2005,5(13):3292-3303
Systematic detection of low-abundance proteins in human blood that may be putative disease biomarkers is complicated by an extremely wide range of protein abundances. Hence, depletion of major proteins is one potential strategy for enhancing detection sensitivity in serum or plasma. This study compared a recently commercialized HPLC column containing antibodies to six of the most abundant blood proteins ("Top-6 depletion") with either older Cibacron blue/Protein A or G depletion methods or no depletion. In addition, a prototype spin column version of the HPLC column and an alternative prototype two antibody spin column were evaluated. The HPLC polyclonal antibody column and its spin column version are very promising methods for substantially simplifying human serum or plasma samples. These columns show the lowest nonspecific binding of the depletion methods tested. In contrast other affinity methods, particularly dye-based resins, yielded many proteins in the bound fractions in addition to the targeted proteins. Depletion of six abundant proteins removed about 85% of the total protein from human serum or plasma, and this enabled 10- to 20-fold higher amounts of depleted serum or plasma samples to be applied to 2-D gels or alternative protein profiling methods such as protein array pixelation. However, the number of new spots detected on 2-D gels was modest, and most newly visualized spots were minor forms of relatively abundant proteins. The inability to detect low-abundance proteins near expected 2-D staining limits was probably due to both the highly heterogeneous nature of most plasma or serum proteins and masking of many low-abundance proteins by the next series of most abundant proteins. Hence, non2-D methods such as protein array pixelation are more promising strategies for detecting lower abundance proteins after depleting the six abundant proteins.  相似文献   

3.
Li X  Gong Y  Wang Y  Wu S  Cai Y  He P  Lu Z  Ying W  Zhang Y  Jiao L  He H  Zhang Z  He F  Zhao X  Qian X 《Proteomics》2005,5(13):3423-3441
Based on the same HUPO reference specimen (C1-serum) with the six proteins of highest abundance depleted by immunoaffinity chromatography, we have compared five proteomics approaches, which were (1) intact protein fractionation by anion-exchange chromatography followed by 2-DE-MALDI-TOF-MS/MS for protein identification (2-DE strategy); (2) intact protein fractionation by 2-D HPLC followed by tryptic digestion of each fraction and microcapillary RP-HPLC/microESI-MS/MS identification (protein 2-D HPLC fractionation strategy); (3) protein digestion followed by automated online microcapillary 2-D HPLC (strong cation-exchange chromatography (SCX)-RPC) with IT microESI-MS/MS; (online shotgun strategy); (4) same as (3) with the SCX step performed offline (offline shotgun strategy) and (5) same as (4) with the SCX fractions reanalysed by optimised nanoRP-HPLC-nanoESI-MS/MS (offline shotgun-nanospray strategy). All five approaches yielded complementary sets of protein identifications. The total number of unique proteins identified by each of these five approaches was (1) 78, (2) 179, (3) 131, (4) 224 and (5) 330 respectively. In all, 560 unique proteins were identified. One hundred and sixty-five proteins were identified through two or more peptides, which could be considered a high-confidence identification. Only 37 proteins were identified by all five approaches. The 2-DE approach yielded more information on the pI-altered isoforms of some serum proteins and the relative abundance of identified proteins. The protein prefractionation strategy slightly improved the capacity to detect proteins of lower abundance. Optimising the separation at the peptide level and improving the detection sensitivity of ESI-MS/MS were more effective than fractionation of intact proteins in increasing the total number of proteins identified. Overall, electrophoresis and chromatography, coupled respectively with MALDI-TOF/TOF-MS and ESI-MS/MS, identified complementary sets of serum proteins.  相似文献   

4.
The proteomes of mammalian cells, tissues and biologic fluids are complex and consist of proteins present over a wide dynamic range. Current protein profiling technologies do not have the capacity to overcome the sample complexity for comprehensive analysis of complex proteomes. A common strategy to substantially expand protein profiling capacities is sample prefractionation. A prefractionation method developed in the authors' laboratory, microscale solution isoelectrofocusing, has resulted in a commercial product, the ZOOM IEF Fractionator, which provides a simple and convenient method for high-resolution separation of complex proteomes based upon their isoelectric points. Complex human samples such as cancer cells and biologic fluids can be fractionated into well-resolved fractions with minimal cross-contamination of proteins between adjacent fractions. This review focuses on the application of microscale solution isoelectrofocusing prefractionation and subsequent downstream strategies in expanding protein profiling capacities and mining low-abundance proteins of complex proteomes.  相似文献   

5.
The proteomes of mammalian cells, tissues and biologic fluids are complex and consist of proteins present over a wide dynamic range. Current protein profiling technologies do not have the capacity to overcome the sample complexity for comprehensive analysis of complex proteomes. A common strategy to substantially expand protein profiling capacities is sample prefractionation. A prefractionation method developed in the authors’ laboratory, microscale solution isoelectrofocusing, has resulted in a commercial product, the ZOOM® IEF Fractionator, which provides a simple and convenient method for high-resolution separation of complex proteomes based upon their isoelectric points. Complex human samples such as cancer cells and biologic fluids can be fractionated into well-resolved fractions with minimal cross-contamination of proteins between adjacent fractions. This review focuses on the application of microscale solution isoelectrofocusing prefractionation and subsequent downstream strategies in expanding protein profiling capacities and mining low-abundance proteins of complex proteomes.  相似文献   

6.
The plasma proteome has proven to be one of the most challenging proteomes to profile using currently available proteomics technologies. A plethora of methodologies have been used to profile human plasma in order to discover potential biomarkers for disease and for therapy optimization. Affinity‐based prefractionation coupled to MS has been shown to be one of the most successful ways to dig deeper into the plasma proteome. Depletion of high abundant plasma proteins is becoming an initial method of choice in any plasma profiling project. However, several other affinity‐based enrichment methods have been published in recent years. Here we review both protein and peptide affinity prefractionation methods coupled with MS‐based proteomics. Analysis of the proportion of cellular and extracellular annotated proteins of publicly available MS plasma proteomics data is performed to estimate the analytical depth of various prefractionation methods.  相似文献   

7.
Shotgun proteome analysis platforms based on multidimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) provide a powerful means to discover biomarker candidates in tissue specimens. Analysis platforms must balance sensitivity for peptide detection, reproducibility of detected peptide inventories and analytical throughput for protein amounts commonly present in tissue biospecimens (< 100 microg), such that platform stability is sufficient to detect modest changes in complex proteomes. We compared shotgun proteomics platforms by analyzing tryptic digests of whole cell and tissue proteomes using strong cation exchange (SCX) and isoelectric focusing (IEF) separations of peptides prior to LC-MS/MS analysis on a LTQ-Orbitrap hybrid instrument. IEF separations provided superior reproducibility and resolution for peptide fractionation from samples corresponding to both large (100 microg) and small (10 microg) protein inputs. SCX generated more peptide and protein identifications than did IEF with small (10 microg) samples, whereas the two platforms yielded similar numbers of identifications with large (100 microg) samples. In nine replicate analyses of tryptic peptides from 50 microg colon adenocarcinoma protein, overlap in protein detection by the two platforms was 77% of all proteins detected by both methods combined. IEF more quickly approached maximal detection, with 90% of IEF-detectable medium abundance proteins (those detected with a total of 3-4 peptides) detected within three replicate analyses. In contrast, the SCX platform required six replicates to detect 90% of SCX-detectable medium abundance proteins. High reproducibility and efficient resolution of IEF peptide separations make the IEF platform superior to the SCX platform for biomarker discovery via shotgun proteomic analyses of tissue specimens.  相似文献   

8.
Large-scale protein identifications from highly complex protein mixtures have recently been achieved using multidimensional liquid chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) and subsequent database searching with algorithms such as SEQUEST. Here, we describe a probability-based evaluation of false positive rates associated with peptide identifications from three different human proteome samples. Peptides from human plasma, human mammary epithelial cell (HMEC) lysate, and human hepatocyte (Huh)-7.5 cell lysate were separated by strong cation exchange (SCX) chromatography coupled offline with reversed-phase capillary LC-MS/MS analyses. The MS/MS spectra were first analyzed by SEQUEST, searching independently against both normal and sequence-reversed human protein databases, and the false positive rates of peptide identifications for the three proteome samples were then analyzed and compared. The observed false positive rates of peptide identifications for human plasma were significantly higher than those for the human cell lines when identical filtering criteria were used, suggesting that the false positive rates are significantly dependent on sample characteristics, particularly the number of proteins found within the detectable dynamic range. Two new sets of filtering criteria are proposed for human plasma and human cell lines, respectively, to provide an overall confidence of >95% for peptide identifications. The new criteria were compared, using a normalized elution time (NET) criterion (Petritis et al. Anal. Chem. 2003, 75, 1039-1048), with previously published criteria (Washburn et al. Nat. Biotechnol. 2001, 19, 242-247). The results demonstrate that the present criteria provide significantly higher levels of confidence for peptide identifications from mammalian proteomes without greatly decreasing the number of identifications.  相似文献   

9.
There is significant interest in characterization of the human plasma proteome due to its potential for providing biomarkers applicable to clinical diagnosis and treatment and for gaining a better understanding of human diseases. We describe here a strategy for comparative proteome analyses of human plasma, which is applicable to biomarker identifications for various disease states. Multidimensional liquid chromatography-mass spectrometry (LC-MS/MS) has been applied to make comparative proteome analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Peptide peak areas and the number of peptide identifications for each protein were used to evaluate the reproducibility of LC-MS/MS and to compare relative changes in protein concentration between the samples following LPS treatment. A total of 804 distinct plasma proteins (not including immunoglobulins) were confidently identified with 32 proteins observed to be significantly increased in concentration following LPS administration, including several known inflammatory response or acute-phase mediators such as C-reactive protein, serum amyloid A and A2, LPS-binding protein, LPS-responsive and beige-like anchor protein, hepatocyte growth factor activator, and von Willebrand factor, and thus, constituting potential biomarkers for inflammatory response.  相似文献   

10.
A resurgence of interest in the human plasma proteome has occurred in recent years because it holds great promise of revolution in disease diagnosis and therapeutic monitoring. As one of the most powerful separation techniques, multidimensional liquid chromatography has attracted extensive attention, but most published works have focused on the fractionation of tryptic peptides. In this study, proteins from human plasma were prefractionated by online sequential strong cation exchange chromatography and reversed-phase chromatography. The resulting 30 samples were individually digested by trypsin, and analyzed by capillary reversed-phase liquid chromatography coupled with linear ion trap mass spectrometry. After meeting stringent criteria, a total of 1292 distinct proteins were successfully identified in our work, among which, some proteins known to be present in serum in <10 ng/mL were detected. Compared with other works in published literatures, this analysis offered a more full-scale list of the plasma proteome. Considering our strategy allows high throughput of protein identification in serum, the prefractionation of proteins before MS analysis is a simple and effective method to facilitate human plasma proteome research.  相似文献   

11.
The human plasma proteome: analysis of Chinese serum using shotgun strategy   总被引:8,自引:0,他引:8  
He P  He HZ  Dai J  Wang Y  Sheng QH  Zhou LP  Zhang ZS  Sun YL  Liu F  Wang K  Zhang JS  Wang HX  Song ZM  Zhang HR  Zeng R  Zhao X 《Proteomics》2005,5(13):3442-3453
We have investigated the serum proteome of Han-nationality Chinese by using shotgun strategy. A complete proteomics analysis was performed on two reference specimens from a total of 20 healthy donors, in which each sample was made from ten-pooled male or female serum, respectively. The methodology used encompassed (1) removal of six high-abundant proteins; (2) tryptic digestion of low- and high-abundant proteins of serum; (3) separation of peptide mixture by RP-HPLC followed by ESI-MS/MS identification. A total of 944 nonredundant proteins were identified under a stringent filter condition (X(corr) > or = 1.9, > or = 2.2, and > or = 3.75, < or = C(n) > or = 0.1, and R(sp) > or = 4.0) in both pooled male and female samples, in which 594 and 622 entire proteins were found, respectively. Compared with the total 3020 protein identifications confirmed by more than one laboratory or more than one specimen in HUPO Plasma Proteome Project (PPP) participating laboratories recently, 206 proteins were identified with at least two distinct peptides per protein and 185 proteins were considered as high-confidence identification. Moreover, some lower abundance serum proteins (ng/mL range) were detected, such as complement C5 and CA125, routinely used as an ovarian cancer marker in plasma and serum. The resulting nonredundant list of serum proteins would add significant information to the knowledge base of human plasma proteome and facilitate disease markers discovery.  相似文献   

12.
The culture filtrate proteins (CFPs) from Mycobacterium tuberculosis have been shown to induce protective immune responses in human and animal models, making them a promising source of candidate targets for tuberculosis drugs, vaccines, and diagnostics. The constituents of the M. tuberculosis CFP proteome are complex and vary with growth conditions. To effectively profile CFPs, gel‐based prefractionation is usually performed before MS analysis. In this study, we describe a novel prefractionation approach by which the proteome is divided into seven partially overlapping fractions by biomimetic affinity chromatography (BiAC) using a six‐column cascade. The LC‐MS/MS analysis of individual fractions identified a total of 541 CFPs, including 61 first‐time identifications. Notably, ~1/3 (20/61) of these novel CFPs are membrane proteins, among which nine proteins have 2–14 transmembrane domains. In addition, ~1/4 (14/61) of the CFPs are basic proteins with pI values greater than 9.0. Our data demonstrate that biomimetic affinity chromatography prefractionation markedly improves protein detection by LC‐MS/MS, and the coverage of basic and hydrophobic proteins in particular is remarkably increased.  相似文献   

13.
Current methods for quantitatively comparing proteomes (protein profiling) have inadequate resolution and dynamic range for complex proteomes such as those from mammalian cells or tissues. More extensive profiling of complex proteomes would be obtained if the proteomes could be reproducibly divided into a moderate number of well-separated pools. But the utility of any prefractionation is dependent upon the resolution obtained because extensive cross contamination of many proteins among different pools would make quantitative comparisons impractical. The current study used a recently developed microscale solution isoelectrofocusing (musol-IEF) method to separate human breast cancer cell extracts into seven well-resolved pools. High resolution fractionation could be achieved in a series of small volume tandem chambers separated by thin acrylamide partitions containing covalently bound immobilines that establish discrete pH zones to separate proteins based upon their pIs. In contrast to analytical 2-D gels, this prefractionation method was capable of separating very large proteins (up to about 500 kDa) that could be subsequently profiled and quantitated using large-pore 1-D SDS gels. The pH 4.5-6.5 region was divided into four 0.5 pH unit ranges because this region had the greatest number of proteins. By using very narrow pH range fractions, sample amounts applied to narrow pH range 2-D gels could be increased to detect lower abundance proteins. Although 1.0 pH range 2-D gels were used in these experiments, further protein resolution should be feasible by using 2-D gels with pH ranges that are only slightly wider than the pH ranges of the musol-IEF fractions. By combining musol-IEF prefractionation with subsequent large pore 1-D SDS-PAGE (>100 kDa) and narrow range 2-D gels (<100 kDa), large proteins can be reliably quantitated, many more proteins can be resolved, and lower abundance proteins can be detected.  相似文献   

14.
Four different immunoassay and antibody microarray methods performed at four different sites were used to measure the levels of a broad range of proteins (N = 323 assays; 39, 88, 168, and 28 assays at the respective sites; 237 unique analytes) in the human serum and plasma reference specimens distributed by the Plasma Proteome Project (PPP) of the HUPO. The methods provided a means to (1) assess the level of systematic variation in protein abundances associated with blood preparation methods (serum, citrate-anticoagulated-plasma, EDTA-anticoagulated-plasma, or heparin-anticoagulated-plasma) and (2) evaluate the dependence on concentration of MS-based protein identifications from data sets using the HUPO specimens. Some proteins, particularly cytokines, had highly variable concentrations between the different sample preparations, suggesting specific effects of certain anticoagulants on the stability or availability of these proteins. The linkage of antibody-based measurements from 66 different analytes with the combined MS/MS data from 18 different laboratories showed that protein detection and the quality of MS data increased with analyte concentration. The conclusions from these initial analyses are that the optimal blood preparation method is variable between analytes and that the discovery of blood proteins by MS can be extended to concentrations below the ng/mL range under certain circumstances. Continued developments in antibody-based methods will further advance the scientific goals of the PPP.  相似文献   

15.
HUPO initiated the Plasma Proteome Project (PPP) in 2002. Its pilot phase has (1) evaluated advantages and limitations of many depletion, fractionation, and MS technology platforms; (2) compared PPP reference specimens of human serum and EDTA, heparin, and citrate-anti-coagulated plasma; and (3) created a publicly-available knowledge base (www.bioinformatics.med.umich.edu/hupo/ppp; www.ebi.ac.uk/pride). Thirty-five participating laboratories in 13 countries submitted datasets. Working groups addressed (a) specimen stability and protein concentrations; (b) protein identifications from 18 MS/MS datasets; (c) independent analyses from raw MS-MS spectra; (d) search engine performance, subproteome analyses, and biological insights; (e) antibody arrays; and (f) direct MS/SELDI analyses. MS-MS datasets had 15 710 different International Protein Index (IPI) protein IDs; our integration algorithm applied to multiple matches of peptide sequences yielded 9504 IPI proteins identified with one or more peptides and 3020 proteins identified with two or more peptides (the Core Dataset). These proteins have been characterized with Gene Ontology, InterPro, Novartis Atlas, OMIM, and immunoassay-based concentration determinations. The database permits examination of many other subsets, such as 1274 proteins identified with three or more peptides. Reverse protein to DNA matching identified proteins for 118 previously unidentified ORFs. We recommend use of plasma instead of serum, with EDTA (or citrate) for anticoagulation. To improve resolution, sensitivity and reproducibility of peptide identifications and protein matches, we recommend combinations of depletion, fractionation, and MS/MS technologies, with explicit criteria for evaluation of spectra, use of search algorithms, and integration of homologous protein matches. This Special Issue of PROTEOMICS presents papers integral to the collaborative analysis plus many reports of supplementary work on various aspects of the PPP workplan. These PPP results on complexity, dynamic range, incomplete sampling, false-positive matches, and integration of diverse datasets for plasma and serum proteins lay a foundation for development and validation of circulating protein biomarkers in health and disease.  相似文献   

16.
Identification of novel diagnostic or therapeutic biomarkers from human blood plasma would benefit significantly from quantitative measurements of the proteome constituents over a range of physiological conditions. Herein we describe an initial demonstration of proteome-wide quantitative analysis of human plasma. The approach utilizes postdigestion trypsin-catalyzed 16O/18O peptide labeling, two-dimensional LC-FTICR mass spectrometry, and the accurate mass and time (AMT) tag strategy to identify and quantify peptides/proteins from complex samples. A peptide accurate mass and LC elution time AMT tag data base was initially generated using MS/MS following extensive multidimensional LC separations to provide the basis for subsequent peptide identifications. The AMT tag data base contains >8,000 putative identified peptides, providing 938 confident plasma protein identifications. The quantitative approach was applied without depletion of high abundance proteins for comparative analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Accurate quantification of changes in protein abundance was demonstrated by both 1:1 labeling of control plasma and the comparison between the plasma samples following LPS administration. A total of 429 distinct plasma proteins were quantified from the comparative analyses, and the protein abundances for 25 proteins, including several known inflammatory response mediators, were observed to change significantly following LPS administration.  相似文献   

17.
Kim JY  Lee JH  Park GW  Cho K  Kwon KH  Park YM  Cho SY  Paik YK  Yoo JS 《Proteomics》2005,5(13):3376-3385
The proteome of a HUPO human serum reference sample was analyzed using multidimensional separation techniques at both the protein and the peptide levels. To eliminate false-positive identifications from the search results, we employed a data filtering method using molecular weight (MW) correlations derived from denaturing 1-DE. First, the six most abundant serum proteins were removed from the sample using immunoaffinity chromatography. 1-DE was then used to fractionate the remaining serum proteins according to the MW. Gel bands were isolated and in-gel digested with trypsin, and the resulting peptides were analyzed by 2-D LC/ESI-MS/MS. A SEQUEST search using the MS/MS results identified 494 proteins. Of these, 202 were excluded formally using protein data filtering as they were single-assignment proteins and their theoretical and electrophoretically-derived MWs did not correlate at high confidence. To evaluate this method, the results were compared with those of 1-D LC/MALDI-TOF/TOF and HUPO Plasma Proteome Project analyses. Our data filtering approach proved valuable in analysis of complex, large-scale proteomes such as human serum.  相似文献   

18.
The dramatic progress in mass spectrometry-based methods of protein identification has triggered a new quest for disease-associated biomarkers. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its variant surface-enhanced laser desorption/ionization mass spectrometry, provide effective means to explore the less studied information slice of the human serum proteome – low-molecular-weight proteins and peptides. These low-molecular-weight proteins and peptides are promising for the detection of important biomarkers. Due to the significant experimental problems imposed by high-abundance and high-molecular-weight proteins, it is important to effectively remove these species prior to mass spectrometry analysis of the low-molecular-weight serum and plasma proteomes. In this review, the advantages afforded by recently introduced methods for prefractionation of serum, as they pertain to the detection and identification of biomarkers, will be discussed.  相似文献   

19.
The dramatic progress in mass spectrometry-based methods of protein identification has triggered a new quest for disease-associated biomarkers. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its variant surface-enhanced laser desorption/ionization mass spectrometry, provide effective means to explore the less studied information slice of the human serum proteome -- low-molecular-weight proteins and peptides. These low-molecular-weight proteins and peptides are promising for the detection of important biomarkers. Due to the significant experimental problems imposed by high-abundance and high-molecular-weight proteins, it is important to effectively remove these species prior to mass spectrometry analysis of the low-molecular-weight serum and plasma proteomes. In this review, the advantages afforded by recently introduced methods for prefractionation of serum, as they pertain to the detection and identification of biomarkers, will be discussed.  相似文献   

20.
We describe and demonstrate a global strategy that extends the sensitivity, dynamic range, comprehensiveness, and throughput of proteomic measurements based upon the use of peptide "accurate mass tags" (AMTs) produced by global protein enzymatic digestion. The two-stage strategy exploits Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry to validate peptide AMTs for a specific organism, tissue or cell type from "potential mass tags" identified using conventional tandem mass spectrometry (MS/MS) methods, providing greater confidence in identifications as well as the basis for subsequent measurements without the need for MS/MS, and thus with greater sensitivity and increased throughput. A single high resolution capillary liquid chromatography separation combined with high sensitivity, high resolution and accurate FT-ICR measurements has been shown capable of characterizing peptide mixtures of significantly more than 10(5) components with mass accuracies of < 1 ppm, sufficient for broad protein identification using AMTs. Other attractions of the approach include the broad and relatively unbiased proteome coverage, the capability for exploiting stable isotope labeling methods to realize high precision for relative protein abundance measurements, and the projected potential for study of mammalian proteomes when combined with additional sample fractionation. Using this strategy, in our first application we have been able to identify AMTs for >60% of the potentially expressed proteins in the organism Deinococcus radiodurans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号