首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor-associated protein tyrosine kinases JAK1 and JAK2 are both required for the interferon (IFN)-gamma response. The effects of expressing kinase-negative JAK mutant proteins on signal transduction in response to IFN-gamma in wild-type cells and in mutant cells lacking either JAK1 or JAK2 have been analysed. In cells lacking endogenous JAK1 the expression of a transfected kinase-negative JAK1 can sustain substantial IFN-gamma-inducible gene expression, consistent with a structural as well as an enzymic role for JAK1. Kinase-negative JAK2, expressed in cells lacking endogenous JAK2, cannot sustain IFN-gamma-inducible gene expression, despite low level activation of STAT1 DNA binding activity. When expressed in wild-type cells, kinase-negative JAK2 acts as a dominant-negative inhibitor of the IFN-gamma response. Further analysis of the JAK/STAT pathway suggests a model for the IFN-gamma response in which the initial phosphorylation of JAK1 and JAK2 is mediated by JAK2, whereas phosphorylation of the IFN-gamma receptor is normally carried out by JAK1. The efficient phosphorylation of STAT 1 in the receptor-JAK complex may again depend on JAK2. Interestingly, a JAK1-dependent signal, in addition to STAT1 activation, appears to be required for the expression of the antiviral state.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
The gene and protein expression profiles in myeloproliferative neoplasms (MPNs) may reveal gene and protein markers of a potential clinical relevance in diagnosis, treatment and prediction of response to therapy. Using cDNA microarray analysis of 25,100 unique genes, we studied the gene expression profile of CD34+ cells and granulocytes obtained from peripheral blood of subjects with essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). The microarray analyses of the CD34+ cells and granulocytes were performed from 20 de novo MPN subjects: JAK2 positive ET, PV, PMF subjects, and JAK2 negative ET/PMF subjects. The granulocytes for proteomic studies were pooled in 4 groups: PV with JAK2 mutant allele burden above 80%, ET with JAK2 mutation, PMF with JAK2 mutation and ET/PMF with no JAK2 mutation. The number of differentially regulated genes was about two fold larger in CD34+ cells compared to granulocytes. Thirty-six genes (including RUNX1, TNFRSF19) were persistently highly expressed, while 42 genes (including FOXD4, PDE4A) were underexpressed both in CD34+ cells and granulocytes. Using proteomic studies, significant up-regulation was observed for MAPK and PI3K/AKT signaling regulators that control myeloid cell apoptosis and proliferation: RAC2, MNDA, S100A8/9, CORO1A, and GNAI2. When the status of the mTOR signaling pathway related genes was analyzed, PI3K/AKT regulators were preferentially up-regulated in CD34+ cells of MPNs, with down-regulated major components of the protein complex EIF4F. Molecular profiling of CD34+ cells and granulocytes of MPN determined gene expression patterns beyond their recognized function in disease pathogenesis that included dominant up-regulation of PI3K/AKT signaling.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号