首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied mannose-containing glycopeptides and glycoproteins of subconfluent and confluent intestinal epithelial cells in culture. Cells were labelled with d-[2-3H]mannose for 24h and treated with Pronase or trypsin to release cell-surface components. The cell-surface and cell-residue fractions were then exhaustively digested with Pronase and the resulting glycopeptides were fractionated on Bio-Gel P-6, before and after treatment with endo-β-N-acetylglucosaminidase H to distinguish between high-mannose and complex oligosaccharides. The cell-surface glycopeptides were enriched in complex oligosaccharides as compared with residue glycopeptides, which contained predominantly high-mannose oligosaccharides. Cell-surface glycopeptides of confluent cells contained a much higher proportion of complex oligosaccharides than did glycopeptides from subconfluent cells. The ability of the cells to bind [3H]concanavalin A decreased linearly with increasing cell density up to 5 days in culture and then remained constant. When growth of the cells was completely inhibited by either retinoic acid or cortisol, no significant difference was observed in the ratio of complex to high-mannose oligosaccharides in the cell-surface glycopeptides of subconfluent cells. Only minor differences were found in total mannose-labelled glycoproteins between subconfluent and confluent cells by two-dimensional gel analysis. The adhesion of the cells to the substratum was measured at different stages of growth and cell density. Subconfluent cells displayed a relatively weak adhesion, which markedly increased with increased cell density up to 6 days in culture. It is suggested that alterations in the structure of the carbohydrates of the cell-surface glycoproteins are dependent on cell density rather than on cell growth. These changes in the glycopeptides are correlated with the changes in adhesion of the cells to the substratum.  相似文献   

2.
Baby-hamster kidney (BHK) cells were labelled metabolically by growth in media containing radioactive sugars and the asparagine-linked glycopeptides (N-glycans) obtained by Pronase digestion of disrupted cells were fractionated by chromatography on concanavalin A-Sepharose. About 2-3% of the total [3H]galactose- or [3H]fucose-labelled glycopeptides were found to be bound tightly to the lectin column and were eluted with 500 mM-methyl alpha-mannoside. Further analysis of these minor components by chromatography on Bio-Gel P4, lentil-lectin-Sepharose and DEAE-Sephacel and sensitivity to alpha-mannosidase indicates the presence in BHK-cell glycopeptides of hybrid structures of the following form: (Formula: see text) Similar structures were identified as major features of the glycoproteins of ricin-resistant mutants RicR17 and RicR19 as described previously for RicR21 cells [Hughes, Mills & Stojanovic (1983) Carbohydr. Res. 120, 215-234]. The RicR15 cell line also produces significant amounts of hybrid N-glycans. The studies show that the novel N-glycans accumulating in ricin-resistant mutants are derived by a metabolic pathway that exists to a minor extent in normal BHK cells.  相似文献   

3.
Quiescent thymocytes, mitogen-stimulated thymocytes and acute-leukaemic lymphoblasts provide a model for the study of protein glycosylation in quiescent cells, mitotically active non-malignant and malignant cells respectively. The biosynthesis of both complex and high-mannose-type oligosaccharides was monitored by metabolic labelling with [6-3]fucose and [2-3H]mannose. Bio-Gel P6 elution profiles of [6-3H]fucose-labelled glycopeptides showed that quiescent thymocytes and stimulated thymocytes synthesized qualitatively and quantitatively similar glycopeptides; however, higher-molecular-weight glycopeptides were synthesized by the acute-leukaemic lymphoblasts. The amount of [2(-3)H]mannose incorporated into glycopeptide by quiescent thymocytes was less than 10% of that incorporated by stimulated thymocytes. The Bio-Gel P6 elution profile of [2(-3)H]mannose-labelled glycopeptides from acute leukaemic lymphoblasts was qualitatively similar to that of stimulated thymocytes, with about 40% of the radioactivity incorporated into one glycopeptide peak. This glycopeptide was characterized by Bio-Gel P6 and concanavalin A affinity chromatography, radioactive-sugar analysis, sensitivity to alpha-mannosidase and endoglycosidase H and resistance to beta-glucosaminidase as containing a high-mannose oligosaccharide, possible of Man7-8GlcNAc2 structure. Pulse/chase experiments indicated that this high-mannose oligosaccharide was an end product and not a biosynthetic intermediate. It is concluded that higher-molecular-weight fucose-labelled glycopeptides are characteristic of the malignant cell type, and the synthesis of high-mannose oligosaccharide, Man7-8GlcNAc2, in stimulated thymocytes and acute-leukaemic lymphoblasts is associated with mitotically active cells.  相似文献   

4.
CaCo-2 cells are human colonic adenocarcinoma cells which can differentiate spontaneously into enterocytes when maintained confluent for extended periods of time. Cells kept in culture for 4 days (rapidly growing), 7-9 days (early confluence) and 19-22 days (late confluence) were incubated for 24 h with L-[5,6-3H]fucose or D-[6-3H]glucosamine in order to examine the changes in glycoprotein carbohydrate structure that occur during this differentiation. Labelled glycopeptides obtained by exhaustive Pronase digestion of the cell-surface and cell-pellet fractions were fractionated on Bio-Gel P-6. A high-Mr glycopeptide fraction which was excluded from Bio-Gel P-6 was present in all cases. These glycopeptides were then fractionated by affinity chromatography on Datura stramonium agglutinin-agarose. The glycopeptides which were specifically bound to the lectin column were largely degraded by endo-beta-galactosidase, thereby indicating that they consisted of fucosylated polylactosaminoglycans. The proportion of labelled polylactosaminoglycans decreased with increasing time in culture, whereas sucrase activity, which is characteristic of differentiated enterocytes, increased. These results demonstrate that a relatively large decrease in the proportion of fucosylated polylactosaminoglycans occurs with differentiation of CaCo-2 cells.  相似文献   

5.
[3H]Fucose-labelled glycopeptides in the slices of liver 24h after partial hepatectomy were fractionated on Sephadex G-50. Glycopeptides from regenerating liver contained a higher proportion of lower-Mr components than did controls. Regenerating liver contained a higher proportion of glycopeptides that were bound to concanavalin A-Sepharose and were subsequently eluted with 20mM-methyl alpha-D-glucopyranoside than did controls. Concanavalin A-bound glycopeptides from each source were entirely bound to a lentil lectin-Sepharose column. Both the concanavalin A-bound and -unbound fractions from regenerating liver were indistinguishable from the respective controls by Bio-Gel P6 column chromatography and neuraminidase digestion. These results show that fucosyl glycopeptides from regenerating liver contain a higher proportion of biantennary species with core fucose residues than do controls. Glycopeptides from regenerating livers 12h, 72h and 144h after partial hepatectomy were also examined; however, the difference was not significant. These observations suggest that the alterations in fucosyl glycopeptides may be related to rapid growth of hepatocytes 24h after partial hepatectomy. No significant difference was found in either [3H]mannose- or [3H]fucose-labelled glycoproteins from regenerating liver and from controls by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, suggesting that the alteration in glycopeptides should depend on some differences in the late stage of oligosaccharide processing.  相似文献   

6.
The labelled glycopeptides obtained by Pronase digestion of rat intestinal epithelial cell membranes were examined by gel filtration after injection of D-[2-3H]mannose and L-[6-3H]fucose. Three labelled fraction were eluted in the following order from Bio-Gel P-6, Fraction I, which was excluded from the gel, was labelled mostly with [3H]fucose and slightly with [3H]mannose. Fraction II contained "complex" asparagine-linked oligosaccharides since it was labelled with [3H]mannose and [3H]fucose, was stable to mild alkali treatment, and resistant to endo-beta-N-acetyl-glucosaminidase H. Fraction III contained "high-mannose" asparagine-linked oligosaccharides, which were labelled with [3H]mannose, but not with [3H]fucose; these were sensitive to endo-beta-N-acetylglucosaminidase H, and were adsorbed on concanavalin A-Sepharose and subsequently eluted with methyl alpha-D-mannopyranoside. The time course of incorporation of [3H]mannose into these glycopeptides in microsomal fractions showed that high-mannose oligosaccharides were precursors of complex oligosaccharides. The rate of this processing was faster in rapidly dividing crypt cells than in differentiated villus cells. The ratio of radioactively labelled complex oligosaccharides to high-mannose oligosaccharides, 3h after [3H]mannose injection, was greater in crypt than in villus-cell lateral membranes. Luminal membranes of both crypt and villus cells were greatly enriched in labelled complex oligosaccharides compared with the labelling in lateral-basal membranes. These studies show that intestinal epithelial cells are polarized with respect to the structure of the asparagine-linked oligosaccharides on their membrane glycoproteins. During differentiation of these cells quantitative differences in labelled membrane glycopeptides, But no major qualitative change, were observed.  相似文献   

7.
Normal baby hamster kidney (BHK) fibroblasts and ricin-resistant (RicR) mutants of BHK cells derived from them were labelled metabolically with [3H]mannose or [3H]fucose. Glycopeptides obtained by digestion of disrupted cells with Pronase were separated by affinity chromatography on concanavalin A-Sepharose. In the normal BHK cells major glycopeptide fractions were obtained consisting of tetra- and tri-antennary sialylated complex glycans, bi-antennary sialylated glycans, and neutral oligomannosidic chains. The majority of bi-antennary chains were shown to contain a fucosyl-(alpha 1-6)-N-acetylglucosaminyl sequence in the core region by their ability to bind to a lentil lectin affinity column. All of the mutant cell lines examined were found to accumulate oligomannosidic glycans in cellular glycoproteins: complex sialylated glycans were either absent or greatly reduced in amount. Analysis of fractions isolated from concanavalin A-Sepharose by Bio-Gel P-4 chromatography and glycosidase degradation indicated that the glycans accumulating in RicR14 cells have the general structure: (formula; see text) and derivatives having fewer alpha-mannosyl units. We have also analysed the glycopeptides released by trypsin treatment from the surface of the normal and mutant cells, as well as those obtained by proteolysis of fibronectin isolated from the medium. The glycopeptide profiles of the cell-surface-derived material and of fibronectin showed for the mutant cells a marked accumulation of oligomannosidic chains at the expense of complex oligosaccharide chains. Hence, the alterations in glycan structure detected in bulk cellular glycoproteins of RicR cells are expressed also in cell surface glycoproteins and in fibronectin, a secreted glycoprotein.  相似文献   

8.
Herpes simplex virus type-1 glycoprotein C (gC1) contains several O-linked oligosaccharides clustered near N-linked chains, and Pronase digestion produces glycopeptides carrying both oligosaccharide types. We have taken advantage of this fact to investigate the temporal relationship between the initiation of O-linked chains and the processing of N-linked oligosaccharides. gC1 was isolated from herpes-simplex-virus-infected BHK (baby-hamster kidney) cells after short labelling periods with [3H]glucosamine, and the labelled Pronase-cleaved glycopeptides fractionated on concanavalin A-Sepharose. N-[3H]Acetylgalactosamine, mostly convertible into free N-[3H]acetylgalactosaminitol on mild alkaline-borohydride treatment, was found in glycopeptides with an affinity to concanavalin A-Sepharose corresponding to that of glycopeptides carrying Man8GlcNAc2 or larger N-linked chains. Since there is evidence that the processing of N-linked chains up to Man8GlcNAc2 involves enzymes located in the rough endoplasmic reticulum, current results strongly suggest that gC1 acquires O-linked N-acetylgalactosamine before the glycoprotein routing to the Golgi apparatus. The addition of the second sugar to the nascent O-linked chain appeared to occur after a relatively long lag time.  相似文献   

9.
O-Linked fucose in glycoproteins from Chinese hamster ovary cells   总被引:2,自引:1,他引:1  
We report our discovery that many glycoproteins synthesizedby Chinese hamster ovary (CHO) cells contain fucose in O-glycosidiclinkage to polypeptide. To enrich for the possible presenceof O-linked fucose, we studied the lectin-resistant mutant ofCHO cells known as Lec1. Lec1 cells lack N-acetylglucosaminyltransferaseI and are therefore unable to synthesize complex-type N-linkedoligosaccharides. Lec1 cells were metabolically radiolabelledwith [6-3H]fucose and total glycoproteins were isolated. Glycopeptideswere prepared by proteolysis and fractionated by chromatographyon a column of concanavalin A (Con A)— Sepharose. Thesets of fractionated glycopeptides were treated with mild base/borohydrideto effect the ß-elimination reaction and release potentialO-linked fucosyl residues. The ß-elimination produced[3H]fucitol quantitatively from [3H]fucose-labelled glycopeptidesnot bound by Con A-Sepharose, whereas none was generated bytreatment of glycopeptides bound by the lectin. The total [3H]fucose-labelledglycoproteins from Lec1 cells were separated by SDS—PAGEand detected by fluorography. Treatment of selected bands ofdetectable glycoproteins with mild base/borohydride quantitativelygenerated [3H]fucitol. Pretreatment of the glycoproteins withN-glycanase prior to the SDS—PAGE method of analysis causedan enrichment in the percentage of radioactivity recovered as[3H]fucitol. Trypsin treatment of [3H]fucose-labelled intactCHO cells released glycopeptides that contained O-linked fucose,indicating that it is present in surface glycoproteins. Thesefindings demonstrate that many glycoproteins from CHO cellscontain O-linked fucosyl residues and raise new questions aboutits biosynthesis and possible function. fucose glycoproteins monosaccharide O-linked  相似文献   

10.
[3H]Mannose-labelled glycopeptides in the slices of livers from neonatal and 1-, 2-, 3- and 5-week-old rats were characterized by column chromatographies on Sephadex G-50 and concanavalin A-Sepharose and by endo-beta-N-acetylglucosaminidase H digestion. The proportion of complex-type glycopeptides was increased with time until 2 weeks post partum and then returned to the neonatal level. This was mainly due to the increased proportion of concanavalin A-bound (biantennary) species. These changes were accompanied by consistent changes in the activities of processing enzymes in liver microsomal fraction, especially of N-acetylglucosaminyltransferase I. Complex-type glycopeptides from neonatal and 2- and 5-week-old rat livers were further characterized by column chromatographies on Bio-Gel P-6 and DE 52 DEAE-cellulose in combination with neuraminidase digestion. No significant difference was found between concanavalin A-bound species from neonatal liver and those from liver 5 weeks post partum, most of which were sialylated. Concanavalin A-bound species 2 weeks post partum were comparatively smaller in size and less sialylated. On the other hand, there was no significant difference among concanavalin A-unbound species from the three different sources, most of which were sialylated. Since glycoproteins from regenerating rat liver also contain a higher proportion of complex-type oligosaccharides, as previously reported, such changes in N-linked oligosaccharides of glycoproteins may be related to control of the growth of liver cells.  相似文献   

11.
Four glycopeptides (I, IIA, IIB, III) with different oligosaccharide structures were isolated from purified mouse thymocyte Thy-1 glycoprotein. The glycoprotein was digested with Pronase, and the glycopeptide fraction was isolated by gel filtration and acetylated with [3H]acetic anhydride. The different glycan structures were separated by affinity chromatography on concanavalin A-Sepharose 4B and lentil lectin-Sepharose 4B. Size determinations of intact and exoglycosidase- and endoglycosidase-digested glycopeptides were performed by gel filtration on Bio-Gel P-6, calibrated with glycopeptides of known structure. On the basis of these experiments and on the behaviour of the glycopeptides on the lectin columns, the following structures of the oligosaccharide chains were proposed: I, triantennary 'complex-type' with terminal fucose; IIA, biantennary 'complex-type' without fucose; IIB, biantennary 'complex-type' with fucose; III, a mixture of 'high-mannose' chains containing either five or six mannose residues (approx. 50% of each). Amino acid analysis of the glycopeptides showed that the predominant oligosaccharide at glycosylation-site Asn-23 was of 'high-mannose' type, whereas the other two sites (Asn-75 and Asn-99) were glycosylated with 'complex-type' chains. Both these sites were shown to be variably glycosylated. The major glycans linked to Asn-75 were of structures I and IIB, whereas all three 'complex-type' chains were represented at Asn-99. The results presented explain the previously reported carbohydrate heterogeneity of thymocyte Thy-1 glycoprotein.  相似文献   

12.
Biosynthesis of alpha-galactosidase A in cultured Chang liver cells   总被引:4,自引:0,他引:4  
An investigation of the structure and biosynthesis of alpha-galactosidase A (alpha-D-galactoside glycohydrolase, EC 3.2.1.22) and its N-linked oligosaccharide chains was undertaken by metabolic labeling of Chang liver cells with [2-3H]mannose, immunoprecipitation of the activity, and examination of the resulting immunoprecipitates. From cells pulse labeled for 3 h, two radioactive bands with Mr = 58,000 and 49,000 were detected by SDS-gel electrophoresis; following a 20-h chase, only the Mr = 49,000 band was observed. Examination of the oligosaccharide fraction derived from pulse-labeled enzyme revealed that 18% of the asparagine-linked oligosaccharides were complex and 82% were high-mannose type. After a 20-h chase, 48% of the oligosaccharides were complex and 52% were high mannose. The high-mannose oligosaccharides of alpha-galactosidase A immunoprecipitated from both pulsed and pulse-chased cells had the same mobilities as Man8-9GlcNAc on thin-layer chromatography and Bio-Gel P-4. Two fractions of complex glycopeptides derived from the alpha-galactosidase A of pulsed and pulse-chased cells had the same migration on Bio-Gel P-4 as glucose oligomers containing 14 and 19-39 glucose units. Based on their apparent size and their behavior on concanavalin A-Sepharose, the complex oligosaccharides are believed to be composed of tri- and/or tetraantennary structures.  相似文献   

13.
The antigens expressed on the carbohydrate chains of the receptor for epidermal growth factor of A431 cells were studied by immunoblotting with monoclonal antibodies. Blood group A and the Type 1 based blood group ALeb and Lea antigens were detected as well as antigens associated with unsubstituted, monofucosylated and difucosylated Type 2 blood group chains. The Lea and the difucosylated Type 2 antigen activities were abolished by treating the blotted receptor with endo-beta-galactosidase, indicating that they are expressed on backbone structures of poly-lacto/neolacto type. (The term 'poly-lacto/neolacto' is used here to describe oligosaccharide backbone structures consisting of repeating Type 1, Gal beta 1-3GlcNAc (lacto) or Type 2, Gal beta 1-4GlcNAc (neolacto) sequences.) The glycosidic linkage of oligosaccharides to protein was investigated using Pronase digests of the receptor biosynthetically labelled with [3H]glucosamine or [3H]fucose. The oligosaccharides were alkali-resistant, consistent with N- rather than O-glycosidically linked chains. A proportion of [3H]fucose-labelled glycopeptides was susceptible to endo-beta-galactosidase, confirming the immunoblotting experiment using antibodies against the Lea and the difucosylated Type 2 antigenic determinants. Oligosaccharides were released from the [3H]fucose- and [3H]-glucosamine-labelled glycopeptides by hydrazinolysis. Chromatography of the oligosaccharides on Bio-Gel P6 and Concanavalin A columns indicated a spectrum of oligosaccharides which include those of high mannose type labelled with [3H]glucosamine, and a mixture of oligosaccharides labelled with [3H]fucose and [3H]glucosamine of bi- and multiantennary complex types of which a subpopulation is susceptible to digestion with endo-beta-galactosidase.  相似文献   

14.
Particulate membrane preparations from K-562 [human CML (chronic-myelogenous-leukaemia)-derived] cells catalyse the transfer of [3H]galactose from UDP-[3H]-galactose and [3H]N-acetylglucosamine from UDP-[3H]N-acetylglucosamine into an endogenous product that on digestion with Pronase yields long-chain glycopeptides (mol.wt. 7000--10 000) called 'erythroglycan'. Incorporation of either labelled sugar increased up to 60 min of incubation time. The labelled erythroglycan was isolated by chromatography on Sephadex G-50 and characterized by digestion with endo-beta-galactosidase from Escherichia freundii, followed by analysis on Bio-Gel P-2 and paper chromatography. This digestion gave the following four products: (1) a disaccharide with the sequence beta GlcNAc-beta Gal; (2) a trisaccharide with the sequence betaGal-betaGlcNAc-beta Gal; (3) a larger oligosaccharide containing galactose and N-acetylglucosamine; and (4) a putative protein-linkage region.  相似文献   

15.
Two glycopeptides were obtained from alpha 1-protease inhibitor after extensive pronase digestion and chromatography on Bio-Gel P-10 and concanavalin A-Sepharose. these glycopeptides were characterized by compositional analysis and sequential exoglycosidase digestion followed at each step by methylation analysis. The partially methylated alditol acetates obtained were resolved by gas chromatography and identified by mass spectrometry. The proposes structures of the oligosaccharide moieties of the glycopeptides are given below. (formula: see text) The relative amounts of the two glycopeptides isolated from concanavalin A-Sepharose suggest that each protein molecule contains four carbohydrate chains; one large chain (A) and three small chains (B).  相似文献   

16.
Sucrase--isomaltase was purified from rat intestinal microvillus membranes after injection of D-[2-3H]mannose and L-[6-3H]fucose, using a column of monoclonal antibody-protein A-Sepharose. After Pronase digestion and gel filtration of the glycopeptides labelled from both precursors, a major part of the radioactivity was recovered in asparagine-linked complex oligosaccharides, and a smaller amount in partially alkali-labile high-molecular-weight glycopeptides. Only a small amount of [3H]mannose was found in endo-beta-N-acetylglucosaminidase H-sensitive high-mannose oligosaccharides.  相似文献   

17.
The N-linked oligosaccharides synthesised by the murine plasmacytoma cell line NS-1 have been analysed by lectin affinity chromatography on columns of immobilised concanavalin A (Con A), Lens culinaris (lentil), Ricinus communis agglutinin (RCA) and leuko-phytohemagglutinin (L-PHA). The majority of complex N-glycans in this transformed cell line were branched structures with only a low level of biantennary complex chains detected. The analysis showed the major complex N-glycan fraction consisted of a minimum sialylated triantennary structure. [3H]Mannose-labelled transferrin receptor was isolated from NS-1 cells by immunoprecipitation followed by electroelution from SDS polyacrylamide gels. The isolated receptor was digested with Pronase and the 3H-labelled glycopeptides analysed by lectin affinity chromatography. Analysis by Con A-Sepharose indicated that approx. 50% of the labelled glycopeptides were branched complex N-glycans (unbound fraction) while the remainder were oligomannose structures (strongly bound). The presence of tri and/or tetraantennary structures in the Con A unbound fraction was further suggested by the interaction of 61% of the fraction with L-PHA. The lectin profiles obtained for the complex N-glycans of the transferrin receptor glycopeptides were similar to those for the total cellular glycopeptides of NS-1 cells. Reverse-phase HPLC analysis of tryptic glycopeptides of the isolated [3H]mannose-labelled transferrin receptor gave three 3H-labelled peaks, indicating that all three potential N-glycosylation sites on the receptor are utilised. The Con A-Sepharose profiles of the three fractions indicated the presence of branched complex N-glycans and high mannose chains at each site. The profiles of two of the tryptic glycopeptide fractions were very similar, while the third had a higher content of oligomannose oligosaccharides.  相似文献   

18.
Rats (14 days old) were injected with [14c]fucose and young adult rats with [3H]fucose in order to label the myelin-associated glycoproteins. As previously reported, the major [14C]fucose-labelled glycoprotein in the immature myelin had a higher apparent molecular weight on sodium dodecyl sulphate/polyacrylamide gels that the [3H]fucose-labelled glycoprotein in mature myelin. This predominant doubly labelled glycoprotein component was partially purified by preparative gel electrophoresis and converted to glycopeptides by extensive Pronase digestion. Gel filtration on Sephadex G-50 separated the glycopeptides into several clases, which were designted A,B, C AND D, from high to low molecular weight. The 14C-labelled glycopeptides from immature myeline were enriched in the highest-molecular-weight class A relative to the 3H-labelled glycopeptides from mature myelin. Neuraminidase treatment of the glycoprotein before Pronase digestion greatly decreased the proportion of glycopeptides fractionating in the higher-molecular-weight classes and largely eliminated the developmental differences that were apparent by gel filtration. However, neuraminidase treatment did not decrease the magnitude of the developmental difference revealed by electrophoresing the intact glycoprotein on sodium dodecyl sulphate gels, although it did decrease the apparent molecular weight of the glycoprotein from both the 15-day-old and adult rats by an amount comparable in magnitude to that developmental difference. The results from gel filtration of glycopeptides indicate that there is a higher content of large molecular weight, sialic acid-rich oligosaccharide units in the glycoprotein of immature myelin. However, the higher apparent molecular weight for the glycoprotein from 15-day-old rats on sodium dodcyl sulphate gels is not due primarily to its higher sialic acid content.  相似文献   

19.
Using [3H]-labeled oligosaccharides, we found that the presence of at least two alpha-mannosyl residues with free hydroxyl groups at C-3, 4, and 6 is required for oligosaccharides to be related by a concanavalin A-Sepharose column. This finding is also applicable to N-[14C]acetylated glycopeptides. Thus, the concanavalin A-Sepharose column might become a useful tool for structural studies of glycopeptides and oligosaccharides and for their fractionation. Glycopeptides prepared from the trypsinate of rat fibroblasts, which has been purified by paper electrophoresis, were further separated into two fractions by chromatography on a concanavalin A-Sepharose column.  相似文献   

20.
Carbohydrate units of cell-surface glycoproteins of mouse B- and T-lymphocytes, labelled in their sialic acid residues by the periodate/NaB3H4 method and in their galactose residues by the galactose oxidase/NaB3H4 method after neuraminidase treatment, have been studied. Glycopeptides were prepared from the labelled cells by Pronase digestion and fractionated by concanavalin A affinity chromatography into two fractions (A and B). Alkali-labile oligosaccharides were isolated after mild NaOH/NaBH4 treatment by gel filtration. The alkali-labile oligosaccharides were further analysed by t.l.c. To study the relative proportion of neutral mannose-rich carbohydrate units (fraction C) in lymphocyte glycoproteins, glycopeptides were also prepared from unlabelled cells and subjected to concanavalin A affinity chromatography after N-[3H]acetylation of their peptide moiety. The major alkali-labile oligosaccharide component of both cell types was identified as galactosyl-(beta 1 leads to 3)-N-acetylgalactosaminitol. T-Lymphocytes were characterized by a high proportion of this oligosaccharide and a lower proportion of alkali-stable fraction A glycopeptides, whereas the opposite was observed for B-lymphocytes. The relative proportions of the concanavalin A-binding fractions B and C were similar in both cell types. The differences observed may correlate with the different surface properties of B- and T-lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号