首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leukocyte infiltration, mediated by chemokines, is a key step in the development of organ dysfunction. Lung and liver neutrophil infiltration following trauma-hemorrhage is associated with upregulation of monocyte chemoattractant protein-1 (MCP-1). Because MCP-1 is not a major attractant for neutrophils, we hypothesized that MCP-1 influences neutrophil infiltration via regulation of keratinocyte-derived chemokines (KC). To study this, male C3H/HeN mice were pretreated with MCP-1 antiserum or control serum and subjected to trauma-hemorrhage or sham operation. Animals were killed 4 h after resuscitation. One group of trauma-hemorrhage mice receiving MCP-1 antiserum was also treated with murine KC during resuscitation. Plasma levels and tissue content of MCP-1 and KC were determined by cytometric bead arrays. Immunohistochemistry was performed to determine neutrophil infiltration; organ damage was assessed by edema formation. Treatment with MCP-1 antiserum significantly decreased systemic, lung, and liver levels of MCP-1 and KC following trauma-hemorrhage. This decrease in MCP-1 levels was associated with decreased neutrophil infiltration and edema formation in lung and liver following trauma-hemorrhage. Restitution of KC in mice treated with MCP-1 antiserum restored tissue neutrophil infiltration and edema. These results lead us to conclude that increased levels of MCP-1 cause neutrophil accumulation and distant organ damage by regulating KC production during the postinjury inflammatory response.  相似文献   

2.
Regulation of cholesterol metabolism in cultured cells and in the liver is dependent on actions of the LDL receptor. However, nonhepatic tissues have multiple pathways of cholesterol uptake. One possible pathway is mediated by LPL, an enzyme that primarily hydrolyzes plasma triglyceride into fatty acids. In this study, LDL uptake and tissue cholesterol levels in heart and skeletal muscle of wild-type and transgenic mice with alterations in LPL expression were assessed. Overexpression of a myocyte-anchored form of LPL in heart muscle led to increased uptake of LDL and greater heart cholesterol levels. Loss of LDL receptors did not alter LDL uptake into heart or skeletal muscle. To induce LDL receptors, mice were treated with simvastatin. Statin treatment increased LDL receptor expression and LDL uptake by liver and skeletal muscle but not heart muscle. Plasma creatinine phosphokinase as well as muscle mitochondria, cholesterol, and lipid droplet levels were increased in statin-treated mice overexpressing LPL in skeletal muscle. Thus, pathways affecting cholesterol balance in heart and skeletal muscle differ.  相似文献   

3.
Neutrophil infiltration is a key step in the development of organ dysfunction following trauma-hemorrhage (T-H). Although we have previously shown that 17beta-estradiol (E2) prevents neutrophil infiltration and organ damage following T-H, the mechanism by which E2 inhibits neutrophil transmigration remains unknown. We hypothesized that E2 prevents neutrophil infiltration via modulation of keratinocyte-derived chemokine (KC), a major attractant for neutrophils. To examine this, male C3H/HeN mice were subjected to T-H or sham operation and thereafter resuscitated with Ringer lactate and E2 (1 mg/kg body wt) or vehicle. Animals were killed 2 h after resuscitation, and Kupffer cells were isolated. Plasma levels and Kupffer cell production capacities of KC, TNF-alpha, and IL-6 were determined by BD Cytometric Bead Arrays; lung mRNA expression of KC was measured with real-time PCR; myeloperoxidase activity assays were performed to determine neutrophil infiltration, and organ damage was assessed by edema formation. Treatment with E2 decreased systemic levels and restored Kupffer cell production of KC, TNF-alpha, and IL-6, as well as KC gene expression and protein in the lung. This was accompanied with a decrease in neutrophil infiltration and edema formation in the lung. These results suggest that E2 prevents lung neutrophil infiltration and organ damage in part by decreasing KC during posttraumatic immune response.  相似文献   

4.
5.
6.
The hypothesis that the neutrophil chemoattractant CXC chemokines KC and macrophage inflammatory protein-2 (MIP-2) are involved in neutrophil transmigration and liver injury was tested in C3Heb/FeJ mice treated with galactosamine (Gal, 700 mg/kg), endotoxin (ET, 100 microg/kg), or Gal + ET (Gal/ET). Hepatic KC and MIP-2 mRNA levels and plasma CXC chemokine concentrations were dramatically increased 1.5 h after Gal/ET or ET alone and gradually declined up to 7 h. Murine recombinant cytokines (TNF-alpha, IL-1 alpha, and IL-1 beta), but not Gal/ET, induced CXC chemokine formation in the ET-resistant C3H/HeJ strain. To assess the functional importance of KC and MIP-2, C3Heb/FeJ mice were treated with Gal/ET and control IgG or a combination of anti-KC and anti-MIP-2 antibodies. Anti-CXC chemokine antibodies did not attenuate hepatocellular apoptosis, sinusoidal neutrophil sequestration and extravasation, or liver injury at 7 h. Furthermore, there was no difference in liver injury between BALB/cJ wild-type and CXC receptor-2 gene knockout (CXCR2-/-) mice treated with Gal/ET. The higher neutrophil count in livers of CXCR2-/- than in wild-type mice after Gal/ET was caused by the elevated number of neutrophils located in sinusoids of untreated CXCR2-/- animals. The pancaspase inhibitor Z-Val-Ala-Asp-fluoromethylketone eliminated Gal/ET-induced apoptosis and neutrophil extravasation and injury but not CXC chemokine formation. Thus Gal/ET induced massive, cytokine-dependent CXC chemokine formation in the liver. However, neutrophil extravasation and injury occurred in response to apoptotic cell injury at 6-7 h and was independent of CXC chemokine formation.  相似文献   

7.
Apoptotic cells are removed by phagocytes without causing inflammation. It remains largely unresolved whether anti-inflammatory mediators prevent neutrophil infiltration upon apoptotic cell clearance in vivo. In this study, we showed that, upon induction of apoptosis in the thymus by x-ray, inducible NO synthase knockout (KO) mice exhibited higher levels of neutrophil infiltration and production of MIP-2 and keratinocyte-derived chemokine (KC) in the thymus than wild-type (WT) mice. Furthermore, administration of NG-nitro-L-arginine methyl ester, an inhibitor of NO synthase, to x-irradiated WT mice increased the level of neutrophil infiltration to that of KO mice by the augmentation of MIP-2 and KC production. Additionally, thymic macrophages isolated from x-irradiated KO mice produced more MIP-2 and KC than those from WT mice. Thus, although apoptosis is believed to be noninflammatory, this is actually achieved by the production of immunosuppressive signals such as NO that counteract proinflammatory chemokines such as MIP-2 and KC.  相似文献   

8.
Manganese superoxide dismutase (Mn-SOD) plays an important role in attenuating free radical-induced oxidative damage. The purpose of this research was to determine if increased expression of Mn-SOD gene alters intracellular redox status. Twelve week old male B6C3 mice, engineered to express human Mn-SOD in multiple organs, and their nontransgenic littermates were assessed for oxidative stress and antioxidant status in heart, brain, lung, skeletal muscle, liver, and kidney. Relative to their nontransgenic littermates, transgenic mice had significantly (p <.01) higher activity of Mn-SOD in heart, skeletal muscle, lung, and brain. Copper, zinc (Cu,Zn)-SOD activity was significantly higher in kidney, whereas catalase activity was lower in brain and liver. The activities of selenium (Se)-GSH peroxidase and non-Se-GSH peroxidase, and levels of vitamin E, ascorbic acid and GSH were not significantly different in any tissues measured between Mn-SOD transgenic mice and their nontransgenic controls. The levels of malondialdehyde were significantly lower in the muscle and heart of Mn-SOD mice, and conjugated dienes and protein carbonyls were not altered in any tissues measured. The results obtained showed that expression of human SOD gene did not systematical alter antioxidant systems or adversely affect the redox state of the transgenic mice. The results also suggest that expression of human SOD gene confers protection against peroxidative damage to membrane lipids.  相似文献   

9.
10.
We produced transgenic mice carrying the native sheep -lactoglobulin (BLG) or fusion genes composed of the BLG promoter and human serum albumin (HSA) minigenes. BLG was expressed exclusively in the mammary glands of the virgin and lactating transgenic mice evaluated. In contrast, transgenic females carrying the BLG/HSA fusion constructs also expressed the HSA RNA ectopically in skeletal muscle, kidney, brain, spleen, salivary gland and skin. Ectopic expression of HSA RNA was detected only in strains that express the transgene in the mammary gland. There was no obvious correlation between the level of the HSA RNA expressed in the mammary gland and that found ectopically. In three transgenic strains analysed, the expression of HSA RNA in kidney and skeletal muscle increased during pregnancy and lactation, whereas in the brain HSA expression decreased during lactation in one of the strains. HSA protein was synthesized in skeletal muscle and skin of strain #23 and its level was higher in lactating mice compared with virgin mice. Expression of HSA was also analysed in males and was found to be more stringently controlled than in females of the same strains.In situ hybridization analyses localized the expressed transgene in the skin, kidney, brain and salivary glands of various transgenic strains. Distinct strain-specific and cell-type specific HSA expression patterns were observed in the skin. This is in contrast to the exclusive expression of the HSA transgene in epithelial cells surrounding the alveoli of the mammary gland. Taken together, these results suggest that the absence of sufficient mammary-specific regulatory elements in the BLG promoter sequences and/or the juxtaposition of the BLG promoter with the HSA coding sequences leads to novel tissue- and cell-specific expression in ectopic tissues of transgenic mice.  相似文献   

11.
Stromal cell-derived factor-1 (SDF-1; CXCL12), a CXC chemokine, has been found to be involved in inflammation models in vivo and in cell adhesion, migration, and chemotaxis in vitro. This study aimed to determine whether exogenous SDF-1 induces leukocyte recruitment in mice. After systemic administration of SDF-1alpha, expression of the adhesion molecules P-selectin and VCAM-1 in mice was measured using a quantitative dual-radiolabeled Ab assay and leukocyte recruitment in various tissues was evaluated using intravital microscopy. The effect of local SDF-1alpha on leukocyte recruitment was also determined in cremaster muscle and compared with the effect of the cytokine TNFalpha and the CXC chemokine keratinocyte-derived chemokine (KC; CXCL1). Systemic administration of SDF-1alpha (10 microg, 4-5 h) induced upregulation of P-selectin, but not VCAM-1, in most tissues in mice. It caused modest leukocyte recruitment responses in microvasculature of cremaster muscle, intestine, and brain, i.e., an increase in flux of rolling leukocytes in cremaster muscle and intestines, leukocyte adhesion in all three tissues, and emigration in cremaster muscle. Local treatment with SDF-1alpha (1 microg, 4-5 h) reduced leukocyte rolling velocity and increased leukocyte adhesion and emigration in cremasteric venules, but the responses were much less profound than those elicited by KC or TNFalpha. SDF-1alpha-induced recruitment was dependent on endothelial P-selectin, but not P-selectin on platelets. We conclude that the exogenous SDF-1alpha enhances leukocyte-endothelial cell interactions and induces modest and endothelial P-selectin-dependent leukocyte recruitment.  相似文献   

12.
13.
Insulin resistance plays a major role in the pathogenesis of type 2 diabetes. Insulin regulates blood glucose levels primarily by promoting glucose uptake from the blood into multiple tissues and by suppressing glucose production from the liver. The glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in muscle and adipose tissue. Decreased GLUT4 expression in adipose tissue is a common feature of many insulin resistant states. GLUT4 expression is preserved in skeletal muscle in many insulin resistant states. However, functional defects in the intracellular trafficking and plasma membrane translocation of GLUT4 result in impaired insulin-stimulated glucose uptake in muscle. Tissue-specific genetic knockout of GLUT4 expression in adipose tissue or muscle of mice has provided new insights into the pathogenesis of insulin resistance. We recently determined that the expression of serum retinol binding protein (RBP4) is induced in adipose tissue as a consequence of decreased GLUT4 expression. We found that RBP4 is elevated in the serum of insulin resistant humans and mice. Furthermore, we found that increasing serum RBP4 levels by transgenic overexpression or by injection of purified RBP4 protein into normal mice causes insulin resistance. Therefore, RBP4 appears to play an important role in mediating adipose tissue communication with other insulin target tissues in insulin resistant states.  相似文献   

14.
IL-13 has been shown to exert potent anti-inflammatory properties. In this study, we elucidated the functional role of endogenous IL-13 in a murine model of septic peritonitis induced by cecal ligation and puncture (CLP). Initial studies demonstrated that the level of IL-13 increased in tissues including liver, lung, and kidney, whereas no considerable increase was found in either peritoneal fluid or serum after CLP. Immunohistochemically, IL-13-positive cells were Kupffer cells in liver, alveolar macrophages in lung, and epithelial cells of urinary tubules in kidney. IL-13 blockade with anti-IL-13 Abs significantly decreased the survival rate of mice after CLP from 53% to 14% on day 7 compared with control. To determine the potential mechanisms whereby IL-13 exerted a protective role in this model, the effects of anti-IL-13 Abs on both local and systemic inflammation were investigated. Administration of anti-IL-13 Abs did not alter the leukocyte infiltration and bacterial load in the peritoneum after CLP but dramatically increased the neutrophil influx in tissues after CLP, an effect that was accompanied by significant increases in the serum levels of aspartate transaminase, alanine transaminase, blood urea nitrogen, and creatinine. Tissue injury caused by IL-13 blockade was associated with increases in mRNA and the protein levels of CXC chemokines macrophage inflammatory protein-2 and KC as well as the CC chemokine macrophage inflammatory protein-1alpha and the proinflammatory cytokine TNF-alpha. Collectively, these results suggest that endogenous IL-13 protected mice from CLP-induced lethality by modulating inflammatory responses via suppression of overzealous production of inflammatory cytokines/chemokines in tissues.  相似文献   

15.
Adiponectin, a physiologically active polypeptide secreted by adipocytes, shows insulin-sensitizing, anti-inflammatory, and antiatherogenic properties in rodents and humans. To assess the effects of chronic hyperadiponectinemia on metabolic phenotypes, we established three lines of transgenic mice expressing human adiponectin in the liver. When maintained on a high-fat/high-sucrose diet, mice of two lines that had persistent hyperadiponectinemia exhibited significantly decreased weight gain associated with less fat accumulation and smaller adipocytes in both visceral and subcutaneous adipose tissues. Macrophage infiltration in adipose tissue was markedly suppressed in the transgenic mice. Expression levels of adiponectin receptors were not altered in skeletal muscle or liver. Circulating levels of endogenous adiponectin were elevated, whereas fasting glucose, insulin, and leptin levels were reduced compared with control mice. In the hyperadiponectinemic mice daily food intake was not altered, but oxygen consumption was significantly greater, suggesting increased energy expenditure. Moreover, high-calorie diet-induced premature death was almost completely prevented in the hyperadiponectinemic mice in association with attenuated oxidative DNA damage. The transgenic mice also showed longer life span on a conventional low-fat chow. In conclusion, transgenic expression of human adiponectin blocked the excessive fat accumulation and reduced the morbidity and mortality in mice fed a high-calorie diet. These observations may provide new insights into the prevention and therapy of metabolic syndrome in humans.  相似文献   

16.
17.
Insulin receptor substrate-1 (IRS-1) is the major substrate of both the insulin receptor and the IGF-1 receptor. In this study, we created IRS-1 transgenic (IRS-1-Tg) mice which express human IRS-1 cDNA under control of the mouse IRS-1 gene promoter. In the IRS-1-Tg mice, IRS-1 mRNA expression was significantly increased in almost all tissues, but its protein expression was increased in very limited tissues (epididymal fat and skeletal muscle). IRS-1-Tg mice showed glucose intolerance and significantly enlarged epididymal fat mass, as well as elevated serum TNF-α concentrations. Importantly insulin signaling was significantly attenuated in the liver of IRS-1-Tg mice, which may contribute to the glucose intolerance. Our results suggest that excess IRS-1 expression may not provide a beneficial impact on glucose homeostasis in vivo.  相似文献   

18.
Neutrophil depleted mice are protected from concanavalin A-mediated hepatitis, showing that neutrophils are critical for cellular liver damage. Interleukin-6 has pro- and anti-inflammatory properties and mediates neutrophil recruitment in diseases such as rheumatoid arthritis. In classic signaling, interleukin-6 binds to the membrane-bound interleukin-6-receptor and initiates signaling via gp130. In interleukin-6 trans-signaling, the agonistic soluble interleukin-6-receptor can form a soluble interleukin-6/interleukin-6-receptor complex and stimulate cells which only express gp130 but no interleukin-6-receptor. Interleukin-6 trans-signaling was shown to be important for liver regeneration and development of liver adenomas. Here, we show that blocking classic interleukin-6 signaling but not interleukin-6 trans-signaling reduced concanavalin A-induced liver damage in mice, with reduced liver STAT3 phosphorylation and liver neutrophil accumulation. However, the level of neutrophil-attracting chemokine KC is only reduced by inhibition of interleukin-6 trans-signaling. Analysis of circulating neutrophils after concanavalin A challenge revealed that classic interleukin-6 signaling is required for the mobilization of blood neutrophils. Reduced neutrophil infiltration was accompanied by increased levels of hepatoprotective monocyte chemoattractant protein-1 and reduced level of hepatodestructive interleukin-4. Abrogated classic interleukin-6 signaling in concanavalin A-mediated hepatitis exhibited liver-protective effects indicating that interleukin-6 classic but not interleukin-6 trans-signaling is responsible for liver damage. Classic interleukin-6 signaling is required to mount an efficient neutrophilia during concanavalin A-induced immune response, which might have clinical implications in the regard that blocking global interleukin-6 signaling pathways is a treatment option in different chronic inflammatory diseases.  相似文献   

19.
Chemokine amplification in mesangial cells.   总被引:5,自引:0,他引:5  
Mesangial cells are specialized cells of the renal glomerulus that share some properties of vascular smooth muscle cells and macrophages. They are implicated in the pathogenesis of many forms of nephritis. The murine CXC-chemokines macrophage inflammatory protein-2 (MIP-2) and KC induce migration of mouse mesangial cells. Mesangial cells also exhibit a unique chemokine feedback mechanism. Treatment with nanomolar concentrations of MIP-2 or KC markedly up-regulates monocyte chemoattractant protein-1 and RANTES expression in mesangial cells. Autoinduction of MIP-2 and KC mRNA was also noted. Low levels of MIP-1alpha, MIP-1beta, and IFN-gamma-inducible protein-10 were induced following treatment with higher doses of MIP-2 or KC. These effects are specific to mesangial cells, as MIP-2 or KC treatment of renal cortical epithelial cells or peritoneal macrophages failed to induce chemokine production. This cascade of chemokine interactions may contribute to renal infiltration and leukocyte activation. The abilities of MIP-2 or KC to stimulate their own synthesis may also contribute to the maintenance and chronic course of glomerular inflammation. The mesangial cell receptor for MIP-2 and/or KC is unknown but is not CXC-chemokine receptor-2.  相似文献   

20.
Transgenic mice carrying the human heart muscle carnitine palmitoyltransferase I (M-CPTI) gene fused to a CAT reporter gene were generated to study the regulation of M-CPTI gene expression. When the mice were fasted for 48 h, CAT activity and mRNA levels increased by more than 2-fold in heart and skeletal muscle, but not liver or kidney. In the diabetic transgenic mice, there was a 2- to 3-fold increase in CAT activity and CAT mRNA levels in heart and skeletal muscle which upon insulin administration reverted to that observed with the control insulin sufficient transgenic mice. Feeding a high fat diet increased CAT activity and mRNA levels by 2- to 4-fold in heart and skeletal muscle of the transgenic mice compared to the control transgenic mice on regular diet. Overall, the M-CPTI promoter was found to be necessary for the tissue-specific hormonal and dietary regulation of the gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号