首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anabaena sp. PCC 7120 is one of the few prokaryotes harboring a lipoxygenase (LOX) gene. The sequence resides in an open reading frame encoding a fusion protein of a catalase-like hemoprotein with an unusually short LOX (approximately 49 kDa) at the C terminus. The recombinant mini-LOX contains a non-heme iron in the active site and is highly active with linoleic and alpha-linolenic acids (which occur naturally in Anabaena) giving the respective 9R-hydroperoxides, the mirror image of the 9S-LOX products of plants. Using stereospecifically labeled [11-(3)H]linoleic acids we show that reaction is catalyzed via a typical antarafacial relationship of initial hydrogen abstraction and oxygenation. The mini-LOX oxygenated C16/C18:2-phosphatidylcholine with 9R specificity, suggesting a "tail first" mode of fatty acid binding. Site-directed mutagenesis of an active site Ala (Ala215), typically conserved as Gly in R-LOX, revealed that substitution with Gly retained 9R specificity, whereas the larger Val substitution switched oxygenation to 13S, implying that Ala215 represents the functional equivalent of the Gly in other R-LOX. Metabolism studies using a synthetic fatty acid with extended double bond conjugation, 9E,11Z,14Z-20:3omega6, showed that the mini-LOX can control oxygenation two positions further along the fatty acid carbon chain. We conclude that the mini-LOX, despite lacking the beta-barrel domain and much additional sequence, is catalytically complete. Interestingly, animal and plant LOX, which undoubtedly share a common ancestor, are related in sequence only in the catalytic domain; it is possible that the prokaryotic LOX represents a common link and that the beta-barrel domain was then acquired independently in the animal and plant kingdoms.  相似文献   

2.
Partially purified preparations of lipoxygenase from the germinating barley embryos converted linoleic acid to 9- and 13-hydroperoxy linoleic acids in the ratio of approximately 3:1, while the similar preparations from the ungerminated embryos converted linoleic acid mainly to 9-hydroperoxy linoleic acid.

Isoelectric focusing of the partially purified preparations of the germinating embryos revealed the presence of the two lipoxygenase active peaks, having isoelectric point at pH 4.9 and 6.6, respectively. The former peak (barley lipoxygenase-1) was identical to lipoxygenase of the ungerminated embryos, but the latter peak (barley lipoxygenase-2) was found only in the germinating embryos. The newly found isoenzyme, barley lipoxygenase-2, converted linoleic acid mainly to 13-hydroperoxy linoleic acid, and could oxidize esterified derivatives of linoleic acid (methyl linoleate and trilinolein) much strongly than barley lipoxygenase-1.  相似文献   

3.
Soybean lipoxygenase-1 (LOX-1) is used widely as a model for studying the structural and functional properties of the homologous family of lipoxygenases. The crystallographic structure revealed that LOX-1 is organized in a beta-sheet N-terminal domain and a larger, mostly helical, C-terminal domain. Here, we describe the overall structural characterization of native unliganded LOX-1 in solution, using small angle X-ray scattering (SAXS). We show that the scattering pattern of the unliganded enzyme in solution does not display any significant difference compared with that calculated from the crystal structure, and that models of the overall shape of the protein calculated ab initio from the SAXS pattern provide a close envelope to the crystal structure. These data, demonstrating that LOX-1 has a compact structure also in solution, rule out any major motional flexibility of the LOX-1 molecule in aqueous solutions. In addition we show that eicosatetraynoic acid, an irreversible inhibitor of lipoxygenase used to mimic the effect of substrate binding, does not alter the overall conformation of LOX-1 nor its ability to bind to membranes. In contrast, the addition of glycerol (to 5%, v/v) causes an increase in the binding of the enzyme to membranes without altering its catalytic efficiency towards linoleic acid nor its SAXS pattern, suggesting that the global conformation of the enzyme is unaffected. Therefore, the compact structure determined in the crystal appears to be essentially preserved in these various solution conditions. During the preparation of this article, a paper by M. Hammel and co-workers showed instead a sharp difference between crystal and solution conformations of rabbit 15-LOX-1. The possible cause of this difference might be the presence of oligomers in the rabbit lipoxygenase preparations.  相似文献   

4.
The effect of chemical (urea) and physical (temperature and high pressure) denaturation on the structural properties of soybean lipoxygenase-1 (LOX1) was analyzed through dynamic fluorescence spectroscopy and circular dichroism. We show that the fluorescence decay of the native protein could be fitted by two lorentzian distributions of lifetimes, centered at 1 and 4 ns. The analysis of the urea-denatured protein suggested that the shorter distribution is mostly due to the tryptophan residues located in the N-terminal domain of LOX1. We also show that a pressure of 2400 bar and a temperature of 55 degrees C brought LOX-1 to a state similar to a recently described stable intermediate "I." Analysis of circular dichroism spectra indicated a substantial decrease of alpha-helix compared with beta-structure under denaturing conditions, suggesting a higher stability of the N-terminal compared with the C-terminal domain in the denaturation process.  相似文献   

5.
The effect of modification of sulfhydryl groups in soybean lipoxygenase-1   总被引:1,自引:0,他引:1  
Soybean lipoxygenase-1 was found to contain five free sulfhydryl groups and no disulfide bridges. Three sulfhydryl groups react readily with methylmercuric halides. This modification results in significant changes of the catalytic properties of the enzyme. Comparison of modified and native lipoxygenase-1 shows the following: 1. The catalytic constant of the oxygenation of linoleic acid is reduced by approximately 50%, whereas the affinity towards linoleic acid remains unaltered. 2. At high concentrations of substrate and low concentrations of enzyme the kinetic lag phase in the oxygenation is considerably longer. 3. The regio- and stereospecificities of the oxygenation are significantly lower. 4. Besides hydroperoxides, oxo-octadecadienoic acids (4%) are formed during the oxygenation. 5. The cooxidation capacity is considerably enhanced. Treatment of methylmercury-modified lipoxygenase-1 with NaHS results in the complete recovery of the sulfhydryl groups and of the catalytic properties.  相似文献   

6.
Changes in Lipoxygenase Components of Rice Seedlings during Germination   总被引:1,自引:0,他引:1  
Changes in lipoxygenase (LOX) activity were followed duringthe germination of rice seeds. The enzyme activity of 3-day-oldseedlings was 20 times higher than that of ungerminated seeds.Sixty per cent of the increased activity was found in shoots.The increase in LOX activity was mainly due to an increase inlipoxygenase-2 (LOX-2), a minor component in ungerminated seeds;this increase was inhibited by cycloheximide. LOX-2 was isolatedfrom the 3-day-old seedlings and compared for its enzymologicalproperties with rice lipoxygenase-3 (LOX-3), a major componentin ungerminated seeds. Both LOX-2 and LOX-3 were stable at pH5 to 8, but LOX-2 was more heatstable than LOX-3. Apparent Kmvalues of LOX-2 and LOX-3 for linoleic acid were 170 and 59µM, and those for linolenic acid were 5,300 and 88 µM,respectively. Both LOXs were inhibited by some metal ions andantioxidants. (Received February 5, 1986; Accepted May 9, 1986)  相似文献   

7.
Several cellular processes are modified when cells are placed under conditions of weightlessness. As yet, there is no coherent explanation for these observations, nor it is known which biomolecules might act as gravity sensors. Lipoxygenases generate leukotrienes and lipoxins from arachidonic acid, being responsible for many pharmacological and immunological effects, some of which are known to be affected by microgravity. In the course of the 28th parabolic flight campaign of the European Space Agency we measured the activity of pure soybean lipoxygenase-1 on linoleic acid, by a fibre optics spectrometer developed on purpose. It was found that microgravity reduced the apparent Michaelis-Menten constant (Km) of the enzymatic reaction to one fourth with respect to the 1 g control, whereas, the catalytic constant (k(cat)) was unaffected. Consequently, the catalytic efficiency of lipoxygenase-1 (k(cat)/Km) was approximately four-fold higher in flight than on ground. This unprecedented finding suggests that lipoxygenase-1 might be a molecular target for gravity.  相似文献   

8.
The catalytic activity of the highly potent botulinum neurotoxins are confined to their N-terminal light chains ( approximately 50kDa). A full-length light chain for the type E neurotoxin with a C-terminal 6x His-tag, BoNT/E-LC, has been cloned in a pET-9c vector and over-expressed in BL21 (DE3) cells. BoNT/E-LC was purified to homogeneity by affinity chromatography on Ni-NTA agarose followed by exclusion chromatography using a Superdex-75 sizing column. The purified protein has very good solubility and can be stored stably at -20 degrees C; however, it seems to undergo auto-proteolysis when stored at temperature #10878;4-10 degrees C. BoNT/E-LC is active on its natural substrate, the synaptosomal associated 25kDa protein, SNAP-25, indicating that it retains a native-like conformation and therefore can be considered as a useful tool in studying the structure/function of the catalytic light chain. Recombinant BoNT/E-LC has been crystallized under five different conditions and at various pHs. Crystals diffract to better than 2.1A.  相似文献   

9.
Characterization of a 46 kda insect chitinase from transgenic tobacco   总被引:6,自引:0,他引:6  
A 46 kDa Manduca sexta (tobacco hornworm) chitinase was isolated from leaves of transgenic tobacco plants containing a recombinant insect chitinase cDNA, characterized, and tested for insecticidal activity. The enzyme was purified by ammonium sulfate fractionation, Q-Sepharose anion-exchange chromatography and mono-S cation-exchange chromatography. Although the gene for the chitinase encoded the 85 kDa full-length chitinase as previously reported by Kramer et al. [Insect Biochem. Molec. Biol. 23, 691–701 (1993)], the enzyme is produced in tobacco as a 46 kDa protein that is approximately four-fold less active than the 85 kDa chitinase. The N-terminal amino acid sequence of the 46 kDa chitinase is identical to that of the 85 kDa chitinase. The former enzyme is not glycosylated, whereas the latter contains approximately 25% carbohydrate. The pH and temperature optima of the 46 kDa chitinaseare similar to those of the 85 kDa chitinase. The former enzyme is more basic than the latter. The 46 kDa chitinase likely consists of the N-terminal catalytic domain of the 85 kDa chitinase and lacks the C-terminal domain that contains several potential sites for glycosylation. The 46 kDa chitinase is expressed in a number of plant organs, including leaves, flowers, stems and roots. Enzyme levels are higher in leaves and flowers than in stems and roots, and leaves from the middle portion of the plant have more chitinase than leaves from the top and bottom portions. Little or no enzyme is secreted outside of the plant cells because it remains in the intracellular space, even though its transit sequence is processed. When fed at a 2% dietary level, the 46 kDa chitinase caused 100% larval mortality of the merchant grain beetle, Oryzaephilis mercator. The results of this study support the hypothesis that insect chitinase is a biopesticidal protein for insect pests feeding on insect chitinase gene-containing transgenic plants.  相似文献   

10.
The C-terminal domain NC1 of mouse collagen XVIII (38 kDa) and the shorter mouse and human endostatins (22 kDa) were prepared in recombinant form from transfected mammalian cells. The NC1 domain aggregated non-covalently into a globular trimer which was partially cleaved by endogenous proteolysis into several monomers (25-32 kDa) related to endostatin. Endostatins were obtained in a highly soluble, monomeric form and showed a single N-terminal sequence which, together with other data, indicated a compact folding. Endostatins and NC1 showed a comparable binding activity for the microfibrillar fibulin-1 and fibulin-2, and for heparin. Domain NC1, however, was a distinctly stronger ligand than endostatin for sulfatides and the basement membrane proteins laminin-1 and perlecan. Immunological assays demonstrated endostatin epitopes on several tissue components (22-38 kDa) and in serum (120-300 ng/ml), the latter representing the smaller variants. The data indicated that the NC1 domain consists of an N-terminal association region (approximately 50 residues), a central protease-sensitive hinge region (approximately 70 residues) and a C-terminal stable endostatin domain (approximately 180 residues). They also demonstrated that proteolytic release of endostatin can occur through several pathways, which may lead to a switch from a matrix-associated to a more soluble endocrine form.  相似文献   

11.
An immunoglobulin L chain (HIR) was treated with lysyl-endopeptidase. Gel filtration chromatography of the digestion mix identified a peak displaying a significantly higher specific catalytic activity than that of the original sample. The protein in the peak was 11 kDa in size and constituted the VL fragment of HIR. The Km and Kcat values of Chromozym TRY hydrolysis for HIR were 1.5 x 10(-4) M and 6.2 min(-1), and for the VL fragment 7.3 x 10(-4) M and 4.8 x 10(2) min(-1), respectively. Three out of the five BJPs studied in this paper displayed elevated catalytic activity after processing with lysyl-endopeptidase. Similar results were also obtained for the complete antibody.  相似文献   

12.
Winger JA  Marletta MA 《Biochemistry》2005,44(10):4083-4090
The catalytic domains (alpha(cat) and beta(cat)) of alpha1beta1 soluble guanylate cyclase (sGC) were expressed in Escherichia coli and purified to homogeneity. alpha(cat), beta(cat), and the alpha(cat)beta(cat) heterodimeric complex were characterized by analytical gel filtration and circular dichroism spectroscopy, and activity was assessed in the absence and presence of two different N-terminal regulatory heme-binding domain constructs. Alpha(cat) and beta(cat) were inactive separately, but together the domains exhibited guanylate cyclase activity. Analysis by gel filtration chromatography demonstrated that each of the approximately 25-kDa domains form homodimers. Heterodimers were formed when alpha(cat) and beta(cat) were combined. Results from circular dichroism spectroscopy indicated that no major structural changes occur upon heterodimer formation. Like the full-length enzyme, the alpha(cat)beta(cat) complex was more active in the presence of Mn(2+) as compared to the physiological cofactor Mg(2+), although the magnitude of the difference was much larger for the catalytic domains than for the full-length enzyme. The K(M) for Mn(2+)-GTP was measured to be 85 +/- 18 microM, and in the presence of Mn(2+)-GTP, the K(D) for the alpha(cat)beta(cat) complex was 450 +/- 70 nM. The N-terminal heme-bound regulatory domain of the beta1 subunit of sGC inhibited the activity of the alpha(cat)beta(cat) complex in trans, suggesting a domain-scale mechanism of regulation by NO. A model in which binding of NO to sGC causes relief of an autoinhibitory interaction between the regulatory heme-binding domain and the catalytic domains of sGC is proposed.  相似文献   

13.
The strychnine-sensitive glycine receptor (GlyR) is a ligand-gated chloride channel composed of ligand binding alpha- and gephyrin anchoring beta-subunits. To identify the secondary and quaternary structures of extramembraneous receptor domains, the N-terminal extracellular domain (alpha1-(1-219)) and the large intracellular TM3-4 loop (alpha1-(309-392)) of the human GlyR alpha1-subunit were individually expressed in HEK293 cells and in Escherichia coli. The extracellular domain obtained from E. coli expression was purified in its denatured form and refolding conditions were established. Circular dichroism and Fourier-transform-infrared spectroscopy suggested approximately 25% alpha-helix and approximately 48% beta-sheet for the extracellular domain, while no alpha-helices were detectable for the TM3-4 loop. Size exclusion chromatography and sucrose density centrifugation indicated that isolated glycine receptor domains assembled into multimers of distinct molecular weight. For the extracellular domain from E. coli, we found an apparent molecular weight compatible with a 15mer by gel filtration. The N-terminal domain from HEK293 cells, analyzed by sucrose gradient centrifugation, showed a bimodal distribution, suggesting oligomerization of approximately 5 and 15 subunits. Likewise, for the intracellular domain from E. coli, a single molecular mass peak of approximately 49 kDa indicated oligomerization in a defined native structure. As shown by [(3)H]strychnine binding, expression in HEK293 cells and refolding of the isolated extracellular domain reconstituted high affinity antagonist binding. Cell fractionation, alkaline extraction experiments, and immunocytochemistry showed a tight plasma membrane association of the isolated GlyR N-terminal protein. These findings indicate that distinct functional characteristics of the full-length GlyR are retained in the isolated N-terminal domain.  相似文献   

14.
The lipoxygenase family of lipid-peroxidizing, nonheme iron dioxygenases form products that are precursors for diverse physiological processes in both plants and animals. In soybean (Glycine max), five vegetative isoforms, VLX-A, VLX-B, VLX-C, VLX-D, VLX-E, and four seed isoforms LOX-1, LOX-2, LOX-3a, LOX-3b have been identified. In this study, we determined the crystal structures of the substrate-free forms of two major vegetative isoforms, with distinct enzymatic characteristics, VLX-B and VLX-D. Their structures are similar to the two seed isoforms, LOX-1 and LOX-3, having two domains with similar secondary structural elements: a beta-barrel N-terminal domain containing highly flexible loops and an alpha-helix-rich C-terminal catalytic domain. Detailed comparison of the structures of these two vegetative isoforms with the structures of LOX-1 and LOX-3 reveals important differences that help explain distinct aspects of the activity and positional specificity of these enzymes. In particular, the shape of the three branches of the internal subcavity, corresponding to substrate-binding and O(2) access, differs among the isoforms in a manner that reflects the differences in positional specificities.  相似文献   

15.
Martin DD  Xu MQ  Evans TC 《Biochemistry》2001,40(5):1393-1402
A naturally occurring trans-splicing intein from the dnaE gene of Synechocystis sp. PCC6803 (Ssp DnaE intein) was used to characterize the intein-catalyzed splicing reaction. Trans-splicing/cleavage reactions were initiated by combining the N-terminal splicing domain of the Ssp DnaE intein containing five native N-extein residues and maltose binding protein as the N-extein with the C-terminal Ssp DnaE intein splicing domain (E(C)) with or without thioredoxin fused in-frame to its carboxy terminus. Observed rate constants (k(obs)) for dithiothreitol-induced N-terminal cleavage, C-terminal cleavage, and trans-splicing were (1.0 +/- 0.5) x 10(-3), (1.9 +/- 0.9) x 10(-4), and (6.6 +/- 1.3) x 10(-5) s(-1), respectively. Preincubation of the intein fragments showed no change in k(obs), indicating association of the two splicing domains is rapid relative to the subsequent steps. Interestingly, when E(C) concentrations were substoichiometric with respect to the N-terminal splicing domain, the levels of N-terminal cleavage were equivalent to the amount of E(C), even over a 24 h period. Activation energies for N-terminal cleavage and trans-splicing were determined by Arrhenius plots to be 12.5 and 8.9 kcal/mol, respectively. Trans-splicing occurred maximally at pH 7.0, while a slight increase in the extent of N-terminal cleavage was observed at higher pH values. This work describes an in-depth kinetic analysis of the splicing and cleavage activity of an intein, and provides insight for the use of the split intein as an affinity domain.  相似文献   

16.
A lipoxygenase-1 (LOX-1) inhibitor was isolated from the fermented broth of Aspergillus niger CFTRI 1105. It was purified, using column and preparative thin layer chromatography. 1H NMR and GC-MS examination revealed the structure of the inhibitor to be 2-(2'-methyl, 4'-hydroxyphenyl), 2-(4"hydroxyphenyl)-propane with a molecular weight of 242 and the molecular formula C,6H18O2. This bisphenol-derivative inhibitor shows 50% inhibition of soybean LOX-I at 0.98 mM concentration. The activity of this inhibitor was compared with commercial bisphenol A and its structural analogues, butylhydroxyanisole and butylhydroxytoluene in an attempt to understand the role of functional groups affecting lipoxygenase activity.  相似文献   

17.
Guanylyl cyclase (GC)-C, a single-transmembrane receptor protein for heat-stable enterotoxin, guanylin, and uroguanylin, and its N-terminal extracellular domain were prepared at a high level of expression from a system constructed of Sf21 insect cells and recombinant baculovirus. The recombinant GC-C, containing the complete sequence, retained its binding affinity to heat-stable enterotoxin with a KD value (6.2 x 10(-10) M) and cyclase catalytic activity at a level similar to those of GC-C expressed in mammalian cell lines, such as COS-7. The N-terminal extracellular domain was prepared in a form which contained the hexahistidine tail at its C-terminus and was purified as a homogenous protein by Con A and Ni-chelating affinity chromatography from the culture medium of the insect cells. The purified N-terminal extracellular domain of GC-C exhibited the high (KD = 4 x 10(-10) M) and low (KD = 7 x 10(-8) M) affinity sites in binding to heat-stable enterotoxin. These results clearly indicate that the N-terminal extracellular domain of GC-C possesses the same biochemical characteristics as the complete GC-C protein even in the membrane-free form. Moreover, the extracellular domain is able to form an oligomer in a ligand-dependent manner, suggesting that the N-terminal extracellular domains interact with one another in binding to ligands.  相似文献   

18.
Herein, we report on the role of the allosteric site in the activation mechanism of soybean lipoxygenase-1 utilizing stopped-flow inhibition kinetic studies. The K(D) for the activation was determined to be 25.9 +/- 2.3 microM and the rate constant for the oxidation of the iron cofactor, k(2), to be 182 +/- 4 s(-1). Two inhibitors were employed in this study, (Z)-9-octadecenyl sulfate (OS) and (Z)-9-palmitoleyl sulfate (PS), of which OS is an allosteric inhibitor of the turnover process, while PS is a linear mixed inhibitor with a K(i) of 13.7 +/- 1.3 microM for the catalytic site and a K(i)' of 140 +/- 9 microM for the allosteric site. It was found that OS does not inhibit the activation of soybean lipoxygenase-1, while PS acts as a competitive inhibitor versus the product, 13-hydroperoxy-9,11-(Z,E)-octadecadienoic acid, with a K(i) of 17.5 +/- 3.8 microM. These results suggest that OS binds to an allosteric site that is separate from the catalytic iron site. We further observed that the allosteric site binding selectivity is sensitive to inhibitor length as seen by its preference for OS over that of PS, which is two carbons longer than PS.  相似文献   

19.
A cAMP dependent protein kinase (PKA) was identified in the dinoflagellate Amphidinium operculum. In vitro kinase activity towards kemptide, a PKA-specific substrate, was not detectable in crude lysates. However, fractionation of dinoflagellate extracts by gel filtration chromatography showed PKA-like activity toward kemptide at approximately 66 kDa. These findings suggest that possible low molecular mass inhibitors in crude lysates were removed by the gel filtration chromatography. Pre-incubation of extracts with cAMP prior to chromatography resulted in an apparent molecular mass shift in the in vitro kinase assay to 40 kDa. An in-gel kinase assay reflected activity of the free catalytic subunit at approximately 40 kDa. Furthermore, western blotting with an antibody to the human PKA catalytic subunit confirmed a catalytic subunit with a mass of approximately 40 kDa. Results from this study indicate that the PKA in A. operculatum has a catalytic subunit of similar size to that in higher eukaryotes, but with a holoenzyme of a size suggesting a dimeric, rather than tetrameric structure.  相似文献   

20.
The dextransucrase gene dsrX from Leuconostoc mesenteroides CGMCC 1.544 was cloned into the vector pET-28a(+) and expressed as a N-terminal His(6)-tag fusion protein of 167.57 kDa in Escherichia coli BL21(DE3). DsrX with the high volumetric activity of 8.8 U ml(-1) culture and the specific activity of 97.37 U mg(-1) crude enzyme extracts was measured in the optimized recombinant expression system. The resultant expression level of the fusion protein amounted to 24.5% of the total cell proteins. The results of affinity chromatography and western blotting indicated that the three sensitive sites of proteolysis existed in the N-terminal catalytic domain of DsrX. Both the recombinant and native enzyme activity were slightly activated by 1 mmol l(-1) Mn(2+) and strongly inhibited by 1 mmol l(-1) Cu(2+) or Al(3+), and their optimum pH values were 5.4. The optimum temperature of the recombinant enzyme for dextran synthesis was 30 degrees C, which was 10 degrees C less than that of the native one. The transglucosylation products of two enzymes were studied by using thin layer chromatography and high-performance anion exchange chromatography. It could be concluded that the better sample-pretreatment temperature in SDS-PAGE was 37 degrees C, which significantly improved the detection of thermal instable enzyme than that of 100 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号