首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
To investigate patterns of thermoregulation in free-ranging and captive southern brown bandicoots Isoodon obesulus, we measured abdominal body temperature (Tb) of five free-ranging bandicoots over 42 days using implanted data loggers and Tb of three captive bandicoots over 3 months using implanted temperature-sensitive radio transmitters. Bandicoots in the wild had a mean Tb of 36.5±1.0 °C (range 33.4–39.8 °C) and showed a pronounced nychthemeral pattern with two distinct temperature phases. Tb increased at 13:30±2.6 h each day and remained high for 10.65±2.07 h, suggesting a crepuscular and early evening activity pattern. Daily Tb variation of I. obesulus would save considerable energy by reducing daytime thermoregulatory costs in the wild. Captive bandicoots had a similar mean body temperature (36.9±0.2°C) and range (33.0–39.9°C) as free-ranging bandicoots. However, the nychthemeral Tb pattern of captive bandicoots was different from free-ranging bandicoots, with a less pronounced daily cycle and the nocturnal rise in Tb occurring mainly at sunset and the daily decline occurring mainly at dawn.  相似文献   

2.
This study reports body temperature regulation (Tb) and circadian rhythms of undisturbed feral cats in their natural environment in Australia over a continuous period of three months. It furthermore compares these data with Tb data collected of feral cats, after a period of one year in captivity. In free-ranging, undisturbed feral cats, a distinct robust, regular circadian rhythm (strength of rhythm) (21–59.8%) with higher body temperature in the dark (active) phase (mean±STD: 39.2±0.27 °C) and significantly lower body temperature during the light (rest) phase (mean±STD: 38.1±0.47 °C, P<0.001) was found. The acrophase (time of the daily peak) of the three free-ranging cats investigated varied from 22:34 h (LG 2), 22:57 h (LG 1) to 23:17 h (LG 3). In the course of captivity, the cats’ circadian rhythms shifted from nocturnality to a diurnal tendency, with an acrophase ranging from 12:00 h (MtK 2), 12:23 h (MtK 1) to 16:25 h (MtK 3). This change in rhythmicity was accompanied by a significant decrease in robustness (1.7–5.2%) and mean body temperature levels (37.77±0.34 °C) as well as minima and maxima (36–39 °C versus 35.5–41.9 °C, free-ranging cats) of three captive cats, resulting in a significant shift towards a decrease in amplitude.  相似文献   

3.
Fluctuations in the thermal environment may elicit different responses in animals: migration to climatically different areas, regulation of body temperature, modification of biochemical reaction rates, or assuming a state of dormancy. Many ectothermic reptiles are active over a range of body temperatures that vary seasonally. Here we test the hypothesis that metabolic enzyme activity acclimatises seasonally in freshwater turtles (Chelodina longicollis) in addition to, or instead of, behavioural regulation of body temperatures. We measured body temperatures in free-ranging turtles (n=3) by radiotelemetry, and we assayed phosphofructokinase (PFK), lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities in early autumn (March, n=10 turtles), late autumn (May, n=7) and mid-winter (July, n=7) over a range of assay temperatures (10 °C, 15 °C, 20 °C, 25 °C). Body temperatures were either not different from, or higher than expected from a theoretical null-distribution of a randomly moving animal. Field body temperatures at any season were lower, however, than expected from animals that maximised their sun exposure. Turtles maintained constant PFK, LDH and CCO activities in different months, despite body temperature differences of nearly 13.0 °C between March (average daily body temperature=24.4 °C) and July (average=11.4 °C). CS activity did not vary between March and May (average daily body temperature=20.2 °C), but it decreased in July. Thus C. longicollis use a combination of behavioural thermoregulation and biochemical acclimatisation in response to seasonally changing thermal conditions. Ectothermic reptiles were often thought not to acclimatise biochemically, and our results show that behavioural attainment of a preferred body temperature is not mandatory for activity or physiological performance in turtles.Abbreviations CS citrate synthase - CCO cytochrome c oxidase - LDH lactate dehydrogenase - PFK phosphofructokinase Communicated by I.D. Hume  相似文献   

4.
Body temperature of five European hamsters exposed to semi-natural environmental conditions at 47° N in Southern Germany was recorded over a 1.5-year period using intraperitoneal temperature-sensitive radio transmitters. The animals showed pronounced seasonal changes in body weight and reproductive status. Euthermic body temperature changed significantly throughout the year reaching its maximum of 37.9±0.2°C in April and its minimum of 36.1±0.4°C in December. Between November and March the hamsters showed regular bouts of hibernation and a few bouts of shallow torpor. During hibernation body temperature correlated with ambient temperature. Monthly means of body temperature during hibernation were highest in November (7.9±0.8°C) and March (8.2±0.5°C) and lowest in January (4.4±0.7°C). Using periodogram analysis methods, a clear diurnal rhythm of euthermic body temperature could be detected between March and August, whereas no such rhythm could be found during fall and winter. During hibernation bouts, no circadian rhythmicity was evident for body temperature apart from body temperature following ambient temperature with a time lag of 3–5 h. On average, hibernation bouts lasted 104.2±23.8 h with body temperature falling to 6.0±1.7°C. When entering hibernation the animals cooled at a rate of -0.8±0.2°C·h-1; when arousing from hibernation they warmed at a rate of 9.9±2.4°C·h-1. Warming rates were significantly lower in November and December than in January and February, and correlated with ambient temperature (r=-0.46, P<0.01) and hibernating body temperature (r=-0.47, P<0.01). Entry into hibrnation occured mostly in the middle of the night (mean time of day 0148 hours ±3.4 h), while spontaneous arousals were widely scattered across day and night. For all animals regression analysis revealed free-running circadian rhythms for the timing of arousal. These results suggest that entry into hibernation is either induced by environmental effects or by a circadian clock with a period of 24 h, whereas arousal from hibernation is controlled by an endogenous rhythm with a period different from 24 h.Abbreviations bw body weight - CET central European time - T a ambient temperature - T b body temperature - TTL transistor-transistor logic  相似文献   

5.
Sisodia S  Singh BN 《Genetica》2002,114(1):95-102
The genetic response of body size to temperature in the laboratory provides an interesting example of phenotypic plasticity. We found that females of Drosophila ananassae reared to adulthood at 18°C showed significant increase in body weight as compared to females reared at 25°C. At a given temperature, early productivity and lifetime productivity were the highest when the rearing and test temperature were the same. The effect of test temperature was highly significant for total productivity and early productivity. The interaction between test temperature and development temperature was also highly significant. Effect of development temperature was not significant. The females reared at 18°C showed greater body weight but their productivity was not significantly higher than smaller females reared at 25°C. Thus, the usually close relationship between size and fecundity is lost when the size change is due to rearing temperature. These findings provide evidence for adaptive plasticity in D. ananassae. We also found a negative correlation (trade-off) between longevity and productivity, the first report of such a trade-off between longevity and productivity in D. ananassae.  相似文献   

6.
Synopsis Contraction time of an isolated white muscle from the temperate water Girella tricuspidata is proportional to temperature and inversely proportional to fish size. Between ambient (14°C) and 8° C muscle from all sizes of fish is similary affected by temperature; the lower the temperature the more the contraction time is slowed. Below 8° C muscle from large fish is affected more than is muscle from small fish. Contraction time of white muscle in the antarctic notothenioid Pagothenia borchgrevinki is about twice as fast as that of Girella tricuspidata at temperatures between 2–12°C, but at normal body temperature, contraction time of muscle from Girella tricuspidata (14°C) is about twice as fast as that of Pagothenia borchgrevinki (–1.9°C).  相似文献   

7.
Salmon sharks, Lamna ditropis, belong to a small group of sharks that possess vascular counter-current heat exchangers (retia mirabilia) allowing retention of metabolically generated heat, resulting in elevated body temperatures. The capacity of free-swimming lamnid sharks to regulate rates of heat gain and loss has not been demonstrated. Using acoustic telemetry, we recorded swimming depth and stomach temperature from four free-swimming salmon sharks in Prince William Sound, Alaska. Temperature data were obtained over time periods ranging from 3.8 to 20.7 h. Temperature profiles of the water column were obtained concurrently for use as estimates of ambient temperature. Mean stomach temperature among four individuals tracked ranged from 25.0 to 25.7°C. These sharks defended specific elevated temperatures regardless of changes in ambient temperature, which ranged from about 5–16°C. The maximum observed elevation of stomach temperature over ambient was 21.2°C. Because stomach temperatures were so strictly maintained relative to changes in ambient temperature, a thermal rate coefficient, k, (°C min–1 °C thermal gradient–1) for cooling of 0.053 min–1 was obtained via a `control' experiment with a dead salmon shark. We show that free-swimming adult salmon sharks maintain a specific stomach temperature independent of changes in ambient temperature through a combination of physical and physiological means, and essentially function as homeotherms. This unique ability is probably the underlying factor in the evolutionary niche expansion of salmon sharks into boreal waters and in their ability to actively pursue and capture highly active prey such as salmon.  相似文献   

8.
In order to cope with the seasonal variations in ambient temperature and food availability in the natural habitat, gray mouse lemurs (Microcebus murinus) exhibit adaptive energy-saving mechanisms similar to those in hibernating species with seasonal and daily heterothermia. To determine thermoregulatory responses, via telemetry we recorded body temperature and locomotor activity variations during the breeding season in three captive male mouse lemurs kept at ambient temperatures (Ta) ranging from 18° to 34°C. Rhythms in body temperature and locomotor activity were clearly exhibited regardless of ambient temperature. As a increased, mean body temperature increased from 36.5 ± 0.1°C to 37.6 ± 0.3°C, with significant change in the amplitude of the body temperature rhythm when a rose above 28°C. Effects of a were mostly due to changes in the fall in body temperature occurring daily at the beginning of the light phase when the subjects entered diurnal sleep. The daily decrease in body temperature was not modified by exposure to ambient temperatures from 18°C to 28°C whereas it disappeared under warmer condition. Changes in locomotor activity levels only delayed the occurrence of thermoregulatory modulation. These results strongly suggest that, during the breeding season, the thermoneutral zone of mouse lemurs is close to 28°C and that the diurnal fall in body temperature could be considered as an important adaptive energy-saving mechanism adjusted to ecological constraints.  相似文献   

9.
Hibernation in the tropics: lessons from a primate   总被引:7,自引:0,他引:7  
The Malagasy primate Cheirogaleus medius hibernates in tree holes for 7 months, although ambient temperatures during hibernation rise above 30°C in their natural environment. In a field study we show that during hibernation the body temperature of most lemurs fluctuates between about 10°C and 30°C, closely tracking the diurnal fluctuations of ambient temperature passively. These lemurs do not interrupt hibernation by spontaneous arousals, previously thought to be obligatory for all mammalian hibernators. However, some lemurs hibernate in large trees, which provide better thermal insulation. Their body temperature fluctuates only little around 25°C, but they show regular arousals, as known from temperate and arctic hibernators. The results from this study demonstrate that maximum body temperature is a key factor necessitating the occurrence of arousals. Furthermore, we show that hibernation is not necessarily coupled to low body temperature and, therefore, low body temperature should no longer be included in the definition of hibernation.  相似文献   

10.
This report describes thermoregulatory behavior of free-ranging yellow baboons (Papio cynocephalus) in Amboseli, Kenya. While resting in trees during early morning hours, baboons are directly exposed to thermal effects of wind and sun. We hypothesized that these animals would respond to microclimatic changes by altering their posture and body orientatio so as to minimize thermal stress. The results of this study indicate that air temperature, solar radiation, and wind velocity interact in their effect on behavior as predicted by this hypothesis. Specifically, the most salient cue for trunk orientation choice is wind direction, while posture is primarily influenced by air temperature. In sum, our results clearly demonstrate that when baboons are unable to minimize thermal stress by selecting a more favorable microenvironment, they do so by altering their posture.  相似文献   

11.
Endotherms must warm ingested food to body temperature. Food warming costs may be especially high for nectar-feeding birds, which can ingest prodigious volumes. We formulated a mathematical model to predict the cost of warming nectar as a function of nectar temperature and sugar concentration. This model predicts that the cost of warming nectar should: (1) decrease as a power function of nectar concentration, and (2) increase linearly with the difference between body temperature and nectar temperature. We tested our model on rufous hummingbirds (Selasphorus rufus). A typical experiment consisted of feeding birds nectar of a given concentration at 39°C (equivalent to body temperature) and then at 4°C, and vice versa. We used the percentage change in metabolic rate between the two food temperatures to estimate the cost of warming nectar. The model's predictions were accurately met. When birds had to hover rather than perch during feeding bouts, estimated food-warming costs were only slightly lower. The cost of warming nectar to body temperature appears to be an important yet overlooked aspect of the energy budgets of nectar-feeding birds. Hummingbirds feeding on 5% sucrose solutions at 4oC have to increase their metabolic rate by an amount equivalent to that elicited by a 15°C drop in ambient temperature.Abbreviations AE assimilation efficiency - C nectar concentration - H' cost of warming food to body temperature - SDA specific dynamic action - Ta ambient temperature - Tb body temperature - Tn nectar temperatureCommunicated by: G. Heldmaier  相似文献   

12.
Thermoregulatory responses at ambient temperatures of 20 and 10° C in six male subjects wearing two different kinds of clothing were compared between summer and winter. The two different kinds of clothing were one insulating the upper half of the body lightly and the lower half of the body heavily (clothing A, the weight in the upper and lower halves of the body being, respectively, 489 g and 1278 g) and the other insulating the upper half of the body heavily and the lower half of the body lightly (clothing B: 1212 g and 559 g). The major findings are summarized as follow. (i) Rectal temperature was kept significantly higher in clothing B than in clothing A both in summer and winter. (ii) The fall of rectal temperature was significantly greater in summer than in winter in both types of clothing. (iii) Mean skin temperatures and skin temperatures in the face, chest, thigh and leg were significantly lower atT a of 10° C in summer than in winter in clothing A, while skin temperatures in the face and thigh were also significantly lower atT a of 10° C in summer than in winter in clothing B. (iv) Metabolic heat production was higher in summer than in winter at 20 and 10° C in both types of clothing. (v) The subjects felt cooler and colder toT a of 10° C in summer than in winter in both types of clothing. These different responses occurring between summer and winter are discussed mainly in terms of total conductance and dry heat loss.  相似文献   

13.
Summary Thermo sensitive transmitters were used in a study on free-ranging smooth snakes (Coronella austriaca). Except on cold cloudy days, this snake shows a daily tripartite pattern of body temperatures. The pattern consists of a quick rise in body temperature in the morning, a subsequent stable phase during which body temperatures vary between 29 and 33° C, and finally a drop of body temperatures in the evening. The, consistency of the stable phase over the study period indicates that this range represents the thermal preferendum of this species. During the succesive study months a time shift in daily activity pattern was observed.  相似文献   

14.
I aimed to determine when and under which seasonal environmental conditions gray mouse lemurs (Microcebus murinus), a small nocturnal primate species endemic to Madagascar, utilize daily torpor. Using temperature-sensitive radio collars, I measured skin temperature (T sk ) of free-ranging mouse lemurs under natural conditions. My results showed that male and female mouse lemurs in the wild enter torpor spontaneously over a wide range of ambient temperatures (T a ) during the dry season, but not during the rainy season. Mouse lemurs that remained normothermic had significantly lower body masses (mean: 59.7 g) than individuals that used torpor (mean: 80.2 g). Skin temperatures dropped to 20.9°C and the mean torpor bout duration is 10.3 h. The use of torpor on a given night varied among individuals, whereas the propensity for torpor did not differ significantly between males and females. I found no evidence that T a can be used to predict whether mouse lemurs will remain normothermic or enter torpor. It appears that the most reliable indicator for the occurrence of torpor in free-ranging Microcebus murinus is time of the year, i.e., photoperiod.  相似文献   

15.
Body temperature and oxygen consumption were measured in the eastern hedgehog,Erinaceus concolor Martin 1838, during summer at ambient temperatures (T a) between-6.0 and 35.6°C.E. concolor has a relatively low basal metabolic rate (0.422 ml O2·g-1·h-1), amounting to 80% of that predicted from its body mass (822.7 g). Between 26.5 and 1.2°C, the resting metabolic rate increases with decreasing ambient temperature according to the equation: RMR=1.980-0.057T a. The minimal heat transfer coefficient (0.057 ml O2·g-1·h-1·°C-1) is higher than expected in other eutherian mammals, which may result from partial conversion of hair into spines. At lower ambient temperature (from-4.6 to-6.0° C) there is a drop in body temperature (from 35.2 to 31.4° C) and a decrease in oxygen consumption (1.530 ml O2·g-1·h-1) even though the potential thermoregulation capabilities of this species are significantly higher. This is evidenced by the high maximum noradrenaline-induced non-shivering thermogenesis (2.370 ml O2·g-1·h-1), amounting to 124% of the value predicted. The active metabolic rate at ambient temperatures between 31.0 and 14.5° C averages 1.064 ml O2·g-1·h-1; at ambient temperatures between 14.5 and 2.0° C AMR=3.228-0.140T a.Abbreviations AMR active metabolic rate - bm body mass - BMR basal metabolic rate - h heat transfer coefficient - NA noradrenaline - NST non-shivering thermogenesis - NSTmax maximum rate of NA-induced non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - STPD standard temperature and pressure (25°C, 1 ATM) - T a ambient temperature - T b body temperature  相似文献   

16.
Most studies on animal physiology and behaviour are conducted in captivity without verification that data are representative of free-ranging animals. We provide the first quantitative comparison of daily torpor, thermal biology and activity patterns, conducted on two groups of sugar gliders (Petaurus breviceps, Marsupialia) exposed to similar thermal conditions, one in captivity and the other in the field. Our study shows that activity in captive gliders in an outdoor aviary is restricted to the night and largely unaffected by weather, whereas free-ranging gliders omit foraging on cold/wet nights and may also forage in the afternoon. Torpor occurrence in gliders was significantly lower in captivity (8.4% after food deprivation; 1.1% for all observations) than in the field (25.9%), mean torpor bout duration was shorter in captivity (6.9 h) than in the field (13.1 h), and mean body temperatures during torpor were higher in captivity (25.3°C) than in the field (19.6°C). Moreover, normothermic body temperature as a function of air temperature differed between captive and free-ranging gliders, with a >3°C difference at low air temperatures. Our comparison shows that activity patterns, thermal physiology, use of torpor and patterns of torpor may differ substantially between the laboratory and field, and provides further evidence that functional and behavioural data on captive individuals may not necessarily be representative of those living in the wild.  相似文献   

17.
Results of in vitro and in situ experiments on nitrate disappearance from water-sediment systems in the Camargue are described.In the in vitro experiments two factors were studied: temperature and organic matter. After a first addition of KNO3 to these sediments, the concentration of organic matter exerted a strong influence on the disappearance rate of nitrate at 25 °C and 15 °C but not at 2 °C. After a second addition of nitrate at 25 °C and 15 °C the denitrification rate increased by approximately 10%, probably because the activity of the bacterial population had increased.Experiments in situ in freshwater temporary marshes showed that nitrate disappeared at approximately twice the rate at similar temperature in vitro.After the first addition of nitrate in the in vitro experiments the concentration of nitrite in the water above the sediment reached about 10% of the concentration of total dissolved inorganic nitrogen at 2 °C and 15 °C. These high concentrations were not found after the first addition at 25 °C or after the second addition of nitrate at 25 °C and 15 °C. In the in situ experiments, however, high concentrations of nitrite were found.  相似文献   

18.
We investigated the behavioural responses of two gobiid fish species to temperature to determine if differences in behaviour and ventilation rate might explain any apparent vertical zonation. A survey of the shore at Manly, Moreton Bay revealed Favonigobius exquisitus to dominate the lower shore and Pseudogobius sp.4 the upper shore. These species were exposed to a range of temperatures (15–40°C) in aquaria for up to 6 h. At 20 °C F. exquisitus exhibited a mean gill ventilation rate of 26 ± 1.4 bpm (beats per minute) differing significantly from Pseudogobius, which ventilated at a fivefold greater rate of 143 ± 6 bpm. The ventilation rate in F. exquisitus underwent a fivefold increase from normal local water temperature (20 °C) to high temperature (35 °C) conditions, whereas that of Pseudogobius did not even double, suggesting that Pseudogobius sp. is a better thermal regulator than F. exquisitus.While both species emerged from the water at high temperatures (>30 °C) the behaviours they exhibited while immersed at high temperature were quite different. F. exquisitus undertook vertical displacement movements we interpret as an avoidance response, whereas Pseudogobius sp. appeared to use a coping strategy involving movements that might renew the water mass adjacent to its body. The thermal tolerances and behaviours of F. exquisitus and Pseudogobius sp. are in broad agreement with their vertical distribution on the shore.  相似文献   

19.
The aim of this study was to examine to what extent reproductive activity in male edible dormice (Glis glis) might be energetically constrained. Demographic data, morphometric data, and oral body temperature (T or) measurements were collected in two study areas between 1993 and 2002 in southwest Germany and combined with subcutaneous body temperature (T sc) registrations of captive dormice. T sc measurements were collected directly after emergence from hibernation (June) until the end of the mating season (July). Wild edible dormice showed strong fluctuations in their reproductive output between years. Not all males were sexually active each year and the number of litters born was positively correlated with the number of sexually active males, which suggests that sexual activity in males is constrained and in turn limits reproductive success. A comparison of the T or of sexually quiescent and active males revealed that sexually quiescent males had significantly lower T or (median: 28.8°C; 25/75% quartiles: 16.4/31.0; n=31) than sexually active males (median: 34.2°C; 25/75% quartiles: 32.0/35.6; n=156). Body condition of sexually active and quiescent males was not different after emergence from hibernation. However, sexually active males showed a significant reduction in their body condition between June and July, the time of mating, while body condition of sexually quiescent males remained constant. Continuous T sc registrations in captive sexually active male dormice showed strong circadian T sc fluctuations. Even though daily torpor bouts with T sc below 20°C occurred in these males, most of the time T sc fluctuated above 30°C, which is known as the critical body temperature threshold above which testes maturation can take place in this species. These results demonstrate that male dormice incur high costs due to sexual activity and that thermoregulation is determined by a trade-off between energetic savings and reproductive activity.  相似文献   

20.
The effects of different types of clothing on human deep body temperature were studied with six healthy male subjects in a supine posture. Two clothing ensembles were employed for the present study: A covered the whole body area with garments except the face (1.97 clo) and B covered only the trunk and the upper half of the extremities with garments (1.53 clo). The experiment was carried out in a climatic chamber at 55% ± 5% relative humidity under cooling and warming temperatures: the temperature was changed from 22°C to 10°C (cooling) and returned to 22°C again (warming). The major findings were: rectal temperature (T re) continued to decrease gradually in A throughout the experiment, whereas in B it increased during cooling, and returned to previous levels during warming. As a result, Tre and chest skin temperature were maintained at a higher level in B than in A. Internal tissue conductances were greater in A than in B both during cooling and during warming. Thermal comfort appeared to have been influenced more by the rate of skin temperature change than by the level of skin temperature per se. It was concluded that peripheral vasoconstriction in B induced less heat flow from core to shell, and, thus, the core temperature was maintained at a higher level in B than in A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号