首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Gene regulation by steroids is tightly coupled to hormone concentration and stereochemistry. A key step is binding of hormones to receptors which interact with consensus DNA sequences known as hormone response elements (HREs). The specificity and strength of hormone binding do not correlate well with hormonal activity suggesting an additional step involving recognition of ligand by the gene. Stereospecific fit of hormones between base pairs and correlation of fit with hormonal activity led to the proposal that such recognition involves insertion of hormone into DNA. Here, the feasibility of insertion was investigated using computer models of the glucocorticoid receptor DNA binding domain bound to its HRE. The site reported to accommodate glucocorticoids was found in the HRE and was exposed to permit unwinding at this locus. The resulting cavity in the unwound DNA/receptor interface fit cortisol remarkably well; cortisol formed hydrogen bonds to both the receptor and DNA. Current experimental evidence is generally consistent with ligand binding domains of receptors undergoing a conformational change which facilitates transfer of the ligand into the unwound DNA/receptor interface. We propose this step is rate limiting and alterations in receptor, DNA or hormone which attenuate insertion impair hormonal regulation of gene function.  相似文献   

10.
Cellular mechanism of action of thyroid hormones   总被引:4,自引:0,他引:4  
It has emerged in the last decade that the molecular mechanism of action of thyroid hormones resembles that of steroids; thyroid hormones indeed exert their effects mainly by directly regulating gene expression, on association with specific chromatin-bound receptors. Of the two thyroid hormones, thyroxine (T4) appears to be a sort of prohormone, whereas triiodothyronine (T3) seems to be the active form; in this respect, T4-deiodination, which occurs at the level of the target tissues, may be crucial in the local homeostasis of T3. Moreover, many cellular compartments, other than the nucleus, can bind thyroid hormone, and at least some of these further sites might play some role in modulating T3 supply to the nucleus. The binding of the T3-receptor complex to chromatin is likely to regulate the structural organization of specific genes and, in some instances, of the chromatin as a whole.  相似文献   

11.
12.
13.
14.
15.
Conditions have been standardized to maintain rat vaginal epithelial cellsin vitro with more than 95% viability. Cultured epithelial cells were used to study the effects of normal fetal calf scrum, estradiol and progesterone on the incorporation of [3H]-uridine in RNA and incorporation of [14C]-aminoacids in proteins. While fetal calf serum and estradiol stimulate the incorporation of both uridine and afno acids, progesterone did not show any effect. Estradiol treated vaginal cells show typical fcroridges (indicative of keratinization of cells) in contrast to estradiol deprived cells, which show microvilli on cell surface when examined in scanning electron microscope.  相似文献   

16.
17.
Digitalis-like compounds (DLC) are a family of steroid hormones synthesized in and released from the adrenal gland. DLC, the structure of which resembles that of plant cardiac glycosides, bind to and inhibit the activity of the ubiquitous cell surface enzyme Na(+), K(+)-ATPase. However, there is a large body of evidence suggesting that the regulation of ion transport by Na(+), K(+)-ATPase is not the only physiological role of DLC. The binding of DLC to Na(+), K(+)-ATPase induces the activation of various signal transduction cascades that activate changes in intracellular Ca(++) homeostasis, and in specific gene expression. These, in turn, stimulate endocytosis and affect cell growth and proliferation. At the systemic level, DLC were shown to be involved in the regulation of major physiological parameters including water and salt homeostasis, cardiac contractility and rhythm, systemic blood pressure and behavior. Furthermore, the DLC system has been implicated in several pathological conditions, including cardiac arrhythmias, hypertension, cancer and depressive disorders. This review evaluates the evidence for the different aspects of DLC action and delineates open questions in the field.  相似文献   

18.
Geometry of the complex of a steroid hormone, dexamethasone, with a hexanucleotide sequence from the glucocorticoid responsive element d(TGTTCT)2, is optimised here using computer aided geometry simulation with an energy minimization technique. We have also optimised its geometries with genetically modified and arbitrarily chosen DNA sequences. The drug molecule is considered to have both intercalative as well as non-intercalative binding. Comparison of energetics and stereochemical aspects, as well as the H-bonding scheme, is used here to bring out salient features about the mechanism of DNA sequence recognition by steroid hormones.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号