首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The cup-shaped adhesive papillae of Distaplia occidentalis evert at the onset of metamorphosis and each transforms into a hyperboloidal configuration. The rate of transformation is a function of temperature. At 14° C complete eversion takes about 30 seconds. Myoepithelial cells that extend from the rim to the base on the cup contract. Simultaneously the central part of the papilla advances 60–70 m. During the last phases of eversion, collocytes (cells that secrete adhesives) on the inner wall of the cup and on the sides of the axial protrusion flow outward and form a collar-like structure.The myoepithelial cells contain arrays of thick and thin filaments. These become compacted during contraction. The surfaces of these cells become extensively folded as they shorten to about 1/3 of rest length. According to the proposed model the myoepithelial cells are the driving force in papillary eversion.Immediately after eversion is completed the papillae begin to retract. Eversion of the papillae is not inhibited by cytochalasin B, but the process of retraction is reversibly inhibited.Some histological characteristics of five types of everting papillae in four families of ascidians are compared.  相似文献   

2.
The ventral sucker of Schistosoma mansoni cercaria is a cupshaped structure that is attached to the ventral surface of the organism by a homogeneous connective tissue that surrounds the acetabular glands. The sucker consists of an extensive complex of circular and longitudinal muscles. The longitudinal muscles extend outwoard in a radial pattern to form the cup of the organ. Intermingled with the muscles are nerve bundles and subtegumental cells (cytons). Dendritic nerve fibers connect to sensory papillae which are found on the surface tegument. Two types of sensory papillae are present: a commonly found unsheathed uniciliated papilla, and a previously unidentified tegumental encapsulated structure. Tegument with spines covers the ventral sucker, although the tegumental encapsulated sensory papilla lacks spines. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The swimming larvae of most solitary ascidians belonging to the Ascidiidae family bear three anterior, simple conic adhesive papillae. They secrete adhesive substances that are used to effect transitory settlement at the beginning of the metamorphosis.The adhesive papillae of newly hatched Phallusia mamillata larvae examined by the SEM are covered by the tunic. When the larvae are about to settle, the tunic becomes fenestrated over the central part of the papilla and bulb-ended microvilli protrude through the holes. These papillae have two types of elongated cells: many peripheral cells and few larger central cells with microvilli and bundles of microtubules oriented along the major axis of the cells.We have done immunofluorescence experiments with an anti-beta-tubulin monoclonal antibody (clone 2-28-33) reacting with axonal microtubules. Only the central cells of the papillae were stained and the axons appeared to arise from the proximal ends of these cells. These axons form a long nerve that reaches the brain vesicle. Branches of the same nerve appear to connect to the basal ends of the peripheral cells. By confocal laser microscopy we were able to follow the course of the papillary nerve. The two nerves connecting the dorsal papillae fuse together into a single nerve that runs posteriorly. The nerve connecting the ventral papilla runs posteriorly for a long tract before fusing with the nerve of the dorsal papillae just near the brain.The reported observations raise the hypothesis that the central cells of the adhesive papillae might be primary sensory neurons and that they may have chemosensory function.  相似文献   

4.
The attachment complex of brachiolaria larvae of the asteroid Asterias rubens comprises three brachiolar arms and an adhesive disc located on the preoral lobe. The former are used in temporary attachment and sensory testing of the substratum, whereas the latter is used for permanent fixation to the substratum at the onset of metamorphosis. Brachiolar arms are hollow structures consisting of an extensible stem tipped by a crown of dome-like ciliated papillae. The papilla epidermis is composed of secretory cells (type A, B and C cells), non-secretory ciliated cells, neurosecretory-like cells and support cells. Type A and B secretory cells fill a large part of the papilla epidermis and are always closely associated. They presumably form a duo-gland adhesive system in which type A and B cells are respectively adhesive and de-adhesive in function. The adhesive disc is an epidermal structure mainly composed of secretory cells and support cells. Secretory cells produce the cement, which anchor the metamorphic larva to the substratum until the podia are developed. The relatedness between the composition of the adhesive material in the brachiolaria attachment complex and in the podia of adults was investigated by immunocytochemistry using antibodies raised against podial adhesive secretions of A. rubens. Type A secretory cells were the only immunolabelled cells indicating that their temporary adhesive shares common epitopes with the one of podia. The attachment pattern displayed by the individuals of A. rubens during the perimetamorphic period—temporary, permanent, temporary—is unique among marine non-vertebrate Metazoa.  相似文献   

5.
The amphibian tongue contains two types of papilla which are believed to function in gustation and in the secretion of salivary fluid. Scanning electron microscopy reveals that columnar, filiform papillae are compactly distributed over nearly the entire dorsal surface of the tongue of the frog, Rana cancrivora, and fungiform papillae are scattered among the filiform papillae. Microridges and microvilli are distributed on the epithelial cell surface of the extensive area of the filiform papillae. Light microscopy shows that the apex of each filiform papilla is composed of stratified columnar and/or cuboidal epithelium and its base is composed of simple columnar epithelium. Transmission electron microscopy reveals that most of the epithelium of the filiform papillae is composed of cells that contain numerous round electron-dense granules 1–3 μm in diameter. Cellular interdigitation is well developed between adjacent cells. On the free-surface of epithelial cells, microridges or microvilli are frequently seen. Between these granular cells, a small number of ciliated cells, mitochondria-rich cells and electron-lucent cells are inserted. In some cases, electron-dense granules are present in the ciliated cells. At higher magnification, the electron-dense granules appear to be covered with patterns of spots and tubules. Overall, the morphology and ultrastructure of the lingual epithelium of the three species of Rana that have been studied are quite similar, but they can be easily distinguished from those of Bufo japonicus. Therefore, it appears that lingual morphology is phylogenetically constrained among members of the predominantly freshwater genus Rana to produce uniformity of papillary structure and this morphology persists in Rana cancrivora despite the distinct saline environment in which it lives. © 1993 Wiley-Liss, Inc.  相似文献   

6.
The taste disc of the red-bellied toad Bombina orientalis (Discoglossidae) has been investigated by light and electron microscopy and compared with that of Rana pipiens (Ranidae). Unlike the frog, B. orientalis possesses a disc-shaped tongue that cannot be ejected for capture of prey. The taste discs are located on the top of fungiform papillae. They are smaller than those in Ranidae, and are not surrounded by a ring of ciliated cells. Ultrastructurally, five types of cells can be identified (mucus cells, wing cells, sensory cells, and both Merkel cell-like basal cells and undifferentiated basal cells). Mucus cells are the main secretory cells of the taste disc and occupy most of the surface area. Their basal processes do not synapse on nerve fibers. Wing cells have sheet-like apical processes and envelop the mucus cells. They contain lysosomes and multivesicular bodies. Two types of sensory cells reach the surface of the taste disc; apically, they are distinguished by either a brush-like arrangement of microvilli or a rod-like protrusion. They are invaginated into lateral folds of mucus cells and wing cells. In contrast to the situation in R. pipiens, sensory cells of B. orientalis do not contain dark secretory granules in the perinuclear region. Synaptic connections occur between sensory cells (presynaptic sites) and nerve fibers. Merkel cell-like basal cells do not synapse onto sensory cells, but synapse-like connections exist between Merkel cell-like basal cells (presynaptic site) and nerve fibers.  相似文献   

7.
Summary The dorsal integument of the girdle of the chiton Mopalia muscosa is covered by a chitinous cuticle about 0.1 mm in thickness. Within the cuticle are fusiform spicules composed of a central mass of pigment granules surrounded by a layer of calcium carbonate crystals. Tapered, curved chitinous hairs with a groove on the mesial surface pass through the cuticle and protrude above the surface. The spicules are produced by specialized groups of epidermal cells called spiniferous papillae and the hairs are produced by trichogenous papillae. Processes of pigment cells containing green granules are scattered among the cells of each type of papilla and among the common epidermal cells.The wall or cortex of each hair is composed of two layers. The cortex surrounds a central medulla that contains matrix material of low density and from 1 to 20 axial bundles of dendrites. The number of bundles within the medulla varies with the size of the hair. Each bundle contains from 1 to 25 dendrites ensheathed by processes of supporting cells. The dendrites and supporting sheath arise from epidermal cells of the central part of the papilla. At the base of each trichogenous papilla are several nerves that pass into the dermis. Two questions remain unresolved. The function of the hairs is unknown, and we have not determined whether the sensory cells are primary sensory neurons or secondary sensory cells.  相似文献   

8.
The stigma papillae in Gladiolus are of the “dry” type and are highly vacuolated cells with an organelle-rich peripheral cytoplasm. The cell wall of each papilla is overlain by a distinctive cuticle possessing an irregularly scalloped inner margin. Between the cell wall and cuticle is a layer of amorphous sub-cuticular material. Lipids are detected on the papilla surface. A pollen grain will hydrate and germinate only on a papilla and not on any other (non-papillate) portion of the stigma. The pollen tube penetrates the papilla cuticle, which is forced away from the papilla cell wall by sub-cuticular pollen tube growth. As the cuticle lifts away, the sub-cuticular material disperses. At the base of the papilla, the pollen tube grows onto the adaxial non-papillate surface of the stigma lobe. At this site, the cuticle has been lifted away from the underlying cells by release of a mucilaginous substance from the latter, and the pollen tube grows within this substance beneath the detached cuticle. The cytological features of Gladiolus papillae are compared with other stigma papillae described in the literature. Also, a review of the literature, as well as some of the findings of the present study, suggest that certain prevalent interpretations of dry stigma structure and function may be open to question.  相似文献   

9.
A major component of cephalopod adaptive camouflage behavior has rarely been studied: their ability to change the three‐dimensionality of their skin by morphing their malleable dermal papillae. Recent work has established that simple, conical papillae in cuttlefish (Sepia officinalis) function as muscular hydrostats; that is, the muscles that extend a papilla also provide its structural support. We used brightfield and scanning electron microscopy to investigate and compare the functional morphology of nine types of papillae of different shapes, sizes and complexity in six species: S. officinalis small dorsal papillae, Octopus vulgaris small dorsal and ventral eye papillae, Macrotritopus defilippi dorsal eye papillae, Abdopus aculeatus major mantle papillae, O. bimaculoides arm, minor mantle, and dorsal eye papillae, and S. apama face ridge papillae. Most papillae have two sets of muscles responsible for extension: circular dermal erector muscles arranged in a concentric pattern to lift the papilla away from the body surface and horizontal dermal erector muscles to pull the papilla's perimeter toward its core and determine shape. A third set of muscles, retractors, appears to be responsible for pulling a papilla's apex down toward the body surface while stretching out its base. Connective tissue infiltrated with mucopolysaccharides assists with structural support. S. apama face ridge papillae are different: the contraction of erector muscles perpendicular to the ridge causes overlying tissues to buckle. In this case, mucopolysaccharide‐rich connective tissue provides structural support. These six species possess changeable papillae that are diverse in size and shape, yet with one exception they share somewhat similar functional morphologies. Future research on papilla morphology, biomechanics and neural control in the many unexamined species of octopus and cuttlefish may uncover new principles of actuation in soft, flexible tissue. J. Morphol. 275:371–390, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
The papillae basilares of 12 species of lizards from seven different families were studied by SEM. The iguanids, Sceloporus magister and S. occidentalis, have typical “iguanid type” papillae with central short-ciliated unidirectional hair cell segments and apical and basal long-ciliated bidirectional hair cell segments. These species of Sceloporus are unique among iguanids in that the bidirectional segments consist of but two rows of hair cells. The agamids, Agama agama and Calotes nigrolabius, have an “agamid-anguid type” papilla consisting of an apical short-ciliated unidirectional hair cell segment and a longer basal bidirectional segment. Agama agama is unusual in having a few long-ciliated hair cells at the apical end of the apical short-ciliated segment. The agamid, Uromastix sp., has an “iguanid type” papilla with a central short-ciliated unidirectional segment and apical and basal bidirectional segments. The anguid, Ophisaurus ventralis, has an “iguanid” papillar pattern with the short-ciliated segment centrally located. All the short-ciliated hair cells of the above species are covered by a limbus-attached tectorial network or cap and the long-ciliated hair cells, only by loose tectorial strands. The lacertids, Lacerta viridis and L. galloti, have papillae divided into two separate segments. The shorter apical segment consists of opposingly oriented, widely separated short-ciliated cells covered by a heavy tectorial membrane. The apical portion of the longer basal segment consists of unidirectionally oriented hair cells, while the greater part of the segment has opposingly oriented hair cells. The xantusiids, Xantusia vigilis and X. henshawi, have papillae made up of separate small apical segments and elongated basal segments. The apical hair cells are largely, but not exclusively, unidirectional and are covered by a heavy tectorial cap. The basal strip is bidirectional and the hair cells are covered by sallets. The kinocilial heads are arrowhead-shaped. The papilla of the cordylid, Cordylus jonesii, is very similar to that of Xantusia except that the apical segment is not completely separated from the basal strip. The papilla of the Varanus bengalensis is divided into a shorter apical and a longer basal segment. The hair cells of the entire apical and the basal three quarters of the basal segment are opposingly oriented, not with reference to the midpapillary axis but randomly to either the neural or abneural direction. The apical quarter of the basal segment contains unidirectional, abneurally oriented hair cells. The entire papilla is covered by a dense tectorial membrane. The functional correlations of the above structural variables are discussed.  相似文献   

11.
Spermiogenesis in an iceryine coccid,Steatococcus tuberculatus morrison   总被引:2,自引:0,他引:2  
The spermatozoon of Steatococcus is a motile filament containing a core of two chromosomes arranged in tandem and surrounded by more than 80 microtubules in 2 1/2 concentric rings. Two sperm develop from each binucleate spermatid in the form of long papillae. From the zone corresponding to the pole of the previous division microtubules appear and lengthen, assembly apparently occurring at their proximal undifferentiated ends. As they extend, they presumably push out the cytoplasmic papilla and co-extend a nuclear papilla through bridges with the nuclear envelope. Chromatin, attached to the envelope, is thus carried into the papilla, the shorter chromosome in the lead. 100 Å chromatin filaments are reduced to 20 Å and aligned as they enter the papilla. The filaments transform into 100 Å tubular fibrils, presumably by supercoiling. These then pack hexagonally, aggregate further into packed axial filaments, and finally condense into a nearly solid core in the mature sperm. Completed papillae (sperm) detach from the spermatid leaving behind nuclei devoid of chromatin. Following cycles of spiralization and despiralization, the sperm are bundled into hexagonal packs of 32 in register by cyst wall cells. The latter form primary and secondary sheaths and lay down a matrix within the bundle. As originally reported by Hughes Schrader (1946), no evidence of centriole, acrosome, mitochondrial derivative or structure suggesting flagellar axoneme is found in either the developing papilla or the mature sperm. The microtubules determine the axis of the developing sperm; polarity is set by the direction of sperm motion and is homologous with most flagellate sperm in that the nuclear material is anterior and the microtubule initiating center is posterior. All of the functions attributed to microtubules are manifest in differentiation of this sperm: extension, support, translocation and motility.This paper is affectionately dedicated to Professor Sally Hughes-Schrader on the occasion of her seventy-fifth birthday, with warm appreciation of her friendship, her exemplary science, her keen criticism, her contagious enthusiasm, and for leading me to Steatococcus.  相似文献   

12.
The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions.  相似文献   

13.
Eyes of early embryonic chicks possess 14 scleral papillae, derived from the conjuctival epithelium and present as transient structures between seven and 11 days of incubation. These papillae induce the formation of the 14 scleral ossicles, which develop in the adjacent, neural crest-derived ectomesenchyme. Each papilla undergoes a predictable series of developmental changes, divided by Murrary ('43) into six morphological stages (M stages 1–6). We have confirmed his staging, and provide a scanning electron microscopic (SEM) evaluation of papilla development. The earliest stage that can be visualized with the S.E.M. is M stage 2. We describe the initial modifications of the surface of papilla cells, the presence of large microvilli and the asymmetrical morphogenesis and growth of the papillae. Papillae are shed by a mechanism that involves elongation of the cells at the base of the papilla. Such moribund papillae consist of necrotic cells coated with fibers.  相似文献   

14.
15.
The mouth apparatus in Branchiobdella pentodonta was studied by electron microscopy. The opening is situated dorsal to the adhesive disk of the anterior sucker and is surrounded by a ring of 16 papillae. The papillae have mono-layered epithelium, muscle fibers, glandular processes, and taste and olfactory organs like “sensitive buttons.” The oral cavity contains jaws with horny teeth and “sensitive buttons,” and is surrounded by a ring of circular muscle fibers that connect to the muscle fiber of the papillae. This apparatus shows some analogies to that of Hirudinea, such as the presence of sucker and jaws with horny teeth.  相似文献   

16.
Summary The inner ears of representatives of all six gymnophionan families, as well as an ontogenetic series of one species, were studied in order to understand the origin and changes of the amphibian and basilar papillae. The amphibian papilla is in close proximity to the papilla neglecta in some adult gymnophionans. During ontogeny, both epithelia are adherent before they are separated by the formation of the utriculosaccular foramen. The nerve fibers to both epithelia run together, and both epithelia show a comparable variation in size and position among amphibians (amphibian papilla) and among vertebrates (papilla neglecta). Based on these arguments we propose that the amphibian papilla is a translocation of a part of the papilla neglecta specific to amphibians. Present in all primitive gymnophionans, the basilar papilla is lost in all derived gymnophionans. In contrast to anurans, but similar to some urodeles, amniotes, and Latimeria, the basilar papilla rests partly on a basilar membrane. Because of similarities in structure, topology, and innervation, the basilar papilla is suggested to be homologous in Latimeria and tetrapods. The structural differences of most amphibian basilar papillae, compared to those of amniotes and Latimeria, may be due to the different course of the periotic system and the formation of a basilar papillar recess rather than to a separate evolution of this epithelium. In addition to loss of the basilar papilla, some derived gymnophionans have lost the lagena, presumably independently, and the amphibian papilla is extremely reduced in the only genus without a stapes (Scolecomorphus). The papilla neglecta is, for unknown functional reasons, relatively large in aquatic gymnophionans, whereas it is almost lost in some thoroughly terrestrial gymnophionans. The regressive changes in the inner ear are not reflected in obvious changes in the pattern of eighth nerve projection. However, there is a rearrangement of cell masses in the rhombencephalic alar plate of derived gymnophionans, which may be related to the partial or complete loss of lateral line afferents. We propose that the presence of a basilar papilla is a synapomorphy of tetrapods and Latimeria, that the translocation of the papilla neglecta is related to the unique course of the amphibian periotic canal, and that regressive changes in the inner ear are related to the primitive absence of a tympanic ear.  相似文献   

17.
Lens-shaped wall papillae, resembling those known to form in response to fungi or mechanical damage, occur in root epidermal cells of axenically grown seedlings of Zea mays. Papillae are most common in the tabular epidermal cells but also occur in younger cells. Not all tabular cells have papillae, and they are more frequent in some seedlings. Where present, there is usually only one papilla per cell and it lies against the outer periclinal wall just proximal to an emerged root hair or near the position where a hair would be expected to form. Electron micrographs show that a papilla is structurally heterogeneous. Papillae fluoresce strongly in the presence of aniline blue even in freeze-substituted material.  相似文献   

18.
Immunoreactivity to neuron-specific enolase (NSE), a specific neuronal marker, and calcitonin gene-related peptide (CGRP) was localized in lingual taste papillae in the pigs. Sequential staining for NSE and CGRP by an elution technique allowed the identification of neuronal subpopulations. NSE-staining revealed a large neuronal network within the subepithelial layer of all taste papillae. NSE-positive fibers then penetrated the epithelium as isolated fibers, primarily in the foliate and circumvallate papillae, or as brush-shaped units formed by a multitude of fibers, especially in the fungiform papillae and in the apical epithelium of the circumvallate papilla. Taste buds of any type of taste papillae were found to express a dense subgemmal/intragemmal NSE-positive neuronal network. CGRP-positive nerve fibers were numerous in the subepithelial layer of all three types of taste papillae. In the foliate and circumvallate papillae, these fibers penetrated the epithelium to form extragemmal and intragemmal fibers, while in the fungiforms, they concentrated almost exclusively in the taste buds as intragemmal nerve fibers. Intragemmal NSE- and CGRP-positive fiber populations were not readily distinguishable by typical neural swellings as previously observed in the rat. The NSE-positive neuronal extragemmal brushes never expressed any CGRP-like immunoreactivity. Even more surprising, fungiform taste buds, whether richly innervated by or devoid of NSE-positive intragemmal fibers, always harboured numerous intragemmal CGRP-positive fibers. Consequently, NSE is not a general neuronal marker in porcine taste papillae. Our observations also suggest that subgemmal/intragemmal NSE-positive fibers are actively involved in synaptogenesis within taste buds. NSE-positive taste bud cells were found in all three types of taste papillae. CGRP-positive taste bud cells were never observed.  相似文献   

19.
The pyloric region of Eosentomon and Acerentomon (Insecta, Protura) is described. In both species the posterior cells of the midgut carry short microvilli. Beneath the epithelial cells there is a muscular pyloric sphincter for closing the intestinal lumen. Behind the sphincter is a wide pyloric chamber lined by cells with very long microvilli which point anteriorly toward the midgut. These cells regulate the passage of the intestinal contents into the hindgut. Secretions from the Malpighian papillae are emitted into the gut at this level. In Eosentomon three regions (R1, R2 and R3) are visible in the Malpighian papillae, whereas in Acerentomon region R1 is lacking. The R1 region contains secretory cells with elaborate glycoprotein-containing granules. The R2 region is composed of cells somewhat resembling the secretory cells of Malpighian tubules of insects. Presumably R1 and R2 cells emit secretions into the central cavity of each papilla. Cells of R3 form a duct for the secretion. It is suggested that the R2 region represents a basic excretory region, common to Protura, whereas the R1 region, in Eosentomon, may be a specialized area performing supplementary excretory functions.  相似文献   

20.
The structure of the brachiolar arms and adhesive disk of the brachiolaria larvae of Stichaster australis (Verrill) and Coscinasterias calamaria (Gray) was determined from light microscopy and from scanning and transmission electron microscopy. The structure of these organs was very similar in both species.The brachiolar arms are comprised of a stem region terminating in a crown of adhesive papillae which are made up of a variety of secretory cell types. Principal among these are elongated cells producing very electron-dense secretory particles, which are released at the free cell surface attached to cilia. Secretory particles appear to be important in temporary attachment of the brachiolar arms to the substratum. Ciliary sense cells, possibly used in the recognition of specific substrata are located at the tip of adhesive papillae.The adhesive disk is comprised of large cells packed with secretory droplets and elongated intracellular fibres. In the attached adhesive disk, secretory droplets are lost, having formed the cement that attaches the disk to the substratum. It appears that adhesive papillae lateral to the adhesive disk hold the disk in position close to the substratum during secretion and hardening of the cement. The intracellular fibres are the principal anchoring structures running from microvilli (locked into the attachment cement) on the surface of the disk to the underlying connective tissue of the attachment stalk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号