首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine distinct monoclonal antibodies raised against purified rat liver cytochrome P-450c react with six different epitopes on the antigen, and one of these epitopes is shared by cytochrome P-450d. None of these monoclonal antibodies recognize seven other purified rat liver isozymes (cytochromes P-450a, b, and e-i) or other proteins in the cytochrome P-450 region of "Western blots" of liver microsomes. Each of the monoclonal antibodies was used to probe "Western blots" of liver microsomes from untreated, or 3-methylcholanthrene-, or isosafrole-treated animals to determine if laboratory animals other than rats possess isozymes immunochemically related to cytochromes P-450c and P-450d. Two protein-staining bands immunorelated to cytochromes P-450c and P-450d were observed in all animals treated with 3-methylcholanthrene (rabbit, hamster, guinea pig, and C57BL/6J mouse) except the DBA/2J mouse, where no polypeptide immunorelated to cytochrome P-450c was detected. The conservation of the number of rat cytochrome P-450c epitopes among these species varied from as few as two (guinea pig) to as many as five epitopes (C57BL/6J mouse and rabbit). The relative mobility in sodium dodecyl sulfate-gels of polypeptides immunorelated to cytochromes P-450c and P-450d was similar in all species examined except the guinea pig, where the polypeptide related to cytochrome P-450c had a smaller Mr than cytochrome P-450d. With the use of both monoclonal and polyclonal antibodies, we were able to establish that purified rabbit cytochromes P-450 LM4 and P-450 LM6 are immunorelated to rat cytochromes P-450d and P-450c, respectively.  相似文献   

2.
A procedure for the preparation of monospecific antibody directed against rat liver microsomal cytochrome P-45-a is described. This antibody, together with monospecific antibodies to cytochromes P-450b and P-450c, has been used to show that these three forms of cytochrome P-450 are distinct and share no common antigenic determinants. These antibodies (a) give single immunoprecipitin bands with detergent-solubilized microsomes; (b) do not cross-react with the purified heterologous antigens in Ouchterlony double diffusion analyses; (c) have no effect on catalytic activity of the heterologous antigens but completely inhibit the enzymatic activity of the homologous antigens; and (d) remove only the homologous antigen from detergent-solubilized microsomes when covalently bound to a solid support. With radial immunodiffusion assay, we have quantitated these three forms of cytochrome P-450 in liver microsomes after treatment of rats with seven different inducers of cytochrome P-450. The levels of these cytochrome P-450 isozymes vary independently and are also regulated by the age and sex of the animal. The antibodies have also been used to assess the contribution of cytochromes P-450a, P-450b, and P-450c in the metabolism of xenobiotics by rat liver microsomes. A large proportion of benzo(a)pyrene metabolism and testosterone 16 alpha-hydroxylation in microsomes from untreated rats is not catalyzed by cytochromes P-450a, P-450b, and P-450c. Epoxide hydrolase, another microsomal enzyme involved in the metabolism of xenobiotics, was also quantitated by radial immunodiffusion after prior treatment of rats with microsomal enzyme inducers. The inductions of epoxide hydrolase varies independently of the induction of cytochromes P-450a, P-450b, and P-450c.  相似文献   

3.
Monoclonal antibodies (MAbs) to rat liver cytochromes P-450 have previously been used for successful immunopurification of cytochromes P-450 from animal tissues. We now report application of this MAb-based immunopurification technique to the human lymphoblastoid AHH-1 cell line. Immunopurification carried out with 3 different MAbs each yielded a 45-kDa polypeptide. The purified protein contains an MAb-specific epitope present on cytochromes P-450, and may therefore be a human cytochrome P-450.  相似文献   

4.
Two constitutive forms of cytochrome P-450 isozyme were isolated from microsomes prepared from a single bovine liver. The two highly purified isozymes were electrophoretically homogeneous on SDS-polyacrylamide gel and their apparent minimum molecular weights were estimated to be 50 000 and 55 000. The isozyme of smaller molecular weight, designated cytochrome P-450A, and the one of large molecular weight, designated cytochrome P-450B, were distinct proteins by the criteria, SDS-polyacrylamide gel electrophoresis, peptide maps, amino acid contents. To reveal the immunochemical relation between these two isozymes, antibodies to each isozyme was raised in rabbit. Antibodies to cytochrome P-450A gave a single precipitin line against its antigen in Ouchterlony double-diffusion plates, but did not cross-react against cytochrome P-450B. On the other hand, antibodies to cytochrome P-450B formed a single precipitin line with its antigen and did not show any cross-reactivity against cytochrome P-450B. These results indicate that two isozymes are immunochemically distinct. This conclusion was supported by the results from immunochemical staining of the SDS-polyacrylamide gel electrophoretogram of the purified isozymes and detergent-solubilized bovine liver microsomes transferred to the nitrocellulose sheet. Both cytochromes P-450 showed high catalytic activities toward (+)-benzphetamine and aminopyrine in reconstituted systems, indicating that both enzymes have a high turnover number for N-demethylation.  相似文献   

5.
The cytochrome P-450 isoforms have been studied in liver microsomes of some fish species from Lake Baikal. Using the inhibitory analysis of microsomal monooxygenase activities carried out by the specific polyclonal antibodies it has been shown that 3-methylcholanthrene, beta-naphthoflavone and arochlor 1254 induce isoforms immunologically related to cytochrome P-488c but not to the rat cytochrome P-450b in fish liver microsomes. The immunologic identity in isoforms of fish and rat cytochromes induced by methylcholanthrene has not been revealed. A possibility to use the method of the inhibitory analysis of fish microsomal activities by specific antibodies to the rat cytochrome P-450 isoforms for biomonitoring and biotesting of polycyclic hydrocarbons and polychlorinated biphenyls in aquatic systems is discussed.  相似文献   

6.
Treatment of rats with 3-methylcholanthrene leads not only to a marked accumulation in the liver of translatable mRNA coding for a 56-kilodalton polypeptide representing cytochrome P-450c, the major 3-methylcholanthrene-induced cytochrome P-450 of rat liver, but also to the accumulation of comparable amounts of mRNA encoding a 52-kilodalton polypeptide which is immunoprecipitated with antibodies prepared against rat liver cytochrome P-450c. Further electrophoretic and immunochemical characterization of the latter translation product demonstrates that it corresponds to cytochrome P-450d, the major isosafrole-induced form of rat liver cytochrome P-450. The mRNAs for cytochromes P-450c and P-450d can be completely separated by electrophoresis in denaturing agarose gels and have chain lengths of approximately 4000 and 2000 nucleotides, respectively. These two mRNAs do not show detectable sequence homology to the mRNAs coding for the major phenobarbital-induced forms of cytochrome P-450 (P-450b and P-450e) since in Northern blotting experiments they fail to hybridize under conditions of low to moderate stringency to cloned probes for the latter mRNAs.  相似文献   

7.
1- Anti-liver/kidney microsome autoantibodies type 1 (anti-LKM1), observed in some children with chronic active hepatitis, were used to isolate their antigen in human liver microsomes. A protein, called P-LKM1 was thus purified. This protein was recognized by a rabbit antiserum directed against the related human cytochromes P-450 bufI and P-450 bufII. 2- A human liver microsomal protein immunoprecipitated with anti-LKM1 sera was also recognized by anti cytochromes P-450 bufI/II antibodies. 3- Anti-LKM1 antibodies potently inhibited microsomal bufuralol 1'-hydroxylation. These results displayed the possible identity between cytochrome P-450 bufI/II and LKM1 antigen.  相似文献   

8.
Polyclonal antibody has been shown previously to react identically with cytochromes P-450b and P-450e purified from Long Evans rats and a strain variant of cytochrome P-450b purified from Holtzman rats (P-450bH). In the present study, an array of 12 different monoclonal antibodies produced against cytochrome P-450b has been used to distinguish among these closely related phenobarbital-inducible rat hepatic cytochromes P-450. In immunoblots and enzyme-linked immunosorbent assays, 10 monoclonal antibodies bind to cytochromes P-450b, P-450e, and P-450bH; one monoclonal antibody (B50) recognizes cytochromes P-450b and P-450bH but not cytochrome P-450e; and one monoclonal antibody (B51) is specific for cytochrome P-450b. In addition, one monoclonal antibody (BEF29) reacts strongly with cytochrome P-450f, and another antibody (BEA33) reacts weakly with cytochrome P-450a. No cross-reactions with cytochromes P-450c, P-450d, and P-450g-P-450j were detected with any of the monoclonal antibodies in these assays. Six spatially distinct epitopes on cytochrome P-450b were identified, and differences in antibody reactivity provided evidence for three additional overlapping epitopes. Several monoclonal antibodies are potent inhibitors of testosterone and benzphetamine metabolism supported by cytochrome P-450b in a reconstituted system. B50 and BE52 do not inhibit metabolism of the two substrates by microsomes from untreated rats, but inhibit benzphetamine N-demethylation and testosterone metabolism to 16 alpha- and 16 beta-hydroxytestosterone as well as androstenedione formation 67-94% by microsomes from phenobarbital-treated rats. No other pathways of testosterone metabolism are inhibited by these monoclonal antibodies. The differential inhibition of microsomal metabolism of benzphetamine and testosterone by these monoclonal antibodies is a reflection of the content and inducibility of cytochromes P-450b and P-450e as well as other cytochrome P-450 isozymes.  相似文献   

9.
Induction of perfluorodecalin (PFD) of the liver microsomal system of metabolism of xenobiotics has been studied and compared with the inductions by phenobarbital (PB) and 3-methylcholanthrene (MC). It has been shown that PFD increases the content of cytochrome P-450, NADPH-cytochrome c reductase activity. Like PB, PFD induces the activities of benzphetamine-N-demethylase, aldrine-epoxidase, 16 beta-androstendion-hydroxylase. Using specific antibodies against cytochromes P-450b and P-450c (which are the main isoenzymes of cytochrome P-450 in the PB- and MC-microsomes respectively), an immunological identity of the cytochrome P-450 isoforms during PFD and PB induction has been found. According to the rocket immunoelectrophoresis the content of cytochrome P-450 in PFD-microsomes, which is immunologically indistinguishable from P-450b, was approximately 70% of the total cytochrome P-450. Two forms of cytochrome P-450 were isolated from the liver microsomes of PFD-induced rats and purified to homogeneity. A comparison of these forms with cytochromes P-450b and P-450e obtained from the PB-induced rat liver microsomes revealed their similarity in a number of properties, e.g., chromotographic behavior on DEAE-Sephacel column, molecular weight determined by sodium dodecyl sulphate (SDS) electrophoresis in polyacrylamide gel, immunoreactivity, peptide mapping, catalytic activity. The data presented demonstrate that PFD induced in rat liver microsomes the cytochrome P-450 forms whose immunological properties and substrate specificity correspond to those of the PB-type cytochrome P-450. These findings suggest that PFD and PB, which differ in their chemical structure, induce in the rat liver microsomes identical forms of cytochrome P-450.  相似文献   

10.
Antibodies produced against two forms of cytochrome P-450, PB-B and MC-B, which were purified to apparent homogeneity from hepatic microsomes of rats pretreated with phenobarbital and 3-methylcholanthrene, respectively, have been employed to localize these hemoproteins immunohistochemically at the light microscopic level in the livers of untreated rats. Using these antibodies in an unlabeled antibody peroxidase-antiperoxidase technique, immunohistochemical staining for the cytochromes P-450 was detected in parenchymal cells throughout the liver lobule. The patterns of immunohistochemical staining intensity observed with the two antibodies, however, were quite different. Exposure of liver sections to the antibody to cytochrome P-450 PB-B resulted in intense immunostaining within the centrilobular regions but produced staining of considerably weaker intensity in the peripheral regions of the lobule. In contrast to these observations, the antibody to cytochrome P-450 MC-B yielded a more uniform pattern of immunohistochemical staining, with the intensity of staining being only slightly greater in the centrilobular regions. The results of this immunohistochemical study thus demonstrate that different patterns of distribution exist for different forms of cytochrome P-450 within the liver lobule and that the greatest concentration of cytochrome P-450 occurs within the centrilobular regions of the liver.  相似文献   

11.
Cytochrome P-450 is the terminal oxidase of an electron transport system that is responsible for the oxidative metabolism of a large variety of endogenous and exogenous compounds. This broad substrate selectivity is caused by multiple isozymes of cytochrome P-450 and the wide substrate selectivity of many of these isozymes. We have isolated 11 isozymes of cytochrome P-450 from the livers of rats (cytochromes P-450a-P-450k). We have found both polyclonal and monoclonal antibodies increasingly useful to distinguish among these isozymes and to quantitate enzyme levels in liver microsomal preparations where as many as 15 or more cytochrome P-450 isozymes are present. Several of these isozymes show considerable immunochemical relatedness to each other, and operationally they can be grouped into families of immunochemically related isozymes that include cytochromes P-450b and P-450e in one family, cytochromes P-450c and P-450d in another, and cytochromes P-450f-P-450i, and P-450k in a third family. Immunoquantitation of some of these isozymes has revealed dramatic increases of over 50-fold in the levels of certain of these isozymes when exogenous compounds are administered to rats.  相似文献   

12.
Antibodies to four rat liver forms of cytochrome P-450, two phenobarbital-inducible (PB1 and PB2) and two 3-methylcholanthrene-inducible (MC1 and MC2) proteins, have been used to make a structural and functional comparison of rat and human cytochromes P-450. Proteins from both species were identified on Western blots by their reaction with these antibodies. In the human liver preparations, structurally related proteins to PB1 and to PB2 were identified in all the samples tested with apparent Mr values of 51 800 and 54 800 for PB1 and 53 600 and 57 200 for PB2. Considerable variation in the content of the lower-Mr proteins was measured between samples and, as with the rat enzymes, samples which reacted well with anti-PB1 also reacted with anti-PB2, indicating that these proteins are regulated at least to some degree, co-ordinately. The apparent Mr values of the major human proteins identified with anti-MC1 and anti-MC2 were 54 400 and 57 000 respectively. Only six (of 31) human samples contained significant amounts of these proteins. The same six samples which reacted with anti-MC1 also reacted with anti-MC2, again indicating co-ordinate regulation of these two proteins. Antibody inhibition of microsomal 7-ethoxycoumarin and 7-ethoxyresorufin metabolism demonstrated a degree of conservation of substrate specificity related to specific P-450 isoenzymes between the species. However, the contributions of the different P-450 isoenzymes to the human microsomal activity were not always related to the rat enzyme with the highest activity towards these substrates.  相似文献   

13.
Rat liver sections were incubated with antibodies (100-1000 micrograms IgG/ml) against microsomal cytochromes P-450a, P-450b, and P-450c, and epoxide hydrolase. Inhibition of indirect immunofluorescence, which progressed with higher concentrations of primary antibody, corresponded with antigen-enriched tissue in frozen liver sections from male and female rats. It was found in liver sections from phenobarbital-treated rats incubated with anti-P-450b and anti-epoxide hydrolase and from 3-methylcholanthrene-treated rats incubated with anti-P-450c. No inhibition was found in sections from untreated rats or rats receiving treatments that did not induce the specific antigen. No inhibition was found in sections incubated with anti-P-450a. Inhibition of immunofluorescence was abolished in frozen sections subjected to dehydration-rehydration protocols known to extract antigens, and was prevented by certain solvents and detergent-wash. Inhibition of immunofluorescence provides a unique method for confirming the antigen-rich regions of the liver lobules specific for microsomal expoxide hydrolase and the cytochrome P-450s.  相似文献   

14.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

15.
Cytochrome P-450 isozymes P-450(16 alpha), P-450(15 beta), and P-450DEa are immunochemically related, as indicated by mutual cross-reactivity with polyclonal antibody preparations. We have isolated five monoclonal antibodies to P-450(15 beta) and one antibody to P-450(16 alpha) that show selectivity for the respective antigens. High frequencies of cross-reactivity were observed, indicating a high degree of homology among P-450(16 alpha), P-450(15 beta), and P-450DEa. All of the P-450(15 beta-specific antibodies bound to the same epitope, or closely grouped epitopes, supporting this conclusion. The specificity of each monoclonal antibody was characterized by enzyme-linked immunosorbent assay. Western immunoblotting, and antibody-Sepharose immunoadsorption of solubilized rat liver microsomes. Antibodies F22 and F23, which were apparently identical, were specific for P-450(15 beta) by these criteria. However, the apparent specificities of antibodies F3 and F20 for P-450(15 beta), and of M16 for P-450(16 alpha), were highly dependent on the analytical technique used. The five anti-P-450(15 beta) antibodies all inhibited the catalytic activity of microsomal P-450(15 beta), by a maximum of 70%. However, they also produced a similar inhibition of microsomal P-450(16 alpha-specific antibody M16 and F23 have a low-affinity interaction with an epitope on P-450(16 alpha). The P-450(16 alpha)-specific antibody M16 was not inhibitory. The results indicate that the apparent specificity of a monoclonal antibody for an antigen determined by, e.g., Western blotting does not allow the conclusive identification of a protein in another system, e.g., immunoprecipitation of in vitro translation reaction products.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The epitope-specific cytochrome P-450 content of animal livers was analysed by radioimmunoassay using a panel of seven monoclonal antibodies (MAbs) made to a 3-methylcholanthrene-induced rat liver cytochrome P-450. Competitive radioimmunoassays utilizing a reference radiolabelled MAb and a series of unlabelled MAbs indicated that there are at least three distinct classes of MAbs to different epitopes on cytochrome P-450. In addition, a direct radioimmunoassay employing a radiolabelled second antibody detected MAb-specific cytochromes P-450 in livers from different animals. This radioimmunoassay detected large elevations in the levels of these cytochromes P-450 in the livers of 3-methylcholanthrene-treated rats and C57BL/6 mice compared with untreated rats, 3-methylcholanthrene-treated DBA/2 mice or guinea pigs. The two complementary radioimmunoassay methods are sensitive, efficient, and easily applicable for screening large number of tissue samples for MAb-defined cytochrome P-450 phenotype.  相似文献   

17.
Rat liver mitoplasts containing less than 1% microsomal contamination contain cytochrome P-450 at 25% of the microsomal level and retain the capacity for monooxygenase activation of structurally different carcinogens such as aflatoxin B1 (AFB1), benzo(a)pyrene (BaP), and dimethylnitrosamine. Both phenobarbital (PB) and 3-methylcholanthrene (3-MC) induce the level of mitochondrial cytochrome P-450 by 2.0- to 2.5-fold above the level of control mitoplasts. The enzyme activities for AFB1 (3-fold) and BaP (16-fold) metabolism were selectively induced by PB and 3-MC, respectively. Furthermore, the metabolism of AFB1 and BaP by intact mitochondria was supported by Krebs cycle substrates but not by NADPH. Both PB and 3-MC administration cause a shift in the CO difference spectrum of mitoplasts (control, 448 nm; PB, 451 nm; and 3-MC, 446 nm) suggesting that they induce two different forms of mitochondrial cytochromes P-450. Mitoplasts solubilized with cholate and fractionated with polyethylene glycol exhibit only marginal monooxygenase activities. The activity, however, was restored to preparations from both PB-induced and 3-MC-induced mitochondrial enzymes (AFB1 activation, ethylmorphine, and benzphetamine deamination and BaP metabolism) by addition of purified rat liver cytochrome P-450 reductase, and beef adrenodoxin and adrenodoxin reductase. The latter proteins failed to reconstitute activity to purified microsomal cytochromes P-450b and P-450c that were fully active with P-450 reductase. Monospecific rabbit antibodies against cytochrome P-450b and P-450c inhibited both P-450 reductase and adrenodoxin-supported activities to similar extents. Anti-P-450b and anti-P-450c provided Ouchterlony precipitin bands against PB- and 3-MC induced mitoplasts, respectively. We conclude that liver mitoplasts contain cytochrome P-450 that is closely similar to the corresponding microsomal cytochrome P-450 but can be distinguished by a capacity to interact with adrenodoxin. These inducible cytochromes P-450 are of mitochondrial origin since their levels in purified mitoplasts are over 10 times greater than can arise from the highest possible microsomal contamination.  相似文献   

18.
We have isolated from rabbit liver three cDNA clones of 1400-1800 base pairs that hybridize selectively to RNA from animals treated with phenobarbital. The nucleotide sequences of the cDNAs have been determined. In the protein coding region the nucleotide sequences of two of the cDNAs are 88% homologous, and the third cDNA is about 72-74% homologous to the other two. All three are 55-60% homologous to rat liver cytochrome P-450b cDNA. The amino acid sequences derived from the cDNA sequences are about 50% homologous to those of rat liver cytochrome P-450b and rabbit liver cytochrome P-450 (form 2). The degree of homology differs substantially in different regions of the protein. The hydrophobicity profiles of these five mammalian cytochromes P-450 are very similar and contain up to eight regions of hydrophobicity that are long enough to span a membrane. These results indicate that these three cDNAs code for rabbit liver cytochromes P-450 which are different from any rabbit liver cytochrome P-450 for which amino acid sequence information is published. These cDNAs are part of a family of genes that are related to rabbit liver cytochrome P-450 (form 2) and rat liver cytochrome P-450b which are the major phenobarbital-inducible forms. The divergence of amino acid sequence between the rat and rabbit forms and the divergence of nucleotide sequences of silent sites in the two most closely related rabbit forms suggest that cytochromes P-450 have a relatively high rate of amino acid divergence compared to many other vertebrate proteins.  相似文献   

19.
A form of cytochrome P-450 (P-450PB) with a molecular weight of 53.5-54.0 kD possessing a high benzphetamine-N-demethylase activity (100-120 nmol formaldehyde/min/nmol cytochrome) was isolated from liver microsomes of phenobarbital-induced C57Bl/6 mice. This cytochrome P-450 form is immunologically identical to its rat liver counterpart-P-450b (Mr = 52 kD) which is also characterized by a high rate of benzphetamine-N-demethylation. It was shown that 1.4-bis[2-(3.5-dichloropyridyloxy])benzene (TCPOBOP) induces in mouse liver the synthesis of the monoxygenase form whose substrate specificity and immunologic properties are identical to those of cytochromes P-450PB and P-450b. The immunochemically quantitated content of this form makes up to 20% of the total P-450 pool in liver microsomes of phenobarbital- or TCPOBOP-induced mice. Immunochemical analysis of microsomes with the use of antibodies to cytochromes P-450PB and P-450b revealed the presence on the electrophoregrams of phenobarbital-induced rat liver microsomes of two immunologically identical forms of cytochrome P-450, i.e., P-450b and P-450e (the latter had a low ability to benzphetamine N-demethylation). Liver microsomes of phenobarbital- or TCPOBP-induced mice gave only one precipitation band corresponding to cytochrome P-450PB.  相似文献   

20.
Two independent radioimmunoassay techniques for the major phenobarbital-inducible cytochrome P-450 (PB P-450) of rat liver microsomal membranes are described. The first technique employs as the source of radiolabelled antigen the products of translation in vitro labelled with [35S]methionine. The second technique employs purified antigen labelled with 125I and is quicker, less expensive and more precise. Both assays are highly specific for PB P-450 and can detect quantities of this variant as small as 1 ng. This is several orders of magnitude more sensitive than any method described previously for the quantification of cytochromes P-450, and consequently the technique is particularly well suited for the quantification of so-called constitutive cytochrome P-450 variants that are present in very low amounts. The results of the radioimmunoassays demonstrate that the apparent 2.6-fold induction of total cytochromes P-450 after phenobarbital treatment is due to a 43-fold increase in Pb P-450. Although beta-naphthoflavone increases the total content of cytochrome P-450 of microsomal membranes 1.4-fold, it actually causes a 55% decrease in the amount of PB P-450. Thus different xenobiotics can have differential effects on the expression of the genes for specific cytochrome P-450 variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号