共查询到17条相似文献,搜索用时 86 毫秒
1.
重组大肠杆菌生物转化甘油生产3-羟基丙酸 总被引:1,自引:0,他引:1
目的:以甘油为底物构建高效的3-羟基丙酸生产菌株。方法:以自身携带乙醛脱氢酶的E.coli BL21(DE3)plysS作为宿主,异源表达源自Klebsiella pneumoniae的甘油脱水酶基因dhaB。结果:重组菌E.coli HP获得的甘油脱水酶比活力在1.0mmol/L IPTG的诱导下达到了77.2 U/mg,摇瓶条件下,3-HP的最大产量为5.44 g/L,摩尔转化率为53%,该产量比目前报道的最高水平(4.4 g/L)提高了23.6%。结论:重组菌株E.coli HP实现了甘油向3-羟基丙酸(3-HP)的高效生物转化。 相似文献
2.
产3-羟基丙酸重组菌的构建及其转化甘油的研究 总被引:3,自引:0,他引:3
将连接编码甘油脱水酶的基因重组质粒pEtac-dhaB和连接编码乙醛脱氢酶编码基因aldh的重组质粒pUCtac共转化大肠杆菌,得到产3-羟基丙酸重组大肠杆菌JM109(pUCtac-aldh,pEtac-dhaB),并对影响该重组菌发酵的营养因子进行研究.试验结果表明:该重组菌转化甘油合成3-羟基丙酸的适宜培养基组成为甘油40 g/L、酵母膏6 g/L、维生素B12 0.02 g/L以及KH2PO4 7.5 g/L; 3-羟基丙酸产量和转化率分别达到4.92 g/L和12.3 %. 相似文献
3.
本文研究了静息细胞生物转化生产3-羟基丙酸的反应体系。考察了以甘油为底物,利用静息细胞转化生产3一羟基丙酸的相关因素,确定了最佳的转化条件:细胞浓度20g/L,甘油浓度20g/L,辅酶VB12浓度10mg/L,NAD+浓度0.15mmol/L,温度35℃,反应体系为0.05mol/LpH7.0Tris—HCl缓冲液。在上述条件下反应6h后,3-羟基丙酸的产量达到为3.17g/L,底物转化率为28.33%。由上述结果可知,采用静息细胞转化法为3-HP的生物合成提供了一种可能的方法。 相似文献
4.
甘油脱水酶再激活因子提高重组大肠杆菌3-羟基丙酸合成能力 总被引:3,自引:0,他引:3
甘油脱水酶是甘油转化3-羟基丙酸生物合成途径中的关键性限速酶,然而底物甘油的存在会抑制该酶的活性,从而引起3-羟基丙酸合成量的下降.因此解除底物甘油对甘油脱水酶活性的抑制作用,是提高生物合成3-羟基丙酸产量的方法之一.克隆来源于克雷伯氏菌(Klebsiella pneumoniae)的甘油脱水酶编码基因dhaB、甘油脱... 相似文献
5.
3-羟基丙酸(3-Hydroxypropionic acid,简写3-HP)是多种光学活性物质的前体,被美国能源部列为当今世界12种最具潜力的化工产品之一[1]。目前,3-HP由化学方法合成制备。虽然生产工艺一直在改进,但是由于合成难度大、产品不易分离提纯、产品得率低等原因,生产成本较高,且生产过程存在不 相似文献
6.
7.
【目的】解决前期研究中所构建的以甘油为底物合成聚3-羟基丙酸(P3HP)的代谢途径中存在两个主要的问题——细胞内还原力不平衡和质粒丢失,以提高P3HP的产量。【方法】克隆来源于肺炎克雷伯氏菌的1,3-丙二醇(1,3-PDO)氧化还原酶基因,构建P3HP和1,3-PDO联产的菌株,解决细胞内还原力不平衡的问题。利用自杀性载体系统介导的同源重组技术,将甘油脱水酶及其激活因子的基因整合到大肠杆菌基因组中,提高质粒的稳定性。同时,对发酵条件进行优化。【结果】菌种改造和发酵条件优化显著提高了P3HP产量,在摇瓶条件下到达2.7 g/L,比以前的报道提高2倍,并可同时得到2.4 g/L 1,3-PDO。【结论】该重组大肠杆菌合成P3HP的产量得到提高,具有较好的工业化生产前景。 相似文献
8.
生物法合成3-羟基丙酸的研究进展 总被引:1,自引:0,他引:1
从3-羟基丙酸的性质出发,介绍了生物法合成3-羟基丙酸以及它在生物体内的五种代谢途径,此外还简要介绍了3-羟基丙酸在合成生物聚酯、抗植物病虫害上的一些应用。 相似文献
9.
聚3-羟基丙酸酯(P3HP)作为聚羟基脂肪酸酯家族(PHAs)中的新型热塑性塑料,具有生物降解性和生物相容性等优点。目前,未见野生微生物可以合成P3HP的报道,生产途径主要为化学法和生物法。其中,通过化学法或添加3-HP单体及其结构类似物作为前体的P3HP合成效率低、成本高且不具环保性;而通过构建和改造工程菌的生物代谢途径,能够利用廉价、可再生的碳源,已经逐渐成为研究热点。文中综述了国内外P3HP生物合成研究进展,并对甘油途径、丙二酸单酰辅酶A(Malonyl-Co A)途径和β-丙氨酸途径等合成方法进行了优缺点分析,为生物合成P3HP的深入研究奠定理论基础。 相似文献
10.
利用甘油发酵耦联生产3-羟基丙酸及1,3-丙二醇重组菌的构建及筛选 总被引:1,自引:0,他引:1
在肺炎克雷伯杆菌(Klebsiella pneumoniae)代谢甘油生产1,3-丙二醇(1,3-PD)的过程中,为了减少有毒中间产物3-羟基丙醛(3-HPA)的积累,可将其转化为3-羟基丙酸(3-HP),从而实现1,3-丙二醇和3-羟基丙酸的联产。克隆来自于酿酒酵母的NAD+依赖型的乙醛脱氢酶(ALDH)的基因aldh4,构建了表达载体pKP-aldh,转化K.pneumoniae,得到了有效表达乙醛脱氢酶的重组肺炎克雷伯杆菌(K.pneumoniae A+)。在此基础上,使用紫外诱变联合菌种驯化的方法对K.pneumoniae A+进行筛选,获得了可耐受较高3-HP浓度(≥35 g/L)的重组肺炎克雷伯杆菌K.pneumoniae A+5-3。发酵实验结果表明,K.pneumoniae A+5-3可将3-HPA转化为3-HP,能够同时利用甘油耦联生产3-HP和1,3-PD,产量分别达到5.0 g/L和74.5 g/L。 相似文献
11.
Je Woong Kim Yoo-Sung Ko Tong Un Chae Sang Yup Lee 《Biotechnology and bioengineering》2020,117(7):2139-2152
As climate change is an important environmental issue, the conventional petrochemical-based processes to produce valuable chemicals are being shifted toward eco-friendly biological-based processes. In this study, 3-hydroxypropionic acid (3-HP), an industrially important three carbon (C3) chemical, was overproduced by metabolically engineered Escherichia coli using glycerol as a sole carbon source. As the first step to construct a glycerol-dependent 3-HP biosynthetic pathway, the dhaB1234 and gdrAB genes from Klebsiella pneumoniae encoding glycerol dehydratase and glycerol reactivase, respectively, were introduced into E. coli to convert glycerol into 3-hydroxypropionaldehyde (3-HPA). In addition, the ydcW gene from K. pneumoniae encoding γ-aminobutyraldehyde dehydrogenase, among five aldehyde dehydrogenases examined, was selected to further convert 3-HPA to 3-HP. Increasing the expression level of the ydcW gene enhanced 3-HP production titer and reduced 1,3-propanediol production. To enhance 3-HP production, fed-batch fermentation conditions were optimized by controlling dissolved oxygen (DO) level and employing different feeding strategies including intermittent feeding, pH-stat feeding, and continuous feeding strategies. Fed-batch culture of the final engineered E. coli strain with DO control and continuous feeding strategy produced 76.2 g/L of 3-HP with the yield and productivity of 0.457 g/g glycerol and 1.89 g·L−1·h−1, respectively. To the best of our knowledge, this is the highest 3-HP productivity achieved by any microorganism reported to date. 相似文献
12.
为高效率发酵生产GA3,对藤仓赤霉菌发酵过程pH进行优化调控研究。采用5L全自动发酵罐,在pH 3.0-5.0条件下,对藤仓赤霉菌菌丝生长及GA3产量的影响进行了考察,实验数据表明:在pH 4.0条件下,菌比生长速率可获最大值,为0.395/h;而pH 3.0条件下,GA3比生成速率最大,达到4.43mg/(g?h)。基于不同pH条件下,对菌比生长速率、得率、GA3比生成速率的影响,提出GA3分批发酵过程中的pH调控策略,即:0-20h,pH自然;20-50h,pH 4.0;50-80h,pH 3.0-3.5;80h后控制pH为3.5-4.0。在此控制模式下,经过196h发酵GA3的终产量达到2 224mg/L,GA3产率44.5mg/g,GA3生产强度0.242mg/(L?h),分别比不控制pH条件下发酵的数值增长了7.75%、7.74%、8.04%,表明该pH控制策略能增进GA3发酵生产效率。 相似文献
13.
Biologically produced 3-hydroxypropionic acid (3HP) is a potential source for sustainable acrylates and can also find direct use as monomer in the production of biodegradable polymers. For industrial-scale production there is a need for robust cell factories tolerant to high concentration of 3HP, preferably at low pH. Through adaptive laboratory evolution we selected S. cerevisiae strains with improved tolerance to 3HP at pH 3.5. Genome sequencing followed by functional analysis identified the causal mutation in SFA1 gene encoding S-(hydroxymethyl)glutathione dehydrogenase. Based on our findings, we propose that 3HP toxicity is mediated by 3-hydroxypropionic aldehyde (reuterin) and that glutathione-dependent reactions are used for reuterin detoxification. The identified molecular response to 3HP and reuterin may well be a general mechanism for handling resistance to organic acid and aldehydes by living cells. 相似文献
14.
15.
3-Hydroxypropionic acid (3-HP) is an attractive platform chemical, which can be used to produce a variety of commodity chemicals, such as acrylic acid and acrylamide. For enabling a sustainable alternative to petrochemicals as the feedstock for these commercially important chemicals, fermentative production of 3-HP is widely investigated and is centered on bacterial systems in most cases. However, bacteria present certain drawbacks for large-scale organic acid production. In this study, we have evaluated the production of 3-HP in the budding yeast Saccharomyces cerevisiae through a route from malonyl-CoA, because this allows performing the fermentation at low pH thus making the overall process cheaper. We have further engineered the host strain by increasing availability of the precursor malonyl-CoA and by coupling the production with increased NADPH supply we were able to substantially improve 3-HP production by five-fold, up to a final titer of 463 mg l−1. Our work thus led to a demonstration of 3-HP production in yeast via the malonyl-CoA pathway, and this opens for the use of yeast as a cell factory for production of bio-based 3-HP and derived acrylates in the future. 相似文献
16.
Improvement of docosahexaenoic acid fermentation from Schizochytrium sp. AB‐610 by staged pH control based on cell morphological changes 下载免费PDF全文
Ben Zhao Yafei Li Martha Daniel Mbifile Changling Li Hailin Yang Wu Wang 《Engineering in Life Science》2017,17(9):981-988
Schizochytrium sp. AB‐610 accumulates relatively higher amount of DHA‐rich lipid in the cells, and it was found that DHA yield was closely related to the cell morphology and pH value during fermentation period. DHA production from Schizochytrium sp. AB‐610 in fed‐batch fermentation was investigated and four growth stages were clarified as lag stage, balanced growth stage, lipid accumulation stage, and lipid turnover stage, based on the morphologic observation and key parameters changes. Then a simple strategy of two‐stage pH control was developed, in which pH 7.0 was kept until 12 h after the end of balanced growth stage, and then shifted to 5.0 for the rest period in fermentation. A maximal DHA production of 11.44g/L was achieved. This approach has advantage of easy scaling up for industrial DHA fermentation from Schizochytrium sp. cells. 相似文献
17.
The effects of dilution rates on the performance of a two-stage fermentation system for a recombinant Escherichia coli culture were studied. Dilution rate determines the apparent or averaged specific growth rate of a heterogeneous population of cells in the recombinant culture. The specific growht rate affects the genetic parameters involved in product formation in the second stage, such as plasmid stability, plasmid content, and specific gene expression rate. Kinetic models and correlations were developed for these parameters based on experimental data. Simulations of plasmid stability in the first stage showed that for longer fermentation periods, plasmid stability is better at higher dilution rates. However, the plasmid content is lower at these dilution rates. The optimal apparent specific growth rate for maximum productivity in the second stage was determined using two methods: (1) direct search for a constant specific growth rate, and (2) dynamic optimization using the maximum principle for a time-dependent specific growth rate profile. The results of the calculations showed that the optimum constant apparent specific growth rate for maximum over-all productivity is 0.40 h(-1). This coincides with the optimal specific growht rate for maximum plasmid content in the expressed stage. A 3.5% increase in overall productivity can be obtained by using a linear time dependent apparent specific growth rate control, mu(2)(t) = 0.0007t, in the course of the fermentation time. 相似文献