首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of the terminal sialic acid residues from many serum glycoproteins results in exposure of their penultimate galactose residues and rapid clearance from circulation by the liver. Low-density lipoprotein is a glycoprotein containing 21 galactose and 9 sialic acid residues per particle. Studies in this laboratory and others have shown that both the liver and extrahepatic tissues contribute to the degradation of low-density lipoprotein. This study was undertaken to determine whether desialylation of pig low-density lipoprotein alters its removal from circulation. Low-density lipoprotein was incubated at 37 degrees C with an agarose-bound neuraminidase, proteinase-free, from Clostridium perfringens. After 18 h at pH 5.0, 70% of the sialic acid residues were removed. The desialylated 131I-labelled and native 125I-labelled low-density lipoproteins were simultaneously injected into a pig, and their disappearance from plasma was followed for 96 h. The turnovers of the two were identical. In contrast, neuraminidase-treated fetuin was cleared about 200-fold faster than native fetuin. Studies were also performed in cultured rat hepatocytes. Rates of degradation of native and neuraminidase-treated low-density lipoprotein were similar, whereas asialo-fetuin was degraded at six to ten times the rate of native fetuin. Thus desialylation does not appear to alter low-density-lipoprotein catabolism by hepatic or extrahepatic cells.  相似文献   

2.
Angiotensin-converting enzyme from rabbit serum was purified almost 60,000-fold to apparent homogeneity by a procedure exploiting its affinity for antibodies prepared against the enzyme from lung. The pure serum and pulmonary enzymes exhibited identical behavior during gel filtration, sucrose gradient centrifugation, and disc gel electrophoresis in the reduced, denatured state. Their catalytic properties with hippurylhistidylleucine, angiotensin I, and bradykinin as substrates were similar and their reactivity with antilung enzyme antibody was indistinguishable as examined by immunodiffusion, inhibition dose-response curves, and radioimmunoassay. Their content of fucose, mannose, galactose, and N-acetylglucosamine was also comparable; however, N-acetylneuraminic acid was much more abundant in the serum glycoprotein. This difference may reflect selective removal of sialic acid-deficient enzyme molecules from the circulation by the hepatic lectin which has been postulated to initiate the catabolic phase for plasma glycoproteins (Ashwell, G., and Morell, A.G. (1974) Adv. Enzymol. Relat. Areas Mol. Biol. 41, 91-128).  相似文献   

3.
The role of the carbohydrate part of human chorionic gonadotropin (hCG) was investigated by measuring the ability of hCG derivatives lacking various sugar residues to bind to rat Leydig cells and stimulate them to synthesize testosterone and cyclic adenosine 3':5'-monophosphate (cyclic AMP). Whereas sequential removal of the sialic acid, galactose, N-acetylglucosamine, and mannose residues led to a progressive increase in the effective dose of the hormone required to stimulate steroidogenesis, it resulted in a marked loss in the ability of the hormone to stimulate cyclic AMP accumulation. Low doses of the glycosidase-treated hormone derivatives were additive with hCG when their ability to stimulate testosterone synthesis was analyzed. Nevertheless, the glycosidase-treated derivatives were potent inhibitors of hCG-induced cyclic AMP accumulation, suggesting that removal of the sugars did not influence binding of the hormone to the cell as much as it reduced the ability of the bound hormone to activate adenyl cyclase. This hypothesis was further supported by our finding that the hCG derivatives were highly effective inhibitors of 125I-hGC binding to the intact cells. Removal of sialic acid and galactose enhanced the inhibition, whereas removal of all the sugar residues only decreased the inhibition slightly. The degree of these effects was comparatively small. The possibility that steroidogenesis and cyclic AMP accumulation are altered independently by hCG stimulation is discussed.  相似文献   

4.
The structure of a glycopeptide purified from porcine thyroglobulin   总被引:1,自引:0,他引:1       下载免费PDF全文
1. The structure of a purified glycopeptide isolated from porcine thyroglobulin was studied by sequential hydrolysis with specific glycosidases, by periodate oxidation and by treatment with galactose oxidase. 2. Sequential hydrolysis with several combinations of neuraminidase, alpha-l-fucosidase, beta-d-galactosidase, beta-N-acetyl-d-glucosaminidase and alpha-d-mannosidase presented the evidence for the following structure. 3. The monosaccharide sequence of the peripheral moiety of the heteropolysaccharide chain was sialic acid-->galactose-->N-acetylglucosamine. Some of the galactose residues were non-reducing end-groups with the sequence galactose-->N-acetylglucosamine. 4. After removal of the peripheral moiety composed of sialic acid, fucose, galactose and N-acetylglucosamine, alpha-mannosidase released 1.4mol of mannose/mol of glycopeptide, indicating that two of the three mannose residues were located between peripheral N-acetylglucosamine and internal N-acetylglucosamine or mannose. 5. Periodate oxidation and sodium borohydride reduction confirmed the results obtained by enzymic degradation and gave information concerning the position of substitution. 6. Based on the results obtained by enzymic hydrolysis and periodate oxidation together with the treatment with galactose oxidase, a structure is proposed for the glycopeptide.  相似文献   

5.
We have previously demonstrated by the immunoperoxidase method the presence of a chicken heterophile antigenic determinant (CHAD-1) in medullary lymphocytes of the bursa of Fabricius and thymus as well as in some nonlymphoid cells. It has been found that the anti-CHAD-1 antibody could be neutralized by absorption with several glycoproteins or glycopeptides containing highly branched, asparagine-linked oligosaccharides terminating in N-acetylglucosamine residues. In the present study, fetuin, desialo-fetuin, and a series of 27 highly purified oligosaccharides with well-defined structures were used to investigate the chemical composition and fine structure of the CHAD-1 epitope. It was shown that anti-CHAD-1 antibody binds to oligosaccharides with at least three terminal N-acetyl glucosamine residues at the nonreducing end. These residues may be linked beta 1-2, beta 1-4, or beta 1-6 to one, two, or three different mannose residues. The antibody combining site accommodates at least four carbohydrate residues. Oligosaccharides containing five or six terminal N-acetylglucosamine residues at the nonreducing end demonstrated the highest immunoreactivity with the anti-CHAD-1 antibody. Substitution of terminal N-acetylglucosamine residues with galactose, or with galactose and sialic acid, masks CHAD-1. On the basis of this work, epitopes that react with the anti-CHAD-1 antibody will be renamed terminal N-acetylglucosamine cluster antigens (TGCA). Anti-TGCA antibody has potential use in the monitoring of biosynthetic processing of asparagine-linked oligosaccharides and in studies of their cellular distribution and functions.  相似文献   

6.
W A Emerson  S Kornfeld 《Biochemistry》1976,15(8):1697-1703
The major glycoprotein of the bovine erythrocyte membrane was purified by extraction of the ghosts with lithium 3,5-diiodosalicylate followed by phenol-water extraction and acidification. The glycoprotein contains 20% protein and 80% carbohydrate by weight and gives a single band on sodium dodecyl sulfate-polyacrylamide gels with an estimated molecular weight of 230000 daltons. The carbohydrate composition of the glycoprotein was determined to be (in residues relative to sialic acid): sialic acid, 1.0; fucose, less than 0.01; mannose, 0.1; galactose, 3.3; N-acetylgalactosamine, 0.9; and N-acetylglucosamine, 2.4. Pronase digestion of the isolated glycoprotein followed by Sephadex G-75 gel filtration resulted in the separation of a small pool of glycopeptides (pool III), which included all of the mannose-containing glycopeptides, from the bulk of the glycopeptide material which was in the void fractions of the column (pool I). Alkaline borohydride treatment released over 95% of the oligosaccharide units in pool I and approximately 30% of the oligosaccharide units in pool III. These oligosaccharides were isolated by gel filtration and ion-exchange chromatography. The oligosaccharides released from pool I had molecular weights of 1100-1400 daltons and contained sialic acid, galactose, and N-acetylglucosamine in molar ratios of 0.5-1:3:2 as well as a partial residue of N-acetylgalactosaminitol. The oligosaccharides released from pool III by alkali had molecular weights of 1300-1600 daltons and contained sialic acid, galactose, N-acetylglucosamine, N-acetylgalactosamine and N-ACETYLgalactosaminitol in molar ratios of 1-2:2:1:1:1. These data indicate that the majority of the oligosaccharide units of the bovine erythrocyte glycoprotein are linked O-glycosidically to the peptide backbone of the molecule.  相似文献   

7.
The carbohydrate portion of chicken egg yolk riboflavin-binding protein was examined to determine its role in the biological activity of the protein. Yolk RBP was found to contain 5–6 mannose, five galactose, 12 N-acetylglucosamine and four sialic acid residues. Specific modifications of the oligosaccharide moiety were performed which included removal of sialic acid by mild acid hydrolysis, oxidation of galactose oxidase, and removal of N-acetylglucosamine and galactose residues by a mixture of glycosidases from Aspergillus niger. All of the modified proteins retained the ability to bind riboflavin although their capacities were lower than that of native yolk RBP. Circular dichroism of the modified yolk RBP samples showed changes in the near ultraviolet, but molar ellipticities in the far ultraviolet displayed only minor variations indicating no gross structural changes. All samples cross-reacted with RBP-specific antiserum. The plasma half-life of 125I-labeled yolk RBP was 62 min. Each of the modified samples was cleared more rapidly from the blood than native yolk RBP. Removal of sialic acid decreased the half-life of yolk RBP by 31%, while the other modifications decreased the half-life by as much as 60%. During a 10-day period following injection of 125I-labeled yolk RBP, 5.9% of the labeled protein was recovered from egg yolk. Relative to native yolk RBP, the transport of asialo-yolk RBP was decreased by 82%. The other modifications resulted in even less transport to the egg, the lowest being glycosidase-treated asialo-yolk RBP which was decreased by over 99%. By comparison of samples with similar clearance times, a positive correlation was made between sialic acid and ovarian transport.  相似文献   

8.
A large acidic glycoprotein, PAS-I, was purified from the fat-globule membrane of guinea-pig milk. Threonine and serine accounted for over 30 mol% of the amino acids, and galactose, N-acetylgalactosamine, N-acetylglucosamine, mannose and sialic acid were the principal sugars detected. On a molar basis, sialic acid accounted for over 60% of the total sugar. Removal of sialic acid by treatment with neuraminidase revealed the presence of binding sites for peanut (Arachis hypogaea) agglutinin, a lectin specific for the sugar sequence beta-D-Gal-(beta 1----3)-D-GalNac (the T antigen). The distribution of PAS-I-related epitopes, defined by five monoclonal antibodies, was determined in the mammary gland and in other guinea-pig tissues. PAS-I was maximally expressed on the apical surfaces of secretory cells in lactating mammary tissue and was either absent, or present in much lower amounts, in the glands of virgin or pregnant animals. PAS-I epitopes were not detected in liver, heart, spleen, pancreas, ovary, uterus, lung or intestine, either by immunofluorescence microscopy or by immunoblotting techniques. Several of the PAS-I-specific antibodies bound to mucins of high Mr in human fat-globule membrane, and similarities and differences between PAS-I and the human mucins are discussed. PAS-I and epitopes of this glycoprotein will be useful as indicators of differentiation in mammary cells and of markers of the apical surface of these cells during lactation.  相似文献   

9.
N-Acetyl-beta-hexosaminidase A was purified 1000-fold from human urine by chromatography on DEAE-Sephadex followed by concanavalin A--Sepharose affinity chromatography. The optimal pH range was 4.4--4.5 for both the N-acetylglucosamine and N-acetylgalactosamine derivatives. The Km values were 0.51 mM and 0.28 mM respectively for the N-acetylglucosamine and N-acetylgalactosamine derivatives. The glycoprotein nature of the urinary enzyme was established by its affinity towards concanavalin A as well as by the presence of sialic acid, galactose, glucose, mannose and hexosamines in the molecule.  相似文献   

10.
Antiontensin-converting enzyme (peptidyldipeptide hydrolase, EC 3.4.15.1) has been solubilized from canine pulmonary particles and purified to apparent homogeneity. A value of approx. 140000 was estimated for the molecular weight of the native and the reduced, denatured forms of the enzyme. No free NH2-terminal residue was detected by the dansylation procedure. Carbohydrate accounted for 17% of the weight of the enzyme, and the major residues were galactose, mannose and N-acetylglucosamine with smaller amounts of sialic acid and fucose. Removal of sialic acid residues with neuraminidase did not alter enzymatic activity. The enzyme contained one molar equivalent of zinc. Addition of this metal reversed stimulation and inhibition of activity observed in the presence of Co2+ and Mn2+, respectively. Immunologic homology of pure dog and rabbit enzymes was demonstrable with goat antisera. Fab fragments and intact IgG antibodies displayed similar inhibition dose vs. response curves with homologous enzyme, whereas the fragments were poor inhibitors of heterologous activity compared to the holoantibodies. The canine glycoprotein was much less active than the rabbit preparation in catalyzing hydrolysis of Hip-His-Leu. In contrast, the two enzymes exhibited comparable kinetic parameters with angiotensin I as substrate.  相似文献   

11.
Human urine contains a soluble form of glucocerebrosidase, an enzyme associated with the lysosomal membrane in cells and tissues. Urinary glucocerebrosidase is identical to the enzyme extracted from tissues with respect to the following parameters: Km for natural and artificial substrates, inhibition by conduritol B-epoxide, and stimulation by taurocholate. The enzyme is greater than 90% precipitable by polyclonal anti-(placental glucocerebrosidase) antiserum. Upon isoelectric focussing of urinary glucocerebrosidase multiple peaks of activity were observed. Partial deglycosylation (removal of sialic acid, N-acetylglucosamine and galactose) of the urinary enzyme increased the isoelectric point to a value identical to that of the main form found after partial deglycosylation of the placental enzyme. Upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate followed by immunoblotting, the immunopurified urinary enzyme shows the same molecular mass forms as the enzyme immunopurified from brain and kidney. In placenta the apparent molecular mass is somewhat higher but upon removal of sialic acid, N-acetylglucosamine and galactose the urinary and the placental enzyme show identical molecular masses of 57 kDa. We conclude that the enzymes extracted from urine and tissue are identical and that differences in apparent molecular mass and isoelectric point are probably due to heterogeneity in the oligosaccharide moieties of the molecules.  相似文献   

12.
Rat fibrinogen plasmic fragment E was found to contain one oligosaccharide chain per gamma-chain attached by a glycosylamine linkage. The oligosaccharide was composed of 1 sialic acid, 1 galactose, 2 mannose and 2 glucosamine residues. The probable sequence from the nonreducing end was sialic acid leads to galactose beta leads to mannose alpha leads to mannose alpha leads to glucosamine leads to glucosamine. No difference in the rate of clearance from the rat circulation could be detected between native and desialated fragment E. A non-denaturing method for the purification of fragment E is described.  相似文献   

13.
Cold-insoluble globulin (CIg) is a member of a group of circulating and cell-associated, high-molecular-weight glycoproteins termed fibronectins. CIg was isolated from human plasma by affinity chromatography on gelatin-Sepharose. SDS-polyacrylamide gel electrophoresis of the purified glycoprotein gave a double band that migrated near myosin. The CIg glycopeptides were released by pronase digestion and isolated by chromatography on Sephadex G-50. Affinity chromatography of the major G-50 peak on Con A-Sepharose resulted in two fractions: one-third of the glycopeptides were unbound and two-thirds were weakly bound (WB). Sugar composition analysis of the unbound glycopeptides by GLC of the trimethylsilyl methyl glycosides gave the following molar ratios: sialic acid, 2.5; galactose, 3.0; N-acetylglucosamine, 4.9; and mannose, 3.0. Sugar composition analysis of the WB glycopeptides gave the following molar ratios: sialic acid, 1.7; galactose, 2.0; N-acetylglucosamine, 4.1; and mannose, 3.0. The WB CIg glycopeptides cochromatographed on Sephadex G-50 with WB transferrin glycopeptides giving an estimated molecular weight of 2,800. After degradation with neuraminidase alone or sequentially with β-galactosidase the CIg and transferrin glycopeptides again cochromatographed. Methylation linkage analysis of the intact and the partially degraded glycopeptides indicated that the carbohydrate structure of the major human CIg glycopeptide resembles that of the major glycopeptide from transferrin.  相似文献   

14.
N Swaminathan  F Aladjem 《Biochemistry》1976,15(7):1516-1522
Human serum low density lipoprotein (d = 1.027-1.045) was delipidated with organic solvents and the apoprotein digested with thermolysin. The digest was fractionated by gel filtration and DEAE-cellulose chromatography. Two glycopeptides were obtained. One of the glycopeptides (GP-I) contained 2 residues of N-acetylglucosamine and 6 residues of mannose per mole of the glycopeptide, while the other contained 2 sialic acid, 5 mannose, 2 galactose, and 3 N-acetylglucosamine residues per mole of glycopeptide. The results of sequential enzymatic digestion with purified glycosidases, periodate oxidation, and partial acid hydrolysis lead us to propose the following sturctures for the two glycopeptides: (see article). These glycopeptides represent at least 50% of the carbohydrate moiety of LDL.  相似文献   

15.
16.
1. The carbohydrate composition of the monomeric unit of a type L macroglobulin (immunoglobulin M) was determined as 6 residues of fucose, 35 of mannose, 11 of galactose, 27 of N-acetylglucosamine and 9 of sialic acid. 2. Two types of oligosaccharide unit were present in the protein, one of which (Ca type) contained fucose, mannose, galactose, N-acetylglucosamine and sialic acid in the molar proportions 1:3-4:2:3-5:0-2, and the other (Cb type) contained mannose and N-acetylglucosamine in the proportions 6-8:2-3. 3. A tentative structure is proposed for the Cb type unit. 4. An S-carboxymethylcysteine-containing glycopeptide with a Ca-type unit was isolated after reduction, alkylation and tryptic digestion of the protein. 5. The immunoglobulin monomer appears to contain six oligosaccharide units of the Ca type and two of the Cb type.  相似文献   

17.
The glycans linked to the insect cell-derived glycoproteins are known to differ from those expressed mammalian cells, partly because of the low level or lack of glycosyltransferase activities. GnT II, GnT IV, GnT V, and ST3Gal IV, which play important roles in the synthesis of tetraantennary-type complex glycan structures in mammalian cells, were overexpressed in Trichoplusia ni cells by using a baculovirus expression vector. The glycosyltransferases, expressed as a fusion form with the IgG-binding domain, were secreted into the culture media and purified using IgG sepharose resin. The enzyme assay, performed using pyridylaminated-sugar chain as an acceptor, indicated that the purified glycosyltransferases retained their enzyme activities. Human erythropoietin expressed in T. ni cells (rhEPO) was subjected to in vitro glycosylation by using recombinant glycosyltransferases and was converted into complex-type glycan with terminal sialic acid. The presence of N-acetylglucosamine, galactose, and sialic acid on the rhEPO moiety was detected by a lectin blot analysis, and the addition of galactose and sialic acid to rhEPO was confirmed by autoradiography using UDP-14C-Gal and CMP-14C-Sia as donors. The in vitro glycosylated rhEPO was injected into mice, and the number of reticulocytes among the red blood cells was counted using FACS. A significant increase in the number of reticulocytes was not observed in the mice injected with in vitro glycosylated rhEPO as compared with those injected with rhEPO.  相似文献   

18.
A glycoprotein that circulates in human blood, binds to the surface of platelets and white cells and also binds serotonin with high affinity and specificity has previously been purified and partially characterized. This glycoprotein has been called serotonectin. Antibodies raised against serotonectin inhibited the uptake of [3H]serotonin by platelets. We now report on the amino acid and carbohydrate composition of this protein as well as on some of the properties of the protein from which the carbohydrate moiety was removed. Serotonectin (apparent molecular weight 200 000; as judged by SDS-polyacrylamide gel electrophoresis) is an acidic protein that contains about 13% carbohydrate (w/w) consisting of mannose, galactose, glucosamine and sialic acid in a molar ratio of 2:1:4:0.8. Initial characterization suggests that serotonectin is a sialoglycoprotein of complex-type oligosaccharide N-linked to asparagine through N-acetylglucosamine. Treatment of serotonectin with neuraminidase resulted in a quantitative release of sialic acid without loss of antigenicity or binding capacity for [3H]serotonin. Treatment of desialylated serotonectin under non-denaturing conditions with almond glycopeptidase A resulted in 60-80% release of sugar. The protein moiety of the glycopeptidase-digested material showed no change in the capacity to bind [3H]serotonin and exhibited the same antigenic properties as untreated serotonectin. These data show the non-involvement of the carbohydrate moiety of human serotonectin in the mechanism of binding serotonin but the possible contribution of this moiety to a tighter interaction with the serotonectin receptor.  相似文献   

19.
The carbohydrate chains present in the tubular basement membrane of bovine kidney were studied. Digestion with collagenase followed with pronase resulted in a complete solubilization of the basement membrane. The different glycopeptides were purified by gel filtration and ion-exchange chromatography. Two kinds of carbohydrate chains could be characterized: oligosaccharides composed of glucosamine, mannose, galactose, fucose and sialic acid, and glucosylgalactose disaccharides. A very small portion of the oligosaccharide chains (ca. 4%) appeared to be free of sialic acid. The bulk of these chains contained sialic acid and fucose, although in small amounts. Only traces of galactosamine were found.  相似文献   

20.
A major periodate--Schiff-positive component from milk-fat-globule membrane of human breast milk has been purified by selectively extracting the membrane glycoproteins, followed by lectin affinity chromatography and gel filtration on Sephadex G-200 in the presence of protein-dissociating agents. The purified glycoprotein, termed epithelial membrane glycoprotein (EMGP-70), has an estimated mol.wt. of 70 000 and yields a single band under reducing conditions on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The glycoprotein contains 13.5% carbohydrate by weight, with fucose, mannose, galactose, N-acetylglucosamine and sialic acid 17.2, 17.0, 21.1, 7.9 and 36.6% respectively of the carbohydrate moiety. Aspartic and glutamic acid and serine are the major amino acid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号