首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we aimed to establish an experimental model to study the role of the gill mitochondrion-rich cells (MRCs) of freshwater fish in Na(+) uptake and to examine the effect of adjusting external Na(+) and Cl(-) ions on selected ion transporters in gill MRCs. Japanese eels (Anguilla japonica) acclimated to deionized (DI) water for 2 weeks were transferred directly to (a) ion-supplemented artificial freshwater (AF), (b) Na(+) -deficient AF, or (c) Cl(-) -deficient AF for 2 days. The effects of the transfer on the expression levels of ion transporters in isolated gill cells were investigated. Our data demonstrated that the 2-day acclimation in ion-supplemented AF, Na(+) -deficient AF, or Cl(-) -deficient AF led to a significant increase in serum osmolarity attributed mainly to an increase in serum Na(+) and/or Cl(-) levels when compared with DI-acclimated eel. Significant inductions of V-type H(+) -ATPase (V-H(+) -ATPase) and cotransporter (NBC1) mRNA expression in gill MRCs were detected in AF-acclimated fish. In fish acclimated to Na(+) -deficient AF, mRNA expression levels of V-H(+) -ATPase, NBC1, and Na(+) /H(+) -exchanger-3 (NHE3) were significantly increased in MRCs. Fish acclimated to Cl(-) -deficient AF showed no observable change in expression levels of ion transporters in gill MRCs. In addition, expression levels of ion transporters in pavement cells were stable throughout the 2-day experiments. These data indicate that the level of Na(+) in freshwater is important for altering the mRNA expression of ion transporters in gill MRCs, which supports the notion that gill MRCs play important roles in freshwater Na(+) uptake.  相似文献   

2.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9- anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'- disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

3.
Six ClC-type chloride channel genes have been identified in Caenorhabditis elegans, termed clh-1 through clh-6. cDNA sequences from these genes suggest that clh-2, clh-3, and clh-4 may code for multiple channel variants, bringing the total to at least nine channel types in this nematode. Promoter-driven green fluorescent protein (GFP) expression in transgenic animals indicates that the protein CLH-5 is expressed ubiquitously, CLH-6 is expressed mainly in nonneuronal cells, and the remaining isoforms vary from those restricted to a single cell to those expressed in over a dozen cells of the nematode. In an Sf9 cell expression system, recombinant CLH-2b, CLH-4b, and CLH-5 did not form functional plasma membrane channels. In contrast, both CLH-1 and CLH-3b produced strong, inward-rectifying chloride currents similar to those arising from mammalian ClC2, but which operate over different voltage ranges. Our demonstration of multiple CLH protein variants and comparison of expression patterns among the clh gene family provides a framework, in combination with the electrical properties of the recombinant channels, to further examine the physiology and cell-specific role each isoform plays in this simple model system.  相似文献   

4.
Characterization of mussel gill cells in vivo and in vitro   总被引:1,自引:0,他引:1  
Mussel gill cells are attractive models in ecotoxicological studies because gills are the first uptake site for many toxicants in the aquatic environment; gill cells are thus often affected by exposure to pollutants. Our aim was to characterize mussel gill cells in vivo and in vitro by using morphological, histochemical and functional end-points. In paraffin sections stained with haematoxylin–eosin, three zones were distinguished in the long central gill filaments: frontal, intermediate and abfrontal. Various types of ciliated cells were present in the frontal zone, and both ciliated and non-ciliated cells were found in the abfrontal zone. The intermediate zone was comprised of flattened endothelial cells. Lipofuscin granules occurred in the three zones in variable amounts, depending on the specimen. Haemocytes were found in the haemolymph sinus of gill filaments. Mucocytes were identified in both frontal and abfrontal zones by means of periodic acid Schiff-alcian blue (PAS-AB) staining. In cryostat sections, succinate dehydrogenase (SDH) activity was mainly found in ciliated cells, whereas neutral lipids and acid-phosphatase-reactive lysosomes were present in all portions of the gill filament, mostly being related to lipofuscin granules. In mussels exposed to 5-bromo-2-deoxyuridine in vivo, proliferating cells were scattered throughout the gill filament. Gill cells (typically 2×107 cells/ml per mussel; 95% viability) were isolated by dissociation with dispase. Gill cell suspensions were heterogeneous: 58% were ciliated epithelial cells (positive for SDH), 42% were non-ciliated cells (including epithelial cells and haemocytes), 2.3% were mucocytes (positive for PAS-AB) and 4.25% were haemocytes (able to phagocytose neutral red-stained zymosan). Gill cell cultures were maintained up to 18 days without changing the culture medium, viability decreasing below 50% at day 18. Primary cultures of mussel gill cells might therefore be useful models for the in vitro assessment of xenobiotic impacts on coastal and estuarine ecosystems.This work was funded by the Spanish Ministry of Science and Technology (project AMB99-0324), by the Basque Government through the Cooperation Fund Aquitaine/Euskadi 2001, by the University of the Basque Country through a grant to Consolidated Research Groups and by the European Commission (BEEP project, contract no. EVK3-CT2000-00025). Amagoia Gómez-Mendikute is the recipient of a predoctoral fellowship from the Spanish Ministry of Education and Culture.  相似文献   

5.
In intact eels in sea water (SW), ovine prolactin (PRL) treatment induces hypercalcemia, but its mechanism of action, which is discussed, remains to be defined. Corpuscles of Stannius (CSt) are modified simultaneously: two cell categories then become evident. The first cell type (type 1) predominates; it has an oval shape and large granules, it shows a nuclear and nucleolar hypertrophy and a mitotic activity, and appears greatly stimulated by PRL; it may elaborate a hypocalcemic factor (hypocalcin) which would compensate for the PRL-induced hypercalcemia. A similar effect, although slightly less intense, is detected in hypophysectomized-PRL treated eels in SW. A second cell type (type 2), is more elongated, smaller in size, and has an oval nucleus and fine granules. Scarcely less active in SW, it is significantly stimulated by PRL despite an increased blood sodium and potassium level. This experiment does not help to clarify its function.  相似文献   

6.
CK(4)-M2GlyR, an aqueous soluble peptide derived from the transmembrane M2 segment of the glycine-gated Cl(-) channel found in postsynaptic membranes of the central nervous system, has previously been shown to increase transepithelial Cl(-) and fluid secretion of epithelial monolayers. The goal of this study was to determine whether CK(4)-M2GlyR exerts these effects via formation of a novel chloride conductance pathway, modulation of endogenous chloride channel activity, or a combination of these effects. Ionic currents were recorded from isolated epithelial cells before and after treatment with the peptide using the whole-cell configuration of the patch-clamp technique. CK(4)-M2GlyR increased whole-cell Cl(-) currents in all epithelial cell lines that were studied, including: Madin-Darby canine kidney cells, a human colonic epithelial cell line (T84), and airway epithelial cells derived from a human cystic fibrosis patient (IB3-1). No evidence was found for modulation of endogenous Cl(-) channels by CK(4)-M2GlyR based on both the electrophysiological properties of the observed currents and the pharmacological profile of the CK(4)-M2GlyR-induced current. These results suggest that CK(4)-M2GlyR increases Cl(-) permeability in epithelial cells directly, by forming a distinct conduction pathway in cell membranes.  相似文献   

7.
8.
The cystic fibrosis transmembrane conductance regulator (CFTR)functions as a low-conductance, cAMP-regulated chloride(Cl) channel in a varietyof cell types, such as exocrine epithelial cells. Our resultsdemonstrate that human primary endothelial cells isolated fromumbilical vein (HUVEC) and lung microvasculature (HLMVEC) also expressCFTR as determined via RT-PCR and immunohistochemical andimmunoprecipitation analyses. Moreover,Cl efflux and whole cellpatch-clamp analyses reveal that HUVEC (n = 6 samples,P < 0.05) and HLMVEC(n = 5 samples,P < 0.05) display cyclicnucleotide-stimulated Cltransport that is inhibited by the CFTR selectiveCl channel blockerglibenclamide but not by the blocker DIDS, indicative of CFTRCl channel activity. Takentogether, these findings demonstrate that human endothelial cellsderived from multiple organ systems express CFTR and that CFTRfunctions as a cyclic nucleotide-regulated Cl channel in human endothelia.

  相似文献   

9.
Changes were measured in the numbers of chloride cells and the levels of (Na+ + K+)-DEPENDENT ATPase in the gills of immature, yellow eels and mature, silver eels during adaptation from freshwater to seawater. The percentage of chloride cells in yellow eels more than doubled after six days in seawater; at this time the specific activity and concentration of (Na+ + K+)-dependent ATPase in gills start to increase in parallel to reach maxima after two weeks that are 2.5 times the starting values. It is concluded that adaptation of yellow eels to seawater involves an increase in the numbers of chloride cells in gills as well as an increased amount of (Na+ + K+)-dependent ATPase per chloride cell. Mature silver eels in freshwater had essentially the same numbers of chloride cells and the same specific activity of the enzyme in the gills as yellow eels fully adapted to seawater. Transferring silver eels to seawater did not alter the percentage of chloride cells in gills although the level of (Na+ + K+)-dependent ATPase and its specific activity increased slightly. Thus, although the silver eel is better prepared for life in seawater than the yellow eel, it still has to attain an increased level of (Na+ + K+)-dependent ATPase in its chloride cells to be fully adapted to seawater.  相似文献   

10.
  • 1.1. Salmon calcitonin binding by isolated gill cells from rainbow trout, Salmo gairdneri has been investigated.
  • 2.2. The calcitonin receptor interaction is time- and temperature-dependent.
  • 3.3. 50% of inhibition of the 125I labeled calcitonin binding is observed in presence of 1.5 ng/ml unlabeled salmon calcitonin.
  • 4.4. Two types of receptors are described: a high affinity-low capacity site and a low affinity-large capacity site.
  • 5.5. These studies strongly support the role of calcitonin as a hormone regulating the gill function in physiological conditions.
  相似文献   

11.
The morphology of chloride cells in the gill of the skate Torpedo marmorata is described from a light and an electron microscopic study. Chloride cells have been regularly observed in both the gill filament (or primary epithelium) and the lamellae (or secondary epithelium). Chloride cells located in the filament usually display convex apical regions with microvilli protruding amongst microridges of neighbouring pavement cells, whereas chloride cells in the lamellae are located between the two epithelial layers, and contact with the external milieu is via a narrow apical opening. Present observations are discussed in relation to data on the presence of chloride cells in the lamellae of marine teleost fish, and it is suggested that the occurrence of chloride cells all along the lamellae might be in some way inversely related to fish activity.  相似文献   

12.
Gill mitochondrion-rich (MR) cells contain different molecules to carry out functionally distinct mechanisms. To date, the putative mechanism of Cl(-) uptake through the basolateral chloride channel, however, is less understood. To clarify the Cl(-)-absorbing mechanism, this study explored the molecular and morphological alterations in branchial MR cells of tilapia acclimated to seawater (SW), freshwater (FW), and deionized water (DW). Scanning electron microscopic observations revealed that three subtypes of MR cells were exhibited in gill filament epithelia of tilapia. Furthermore, in DW-acclimated tilapia, the subtype I (ion-absorbing subtype) of MR cells predominantly occurred in gill filament as well as lamellar epithelia. Whole-mount double immunofluorescent staining revealed that branchial ClC-3-like protein and Na(+)/K(+)-ATPase (NKA), the basolateral marker of MR cells, were colocalized in tilapia. In SW-acclimated tilapia, all MR cells of gill filament epithelia exhibited faint fluorescence of ClC-3-like protein. In contrast, only some MR cells in gill filament epithelia of FW and DW tilapia expressed basolateral ClC-3-like protein; however, the fluorescence was more intense in FW and DW tilapia than in SW fish. In hyposmotic groups, the number of MR cells immunopositive for ClC-3-like protein was significantly higher in DW-exposed tilapia. Meanwhile, in gill lamellar epithelia of DW tilapia, all MR cells (subtype I) were ClC-3-like protein immunopositive. Double immunostaining of ClC-3-like protein and Na(+)/Cl(-) cotransporter (NCC) revealed that basolateral ClC-3-like protein and apical NCC were colocalized in some MR cells in FW and DW tilapia. Moreover, both mRNA and protein amounts of branchial ClC-3-like protein were significantly higher in DW-acclimated tilapia. To identify whether the expression of branchial ClC-3-like protein responded to changes in environmental [Cl(-)], tilapia were acclimated to artificial waters with normal [Na(+)]/[Cl(-)] (control), lower [Na(+)] (low Na), or lower [Cl(-)] (low Cl). Immunoblotting of crude membrane fractions for gill ClC-3-like protein showed that the protein abundance was evidently enhanced in tilapia acclimated to the low-Cl environment compared with the other groups. Our findings integrated morphological and functional classifications of ion-absorbing MR cells and indicated that ion-deficient water elevated the numbers of subtype I MR cells in both filament and lamellar epithelia of gills with positive ClC-3-like protein immunostaining and increased the expression levels of ClC-3-like protein. This study is the first to illustrate the exhibition of a basolateral chloride channel potentially responsible for Cl(-) absorption in the ion-absorbing subtype of gill MR cells of tilapia.  相似文献   

13.
Single channel patch-clamp techniques were used to demonstrate the presence of outwardly rectifying chloride channels in the basolateral membrane of crypt cells from mouse distal colon. These channels were rarely observed in the cell-attached mode and, in the inside-out configuration, only became active after a delay and depolarizing voltage steps. Single channel conductance was 23.4 pS between -100 and -40 mV and increased to 90.2 pS between 40 and 100 mV. The channel permeability sequence for anions was: I(-) > SCN(-) > Br(-) > Cl(-) > NO(3)(-) > F(-)> SO(4)(2-) approximately gluconate. In inside-out patches, the channel open probability was voltage dependent but insensitive to intracellular Ca(2+) concentration. In cell-attached mode, forskolin, histamine, carbachol, A-23187, and activators of protein kinase C all failed to activate the channel, and activity could not be evoked in inside-out patches by exposure to the purified catalytic subunit of cAMP-dependent protein kinase A. The channel was inhibited by 5-nitro-2-(3-phenylpropylamino)benzoate, 9-anthracenecarboxylic acid, and DIDS. Stimulation of G proteins with guanosine 5'-O-(3-thiotriphosphate) decreased the channel open probability and conductance, whereas subsequent addition of guanosine 5'-O-(2-thiodiphosphate) reactivated the channel.  相似文献   

14.
Modifications in the chloride (mitochondria‐rich) and pavement cells of the gill epithelia of the Adriatic sturgeon Acipenser naccarii after their transfer under hypertonic environmental conditions (salinity 35) were examined by light and electron microscopy. In contrast to freshwater specimens, seawater‐acclimated fish showed a marked increase in the number and size of chloride cells. Ultrastructural modifications included: presence of a slightly invaginated apical crypt, a darker cytoplasm, a more compact tubular system, a major increase in cisternae from Golgi apparatus stacks and flattened‐out sacs with dilated ends that produced an increase in lateral and basal cell surfaces. All these changes indicated enhanced cellular activity. Pavement cells, which largely covered the chloride cells on the gill filament and lamella, exhibited a complex system of microridges on their apical surface. Typical features included numerous desmosomes that characterized the intercellular junction, and the presence in the apical cytoplasm of bundles of filaments and of electro‐dense vesicles in freshwater fish or clear vesicles in seawater‐acclimated animals.  相似文献   

15.
16.
The present authors have isolated FSH-regulated genes from primary granulosa cell cultures with or without Follicle Stimulating Hormone (FSH) treatment using mRNA differential display. mRNA differential display consists of amplification of partial sequences of cDNAs (150–400 bp) corresponding to 3' ends of cellular messenger RNAs, and thus, generates 3' expressed sequence tags (3' ESTs). Five thousand cDNA bands were examined, among which the present authors have isolated and sequenced 16 different FSH-regulated products. These sequences were compared with those available in databases. Three of the sequences showed similarity to identified genes from other species (bovine NADH dehydrogenase subunit 4, Xenopus chromosome sequence-associated polypeptide E and transformation-sensitive protein IEF SSP) and four others with human ESTs. Regulation of the corresponding genes has been checked by RT-PCR since most of these are expressed at a low level. FSH-regulation was confirmed for 12 mRNAs (four down- and eight up-regulated). The present authors have also mapped 12 of these ESTs on porcine chromosomes regions using a somatic cell hybrid panel.  相似文献   

17.
18.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here, we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. Mrp4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea.  相似文献   

19.
The aim of the study was to evaluate the effect of hibernation on electrophysiological parameters of isolated frog skin under control incubation (Ringer solution) and after inhibition of Na+ and CI- transepithelial transport by application of amiloride and bumetanide. The transepithelial electrical potential difference (PD in mV) was measured before and after mechanical stimulation of isolated frog skin. The tissues were mounted in a modified Ussing chamber. The results revealed a reduced PD of frog skin during hibernation. In February, as compared with November, PD of frog skin incubated in Ringer solution decreased by about 50%. Hibernation also affected hyperpolarization (dPD) of frog skin after mechanical stimulation. In November and December, dPD was about 50% and 30% lower, respectively, compared with the subsequent two months of the experiment. The incubation of frog skin with amiloride, a sodium ion channel blocker, resulted in reduced values of all measured electrophysiological parameters irrespective of the phase of hibernation. After application of chloride ion transport inhibitor (bumetanide), the PD in November and December decreased compared with the control incubation by about 80% and 75%, while in January and February by about 40% and 25%, respectively. In January and February dPD increased by four times and three times as compared with November and December. Hibernation reduces net ion flow in isolated frog skin. During the initial period of hibernation the sensitivity of the skin to mechanical stimulation also decreases. Towards the end of hibernation, on the other hand, excitation of mechanosensitive ion channels takes place.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号