首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A quantal model developed earlier by the authors is recast in terms of common macroscopic variables and applied to the well-documented T, P, N/L, AE neuron network of a leech ganglion. The electrical potential of a neuron (φ) and the ion potentials (φa) for Na+, K+, Cl? and Ca2+ are featured, though it proves possible to reduce the resulting set of coupled non-linear diffusion equations to a single pair whose admissible solutions are defined by a simple algebraic dispersion relation. Less than 30 s is required to solve the system for a functional interval of 2·25 s on a CYBER 175 computer using a modified Runge-Kutta algorithm, the program for which is given. Irreversible effects are included but reversibility is stressed, since the neurons are seen to exchange energy with their environment only in the immediate neighborhood of firing peaks. Plasma oscillations, resulting from a disruption of the Debye layer, offer a sound physical mechanism whereby transient currents and ion exchanges of the observed magnitudes may be generated.The total energy H and information rate ΓI transferred across the neural membrane are also calculated in terms of φ and φa. It is shown that while φ is determined primarily by the K+ potential, ΓI depends mainly on the Ca2+ potential together with its time derivatives, and H depends on both the K+ and Ca2+ potentials. This also makes it possible, not only to compare φ (t) solutions for each of the neurons in the incrementally-loaded network to experimental measurements of φ(t) made for similar stimulus levels, but also to trace the correlated flows of energy and information through the system. Nearly all of the distinctive features of the experimental curves are reproduced, despite the presence of such complexities as wide variations in pulse frequencies and amplitudes, sudden suppression of firing in one neuron when another begins to fire, refractory phases of different durations, and facilitation building to plateau values only slightly less than peak amplitudes for the sensory neurons.While both the energy and information curves possess sharp maxima which coincide with the firing pulses of the potential curves, those for ΓI (t) are bimodal with rounded maxima that must represent transmissions associated with ion motions instead of polarization effects. In the case of the L and AE neurons, these curves exhibit a series of discrete energy/information packets that could easily produce the proportional increases in muscle tension actually observed.  相似文献   

3.
The 'Ca-voltage' hypothesis for neurotransmitter release   总被引:1,自引:0,他引:1  
The 'Ca-voltage' hypothesis for neurotransmitter release was reinvestigated by studying the kinetics of neurotransmitter release. These were independent of changes in intracellular or extracellular Ca2+ concentration. It is concluded that initiation and termination of release do not result from rapid entry and removal of Ca2+ although Ca2+ is essential for release. Quantal release of transmitter requires depolarization-dependent transformation of a membrane molecule from an inactive form T to a Ca2+-binding form S. The depolarization-dependent T----S transformation initiates release in the presence of Ca2+. The S----T transformation upon repolarization stops release even though the Ca2+ concentration at release sites is still high.  相似文献   

4.
The local calcium concentration in the active zone of secretion determines the number and kinetics of neurotransmitter quanta released after the arrival of a nerve action potential in chemical synapses. The small size of mammalian neuromuscular junctions does not allow direct measurement of the correlation between calcium influx, the state of endogenous calcium buffers determining the local concentration of calcium and the time course of quanta exocytosis. In this work, we used computer modeling of quanta release kinetics with various levels of calcium influx and in the presence of endogenous calcium buffers with varying mobilities. The results of this modeling revealed the desynchronization of quanta release under low calcium influx in the presence of an endogenous fixed calcium buffer, with a diffusion coefficient much smaller than that of free Ca2+, and synchronization occurred upon adding a mobile buffer. This corresponds to changes in secretion time course parameters found experimentally (Samigullin et al., Physiol Res 54:129–132, 2005; Bukharaeva et al., J Neurochem 100:939–949, 2007).  相似文献   

5.
Neurotransmitter-containing vesicles are clustered in release sites. Although a given site can contain tens of vesicles, there is evidence that under a wide range of conditions, following an action potential, rarely is more than one vesicle released from each site. Such findings led to the one vesicle hypothesis, for which this paper suggests a molecular mechanism. The release of a vesicle from a site provides a transient high concentration of transmitter in that site. It is proposed here that the local high transmitter concentration interrupts further vesicle releases from the same release site. The suggested mechanism for this ‘release interruption’ is based on a theory of release control by the authors wherein inhibitory transmitter autoreceptors play a central role. (That transmitter binding to these autoreceptors can inhibit release on a fast time scale has recently been shown experimentally.) A detailed kinetic scheme is presented for the proposed mechanism. Stochastic simulations of this scheme demonstrate how the mechanism accounts for the one vesicle hypothesis. In agreement with recent experiments, the simulations also show that changes in conditions that affect the release process can cause frequent release of more than one vesicle per site.  相似文献   

6.
7.
A new Ca-voltage hypothesis for neurotransmitter release is proposed. Accordingly, membrane depolarization has two roles. To increase membrane conductance to calcium and to activate a molecule S from an inactive form T. Only the active form S binds calcium ions to start the chain of events leading to release. Four lines of experiments are described to support this hypothesis. Disassociation between Ca2+ entry and transmitter release. Loading of the terminal with Ca2+ and obtaining release with little additional entry of Ca2+. Measurements of kinetics of release. Modulation of release by changes in membrane potential. Recent criticism as to the validity of the experimental techniques used in the first two lines of experiments is analyzed and rejected.  相似文献   

8.
9.
A statistical method for testing the Poisson hypothesis of spontaneous quantal transmitter release at neuromuscular junctions has been proposed. The notion of the Poisson hypothesis is extended so as to allow for nonstationarity in the data, since nonstationarity is commonly seen in the occurrence of spontaneous miniature potentials. Special emphasis has been put on the nonstationary analysis of the quantal release. A time scaling technique has been introduced and is discussed for the analysis. Artificially generated data, which simulate three types of nonstationary spontaneous quantal release, i.e., Poisson, non-Poisson-clustered, and non-Poisson-ordered types, were analyzed to demonstrate the effectiveness of the method. Some sets of miniature endplate potentials, intracellularly recorded at frog sartorius neuromuscular junctions in low Ca++ and high Mg++ solutions showing apparent nonstationarities, were analyzed as illustrative examples. The proposed method will extend the range of applicable data for the statistical analysis of spontaneous quantal transmitter release.  相似文献   

10.
The rules for allowable pericyclic reactions indicate that the photoisomerizations of retinals in rhodopsins can be formally analogous to thermally promoted Diels-Alder condensations of monoenes with retinols. With little change in the seven-transmembrane helical environment these latter reactions could mimic the retinal isomerization while providing highly sensitive chemical reception. In this way archaic progenitors of G-protein-coupled chemical quantal receptors such as those for pheromones might have been evolutionarily plagiarized from the photon quantal receptor, rhodopsin, or vice versa. We investigated whether the known structure of bacteriorhodopsin exhibited any similarity in its active site with those of the two known antibody catalysts of Diels-Alder reactions and that of the photoactive yellow protein. A remarkable three-dimensional motif of aromatic side chains emerged in all four proteins despite the drastic differences in backbone structure. Molecular orbital calculations supported the possibility of transient pericyclic reactions as part of the isomerization-signal transduction mechanisms in both bacteriorhodopsin and the photoactive yellow protein. It appears that reactions in all four of the proteins investigated may be biological analogs of the organic chemists' chiral auxiliary-aided Diels-Alder reactions. Thus the light receptor and the chemical receptor subfamilies of the heptahelical receptor family may have been unified at one time by underlying pericyclic chemistry.  相似文献   

11.
The quantum hypothesis proposes that a binomial distribution should fit the amplitude distribution for synaptic potentials. Since importance is now being attached to significant changes in the n and p parameters of the binomial model during various treatments of synaptic preparations, this paper describes an important extension of the method of moments which can be used to extract binomial parameters in difficult experimental circumstances. Essentially, the skewness (third moment) of the observed amplitude distribution of synaptic responses is used to provide the additional information needed in cases where spontaneous miniature responses are absent. Computer simulations are used to assess the reliability of the proposed new estimators. The estimator bias due to non-uniform unit responses is also evaluated. Other applications of the extended method of moments, including a new test of the binomial hypothesis, are also described.  相似文献   

12.
R J Miller 《FASEB journal》1990,4(15):3291-3299
Ca2+ influx into the nerve terminal is normally the trigger for the release of neurotransmitters. Many neurons possess presynaptic receptors whose activation results in changes in the quantity of neurotransmitter released by an action potential. This paper reviews studies that show that presynaptic receptors can regulate the activity of Ca2+ channels in the nerve terminal, resulting in changes in the influx of Ca2+ and in neurotransmitter release. Neurons possess several different types of voltage-sensitive Ca2+ channels. Ca2+ influx through N-type channels appears to trigger transmitter release in many instances. In other cases Ca2+ influx through L channels can influence transmitter release. Neurotransmitters can inhibit N channels through a G protein-mediated transduction mechanism. The G proteins are frequently pertussis toxin substrates. Inhibition of N channels appears to involve changes in their voltage dependence. Neurotransmitters can also regulate neuronal K+ channels. Activation of these K+ channels can lead to a reduction in Ca2+ influx and neurotransmitter release; these effects are also mediated by G proteins. Thus neurotransmitters may often regulate both presynaptic Ca2+ and K+ channels. These two effects may be synergistic mechanisms for the regulation of Ca2+ influx and neurotransmitter release.  相似文献   

13.
Naka T 《Bio Systems》1999,49(2):143-149
The process of neurotransmitter release at the neuromuscular junction needs to be represented appropriately in modeling of the synaptic chemical transmission as a reaction-diffusion system. The release mechanisms of the expanding pore and the acceleration are analyzed by the computer simulation with respect to the effects of the characteristic parameters in the mechanisms on spontaneous generation of the miniature endplate current (MEPC), leading to the following evaluation. In the expanding pore mechanism the expanding rate of the pore more than 10 nm ms(-1) and the diffusion coefficient of acetylcholine in the synaptic cleft (D(c)) of about 1.0 x 10(-6) cm2 s(-1) yield the maximum amplitude, the rise time and the decay time constant of the MEPC in agreement with the empirical data. In the active release mechanism the 10-fold acceleration of the natural diffusion and a similar value of D(c) are required to suit for the empirical MEPC.  相似文献   

14.
15.
Theories are considered which assume that termination of evoked release is caused by the exhaustion of intracellular Ca. It is shown that such theories predict, contrary to experiment, that total release is an unsaturated function of intracellular Ca whose duration depends strongly on extracellular Ca. These and other findings lead to the conclusion that termination must be due to the fast change of another parameter (not intracellular Ca).  相似文献   

16.
17.
Neher E  Sakaba T 《Neuron》2008,59(6):861-872
The intracellular calcium concentration ([Ca(2+)]) has important roles in the triggering of neurotransmitter release and the regulation of short-term plasticity (STP). Transmitter release is initiated by quite high concentrations within microdomains, while short-term facilitation is strongly influenced by the global buildup of "residual calcium." A global rise in [Ca(2+)] also accelerates the recruitment of release-ready vesicles, thereby controlling the degree of short-term depression (STD) during sustained activity, as well as the recovery of the vesicle pool in periods of rest. We survey data that lead us to propose two distinct roles of [Ca(2+)] in vesicle recruitment: one accelerating "molecular priming" (vesicle docking and the buildup of a release machinery), the other promoting the tight coupling between releasable vesicles and Ca(2+) channels. Such coupling is essential for rendering vesicles sensitive to short [Ca(2+)] transients, generated during action potentials.  相似文献   

18.
The actin cytoskeleton and neurotransmitter release: an overview   总被引:12,自引:0,他引:12  
Doussau F  Augustine GJ 《Biochimie》2000,82(4):353-363
Here we review evidence that actin and its binding partners are involved in the release of neurotransmitters at synapses. The spatial and temporal characteristics of neurotransmitter release are determined by the distribution of synaptic vesicles at the active zones, presynaptic sites of secretion. Synaptic vesicles accumulate near active zones in a readily releasable pool that is docked at the plasma membrane and ready to fuse in response to calcium entry and a secondary, reserve pool that is in the interior of the presynaptic terminal. A network of actin filaments associated with synaptic vesicles might play an important role in maintaining synaptic vesicles within the reserve pool. Actin and myosin also have been implicated in the translocation of vesicles from the reserve pool to the presynaptic plasma membrane. Refilling of the readily releasable vesicle pool during intense stimulation of neurotransmitter release also implicates synapsins as reversible links between synaptic vesicles and actin filaments. The diversity of actin binding partners in nerve terminals suggests that actin might have presynaptic functions beyond synaptic vesicle tethering or movement. Because most of these actin-binding proteins are regulated by calcium, actin might be a pivotal participant in calcium signaling inside presynaptic nerve terminals. However, there is no evidence that actin participates in fusion of synaptic vesicles.  相似文献   

19.
In vertebrates, the physical coupling between presynaptic calcium channels and synaptic vesicle release proteins enhances the efficiency of neurotransmission. Recent evidence indicates that these synaptic proteins may feedback directly on synaptic release by negatively regulating calcium entry, and indirectly through pathways involving second messenger molecules. Studies of individual neurons from both vertebrates and invertebrates have provided novel insights into the roles of scaffolding proteins in calcium channel targeting and neurotransmitter release. These studies require us to expand current models of synaptic transmission.  相似文献   

20.
Uni-quantal endplate currents (EPC) were recorded at mouse diaphragm neuromuscular synapse by extracellular microelectrode during motor nerve stimulation. The probability of release expressed as quantal content m(o), and variability of synaptic latencies expressed as P90 were estimated in the presence of extracellular calcium ([Ca2+]o) varying between 0.2 and 0.6 mM in the bathing solution. At 0.2 mM ([Ca2+]o), m(o) was low (0.10) and many of long-latency EPCs were present during the late phase of the release (P90 = 2.44 ms). No change in m(o) was found when ([Ca2+]o) was 0.3 mM, but P90 decreased by 39 %. For latency shortening, saturating concentration of ([Ca2+]o) was 0.4 mM, when P90 was 1.49 ms and latencies did not further change at 0.5 and 0.6 mM ([Ca2+]o). In the latter concentrations, however, an increase of m(o) was still observed. It can be concluded that the early phase of the secretion did not significantly change when ([Ca2+]o) was raised and that only the late phase of the release depends on extracellular calcium up to 0.4 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号