首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
With the increasing interest of RNAs in regulating a range of cell biological processes, very little is known about the structure of RNAs in tissue culture cells. We focused on the 5'-untranslated region of the human immunodeficiency virus type 1 RNA genome, a highly conserved RNA region, which contains structural domains that regulate key steps in the viral replication cycle. Up until now, structural information only came from in vitro studies. Here, we developed chemical modification assays to test nucleotide accessibility directly in infected cells and viral particles, thus circumventing possible biases and artifacts linked to in vitro assays. The secondary structure of the 5'-untranslated region in infected cells points to the existence of the various stem-loop motifs associated to distinct functions, proposed from in vitro probing, mutagenesis, and phylogeny. However, compared with in vitro data, subtle differences were observed in the dimerization initiation site hairpin, and none of the proposed long range interactions were observed between the functional domains. Moreover, no global RNA rearrangement was observed; structural differences between infected cells and viral particles were limited to the primer binding site, which became protected against chemical modification upon tRNA(3) (Lys) annealing in virions and to the main packaging signal. In addition, our data suggested that the genomic RNA could already dimerize in the cytoplasm of infected cells. Taken together, our results provided the first analysis of the dynamic of RNA structure of the human immunodeficiency virus type 1 RNA genome during virus assembly ex vivo.  相似文献   

7.
Adenosine deaminases that act on dsRNA (ADARs) are enzymes that target double-stranded regions of RNA converting adenosines into inosines (A-to-I editing) thus contributing to genome complexity and fine regulation of gene expression. It has been described that a member of the ADAR family, ADAR1, can target viruses and affect their replication process. Here we report evidence showing that ADAR1 stimulates human immuno deficiency virus type 1 (HIV-1) replication by using both editing-dependent and editing-independent mechanisms. We show that over-expression of ADAR1 in HIV-1 producer cells increases viral protein accumulation in an editing-independent manner. Moreover, HIV-1 virions generated in the presence of over-expressed ADAR1 but not an editing-inactive ADAR1 mutant are released more efficiently and display enhanced infectivity, as demonstrated by challenge assays performed with T cell lines and primary CD4+ T lymphocytes. Finally, we report that ADAR1 associates with HIV-1 RNAs and edits adenosines in the 5′ untranslated region (UTR) and the Rev and Tat coding sequence. Overall these results suggest that HIV-1 has evolved mechanisms to take advantage of specific RNA editing activity of the host cell and disclose a stimulatory function of ADAR1 in the spread of HIV-1.  相似文献   

8.
非编码小RNA(Small non-coding RNA,sRNA)是一种存在于原核和真核生物中的新型调控RNA,长度约为40~500个核苷酸。作为一类关键的调控因子,sRNA通过与靶mRNA或蛋白质结合来调控细胞内的基因表达。大部分细菌sRNA在大肠杆菌等革兰氏阴性菌中被发现并研究,但近十年来越来越多的sRNA在革兰氏阳性菌中被逐步发现。作为一类革兰氏阳性菌,链球菌属中sRNA目前研究主要集中在毒力调节,鲜有其他调控的报道。本文总结了链球菌中sRNA的最新进展,并介绍其主要功能和机理,以期为细菌sRNA研究提供借鉴。  相似文献   

9.
10.
11.
12.
13.
Hundreds of small nuclear non-coding RNAs, including small nucleolar RNAs (snoRNAs), have been identified in different organisms, with important implications in regulating gene expression and in human diseases. However, functionalizing these nuclear RNAs in mammalian cells remains challenging, due to methodological difficulties in depleting these RNAs, especially snoRNAs. Here we report a convenient and efficient approach to deplete snoRNA, small Cajal body RNA (scaRNA) and small nuclear RNA in human and mouse cells by conventional transfection of chemically modified antisense oligonucleotides (ASOs) that promote RNaseH-mediated cleavage of target RNAs. The levels of all seven tested snoRNA/scaRNAs and four snRNAs were reduced by 80-95%, accompanied by impaired endogenous functions of the target RNAs. ASO-targeting is highly specific, without affecting expression of the host genes where snoRNAs are embedded in the introns, nor affecting the levels of snoRNA isoforms with high sequence similarities. At least five snoRNAs could be depleted simultaneously. Importantly, snoRNAs could be dramatically depleted in mice by systematic administration of the ASOs. Together, our findings provide a convenient and efficient approach to characterize nuclear non-coding RNAs in mammalian cells, and to develop antisense drugs against disease-causing non-coding RNAs.  相似文献   

14.
15.
16.
Non-coding RNAs (ncRNAs) are regulatory molecules encoded in the intergenic or intragenic regions of the genome. In prokaryotes, biocomputational identification of homologs of known ncRNAs in other species often fails due to weakly evolutionarily conserved sequences, structures, synteny and genome localization, except in the case of evolutionarily closely related species. To eliminate results from weak conservation, we focused on RNA structure, which is the most conserved ncRNA property. Analysis of the structure of one of the few well-studied bacterial ncRNAs, 6S RNA, demonstrated that unlike optimal and consensus structures, suboptimal structures are capable of capturing RNA homology even in divergent bacterial species. A computational procedure for the identification of homologous ncRNAs using suboptimal structures was created. The suggested procedure was applied to strongly divergent bacterial species and was capable of identifying homologous ncRNAs.  相似文献   

17.

Background

Marine diatoms constitute a major component of eukaryotic phytoplankton and stand at the crossroads of several evolutionary lineages. These microalgae possess peculiar genomic features and novel combinations of genes acquired from bacterial, animal and plant ancestors. Furthermore, they display both DNA methylation and gene silencing activities. Yet, the biogenesis and regulatory function of small RNAs (sRNAs) remain ill defined in diatoms.

Results

Here we report the first comprehensive characterization of the sRNA landscape and its correlation with genomic and epigenomic information in Phaeodactylum tricornutum. The majority of sRNAs is 25 to 30 nt-long and maps to repetitive and silenced Transposable Elements marked by DNA methylation. A subset of this population also targets DNA methylated protein-coding genes, suggesting that gene body methylation might be sRNA-driven in diatoms. Remarkably, 25-30 nt sRNAs display a well-defined and unprecedented 180 nt-long periodic distribution at several highly methylated regions that awaits characterization. While canonical miRNAs are not detectable, other 21-25 nt sRNAs of unknown origin are highly expressed. Besides, non-coding RNAs with well-described function, namely tRNAs and U2 snRNA, constitute a major source of 21-25 nt sRNAs and likely play important roles under stressful environmental conditions.

Conclusions

P. tricornutum has evolved diversified sRNA pathways, likely implicated in the regulation of largely still uncharacterized genetic and epigenetic processes. These results uncover an unexpected complexity of diatom sRNA population and previously unappreciated features, providing new insights into the diversification of sRNA-based processes in eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-698) contains supplementary material, which is available to authorized users.  相似文献   

18.
表观遗传学: 生物细胞非编码RNA调控的研究进展   总被引:7,自引:0,他引:7  
于红 《遗传》2009,31(11):1077-1086
表观遗传学是研究基因表达发生了可遗传的改变, 而DNA序列不发生改变的一门生物学分支, 对细胞的生长分化及肿瘤的发生发展至关重要。表观遗传学的主要机制包括DNA甲基化、组蛋白修饰及新近发现的非编码RNA。非编码RNA 是指不能翻译为蛋白的功能性RNA分子, 其中常见的具调控作用的非编码RNA包括小干涉RNA、miRNA、piRNA 以及长链非编码RNA。近年来大量研究表明非编码RNA在表观遗传学的调控中扮演了越来越重要的角色。文章综述了近年来生物细胞非编码RNA调控的表观遗传学研究进展, 以有助于理解哺乳动物细胞中非编码RNA及其调控机制和功能。  相似文献   

19.
Eukaryotes have evolved complex cellular responses to double-stranded RNA. One response that is highly conserved across many species is the RNA silencing pathway. Tombusviruses have evolved a mechanism to evade the RNA silencing pathway that involves a small protein, p19, that acts as a suppressor of RNA silencing. This protein binds specifically to small-interfering RNAs (siRNAs) with nanomolar affinity in a sequence-independent manner and with size selectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号