首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Double-stranded RNA (dsRNA) is a virus-associated molecular pattern which induces antiviral innate immune responses and RNA interference (RNAi) in mammals. In invertebrates, RNAi phenomenon has been widely studied, but dsRNA-induced innate immune response is seldom reported. In the present study, two different dsRNAs specific for green fluorescent protein (GFP) and the putative D1 protein of photosystem II (NoPSD) from Nannochloropsis oculata, were employed to challenge Chinese mitten crab Eriocheir sinensis. The temporal changes of phenoloxidase (PO), acid phosphatase (ACP), superoxide dismutase (SOD) and malondialdehyde (MDA) content, as well as the mRNA expression of some immune-related genes were examined in order to estimate the effect of dsRNAs on the innate immunity of E. sinensis. The activities of PO, ACP and SOD significantly increased after dsRNA treatment, whereas malondialdehyde (MDA) content did not change significantly. Among the examined genes, only the mRNA expression of EsALF, an antibacterial peptide in E. sinensis, was significantly up-regulated (about 5 fold, P < 0.05) at 12 h after dsRNA treatment, while no significant expression changes were observed among the other immune genes. The increase of PO, ACP and SOD activities, and mRNA expression level of EsALF after dsRNA stimulation indicate that phenoloxidase, hydrolytic enzyme, antioxidation and EsALF were involved in dsRNA-induced innate immunity, suggesting that broad-spectrum immune responses could be induced by dsRNA in E. sinensis.  相似文献   

4.
Development of a method of infecting of the molluscan host by microsurgical transplantation of the parasite's sporocysts enables the researcher to maintain the host cycle of Schistosoma mansoni exclusively by asexual means and without the participation of a vertebrate host. After transplantation, larval morphogenesis becomes altered to form an additional generation of sporocysts. These invade the digestive gland of the recipient mollusc progressively, producing normally infective cercariae. The maintenance of the life cycle of S. mansoni in the laboratory for 1 year, solely in the mollusc, has been obtained through six successive transplantations. Thus, a true cloning of S. mansoni has been achieved, the original transplant material being derived from a monomiracidial infection. From the practical viewpoint, this transplantation technique is of definite utility in the maintenance of the cycle, the vertebrate stage having been eliminated. From the theoretical viewpoint, unexpected analogies become apparent with the two types of larval demography found in Digenea (Digenea with sporocyst and Digenea with rediae).  相似文献   

5.
6.
Glutathione S-transferase pi has been shown to reactivate 1-cysteine peroxiredoxin (1-Cys Prx) by formation of a complex [L.A. Ralat, Y. Manevich, A.B. Fisher, R.F. Colman, Biochemistry 45 (2006) 360-372]. A model of the complex was proposed based on the crystal structures of the two enzymes. We have now characterized the complex of GST pi/1-Cys Prx by determining the Mw of the complex, by measuring the catalytic activity of the GST pi monomer, and by identifying the interaction sites between GST pi and 1-Cys Prx. The Mw of the purified GST pi/1-Cys Prx complex is 50,200 at pH 8.0 in the presence of 2.5 mM glutathione, as measured by light scattering, providing direct evidence that the active complex is a heterodimer composed of equimolar amounts of the two proteins. In the presence of 4 M KBr, GST pi is dissociated to monomer and retains catalytic activity, but the Km value for GSH is increased substantially. To identify the peptides of GST pi that interact with 1-Cys Prx, GST pi was digested with V8 protease and the peptides were purified. The binding by 1-Cys Prx of each of four pure GST pi peptides (residues 41-85, 115-124, 131-163, and 164-197) was investigated by protein fluorescence titration. An apparent stoichiometry of 1 mol/subunit 1-Cys Prx was measured for each peptide and the formation of the heterodimer is decreased when these peptides are included in the incubation mixture. These results support our proposed model of the heterodimer.  相似文献   

7.
8.
In the present study, we examined the effect of amphotericin B on larval stages (miracidia and primary sporocyst) of the helminth Schistosoma mansoni, the causative agent of human schistosomiasis. Amphotericin B (AmB) is a polyene macrolide that disturbs the function of the cell membrane; it is widely used as prophylactic antimycotic agent in in vitro culture. We show for the first time that S. mansoni miracidia infectivity is considerably reduced after AmB treatment. Moreover we demonstrate that AmB does not affect the development, growth, viability, and behavior of miracidia and primary sporocysts. Our data indicate that AmB effects on S. mansoni sporocyst prevalence are linked to the oxidative properties of AmB. These may alter the capacity of sporocysts to respond to the oxidative stress generated by the snail immune defence system.  相似文献   

9.
The RNA interference (RNAi) phenomenon is a recently observed process in which the introduction of a double-stranded RNA (dsRNA) into a cell causes the specific degradation of a mRNA containing the same sequence. The 21–23 nt guide RNAs, generated by RNase III cleavage from longer dsRNAs, are associated with sequence-specific mRNA degradation. Here, we show that dsRNA specifically suppresses the expression of HIV-1 genes. To study dsRNA-mediated gene interference in HIV-1-infected cells, we have designed six long dsRNAs containing the HIV-1 gag and env genes. HIV-1 replication was totally suppressed in a sequence-specific manner by the dsRNAs in HIV-1-infected cells. Especially, E2 dsRNA containing the major CD4-binding domain sequence of gp120, as the target of the HIV-1 env gene, dramatically inhibited the expression of the HIV-1 p24 antigen in PBMCs for a relatively long time. The dsRNA interference method seems to be a promising new strategy for anti-HIV-1 gene therapeutics.  相似文献   

10.
Partially purified virus preparations from sporophores of Agaricus bisporus affected with LaFrance disease had up to a 15-fold-higher RNA-dependent RNA polymerase activity than did comparable preparations from healthy sporophores. Enzyme activity was dependent upon the presence of Mg2+ and the four nucleoside triphosphates and was insensitive to actinomycin D, α-amanitin, and rifampin. The 3H-labeled enzyme reaction products were double-stranded RNA (dsRNA) as indicated by CF-11 cellulose column chromatography and by their ionic-strength-dependent sensitivity to hydrolysis by RNase A. The principal dsRNA products had estimated molecular weights of 4.3 × 106 and 1.4 × 106; they corresponded in size and hybridized to the major dsRNAs detected in the virus preparation by ethidium bromide staining. Cs2SO4 equilibrium centrifugation of the virus preparation resolved a single peak of RNA polymerase activity that banded with a 35-nm spherical virus particle containing dsRNAs with molecular weights of 4.3 × 106 and 1.4 × 106. The data suggest that the RNA-dependent RNA polymerase associated with the 35-nm spherical virus is a replicase which catalyzes the synthesis of the genomic dsRNAs.  相似文献   

11.
The microaerophilic protozoan parasite Giardia intestinalis, causative of one of the most common human intestinal diseases worldwide, infects the mucosa of the proximal small intestine, where it has to cope with O2 and nitric oxide (NO). Elucidating the antioxidant defense system of this pathogen lacking catalase and other conventional antioxidant enzymes is thus important to unveil novel potential drug targets. Enzymes metabolizing O2, NO and superoxide anion (O2 −•) have been recently reported for Giardia, but it is yet unknown how the parasite copes with H2O2 and peroxynitrite (ONOO). Giardia encodes two yet uncharacterized 2-cys peroxiredoxins (Prxs), GiPrx1a and GiPrx1b. Peroxiredoxins are peroxidases implicated in virulence and drug resistance in several parasitic protozoa, able to protect from nitroxidative stress and repair oxidatively damaged molecules. GiPrx1a and a truncated form of GiPrx1b (deltaGiPrx1b) were expressed in Escherichia coli, purified and functionally characterized. Both Prxs effectively metabolize H2O2 and alkyl-hydroperoxides (cumyl- and tert-butyl-hydroperoxide) in the presence of NADPH and E. coli thioredoxin reductase/thioredoxin as the reducing system. Stopped-flow experiments show that both proteins in the reduced state react with ONOO rapidly (k = 4×105 M−1 s−1 and 2×105 M−1 s−1 at 4°C, for GiPrx1a and deltaGiPrx1b, respectively). Consistent with a protective role against oxidative stress, expression of GiPrx1a (but not deltaGiPrx1b) is induced in parasitic cells exposed to air O2 for 24 h. Based on these results, GiPrx1a and deltaGiPrx1b are suggested to play an important role in the antioxidant defense of Giardia, possibly contributing to pathogenesis.  相似文献   

12.
13.
Fucosylated carbohydrate epitopes (glycotopes) expressed by larval and adult schistosomes are thought to modulate the host immune response and possibly mediate parasite evasion in intermediate and definitive hosts. While previous studies showed glycotope expression is developmentally and stage-specifically regulated, relatively little is known regarding their occurrence in miracidia and primary sporocysts. In this study, previously defined monoclonal antibodies were used in confocal laser scanning microscopy, standard epifluorescence microscopy and Western blot analyses to investigate the developmental expression of the following glycotopes in miracidia and primary sporocysts of Schistosoma mansoni: GalNAcβ1-4GlcNAc (LDN), GalNAcβ1-4(Fucα1-3)GlcNAc (LDN-F), Fucα1-3GalNAcβ1-4GlcNAc (F-LDN), Fucα1-3GalNAcβ1-4(Fucα1-3)GlcNAc (F-LDN-F), GalNAcβ1-4(Fucα1-2Fucα1-3)GlcNAc (LDN-DF), Fucα1-2Fucα1-3GalNAcβ1-4(Fucα1-2Fucα1-3)GlcNAc (DF-LDN-DF), Galβ1-4(Fucα1-3)GlcNAc (Lewis X) and the truncated trimannosyl N-glycan Manα1-3(Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ1-Asn (TriMan). All but Lewis X were variously expressed by miracidia and sporocysts of S. mansoni. Most notably, α3-fucosylated LDN (F-LDN, F-LDN-F, LDN-F) was prominently expressed on the larval surface and amongst glycoproteins released during larval transformation and early sporocyst development, possibly implying a role for these glycotopes in snail–schistosome interactions. Interestingly, Fucα2Fucα3-subsituted LDN (LDN-DF, DF-LDN-DF) and LDN-F were heterogeneously surface-expressed on individuals of a given larval population, particularly amongst miracidia. In contrast, LDN and TriMan primarily localised in internal somatic tissues and exhibited only minor surface expression. Immunoblots indicate that glycotopes occur on overlapping but distinct protein sets in both larval stages, further demonstrating the underlying complexity of schistosome glycosylation. Additionally, sharing of specific larval glycotopes with Biomphalaria glabrata suggests an evolutionary convergence of carbohydrate expression between schistosomes and their snail host.  相似文献   

14.
A hemagglutinin has been purified from Biomphalaria glabrata (PR-B) hemolymph, albumin glands, and egg masses using affinity chromatography with Sephadex gels. The purified material from any of the sources above demonstrated identical immunological properties during immunoelectrophoresis or immunodiffusion, and similar serological specificity for human A1 erythrocytes and to a lesser extent A2 erythrocytes. Hemagglutinin was able to bind in vitro to the tegumental surface of cultured Schistosoma mansoni sporocysts, cercariae, and miracidia. Sporocysts dissected from infected snails and shed cercariae were already found to have hemagglutinin on their tegumental surface as demonstrated by immunofluorescence. It is postulated that hemagglutinin binding to the surface of larval helminths may “mask” them from being recognized by the snail host's cellular defense system.  相似文献   

15.
The resistance or susceptibility of Biomphalaria glabrata strains to strains of Schistosoma mansoni, the human blood fluke, are evidenced by the responses of snail hemocytes to sporocysts of the schistosome, both in vivo and in vitro. It is now reported that living sporocysts of the PR1 strain of S. mansoni agglutinate in the plasma of all tested strains of B. glabrata, in contrast to fixed sporocysts which agglutinate only in plasma from resistant snail strains. The agglutinating activity in resistant plasmas is not divalent cation dependent, and was not inhibited by the 26 carbohydrates and four amino acids tested. In addition, the observation that gelatinous deposits develop on transforming miracidia-sporocysts in B. glabrata plasmas is also reported. Both the agglutination and gel-formation phenomena may facilitate recognition of, and attacks on, sporocysts, thereby contributing to susceptibility and resistance in this host-parasite system.  相似文献   

16.
Most of the genetically selected juvenile Biomphalaria glabrata snails, normally strongly resistant to Schistosoma mansoni, lost their juvenile resistance to this parasite when other trematodes were concurrently present in the snail. Three echinostome species all were able to reduce this genetically controlled juvenile resistance: Echinostoma lindoense, E. paraensei, and e. liei. Subsequently, adult resistance to S. mansoni, clearly present in control snails of the same age and strain that were not doubly infected, failed to develop in most of the snails that also harbored echinostomes. Other snails, selected for resistance as adults to S. mansoni, also usually became susceptible to this parasite following infection with E. paraensei. The capacity of E. paraensei to interfere with the snails' resistance to S. mansoni was greater than that of E. lindoense. Destruction by predation of primary sporocysts of S. mansoni by echinostome rediae prevented completion of development of the S. mansoni infections. In a number of snails all primary S. mansoni sporocysts were consumed before secondary sporocysts could be formed. In most experimental snails, however, some of the schistosomes survived, often as a small number of degenerated secondary S. mansoni sporocysts. The capability of flukes to interfere with the natural defense of snails may be an important phenomenon whereby trematode species survive in their snail hosts.  相似文献   

17.
To determine whether Penaeus chinensis can be protected against white spot syndrome virus (WSSV) infection by intramuscular injection with long double-stranded RNAs (dsRNAs) as in other shrimp species and whether the protection degree by WSSV-specific dsRNAs is correlated with the roles of viral genes, P. chinensis juveniles were intramuscularly injected with long dsRNAs corresponding to VP28, VP281, protein kinase genes of WSSV, and an unrelated long dsRNA corresponding to a green fluorescence protein (GFP) gene. All shrimp injected with long dsRNAs including GFP dsRNA showed higher survival rates against WSSV infection than shrimp injected with PBS alone. Furthermore, shrimp injected with dsRNAs corresponding to VP28 and protein kinase showed higher survival rates than those injected with dsRNAs corresponding to VP281 and GFP. These results indicate that the introduction of long dsRNAs corresponding to viral proteins, which are essential for WSSV infection, is quite effective in blocking WSSV infection in P. chinensis, and suggest that dsRNA-mediated protection is a common feature across shrimp species.  相似文献   

18.
Lai P. F. and Canning E. U. 1980. Infectivity of a microsporidium of mosquitoes (Nosema algerae) to larval stages of Schistosoma mansoni in Biomphalaria glabrata. International Journal for Parasitology10: 293–301. Nosema algerae derived from a closed colony of Anopheles stephensi was fed to Biomphalaria glabrata infected with Schistosoma mansoni. Mother and daughter sporocysts became hyperinfected but the snail tissues remained free of the microsporidia except for rare small aggregates of spores. These lay close to the sites occupied by mother or daughter sporocysts and were probably liberated from them. Irrespective of dose, fewer snails contained infected sporocysts when spores were given at 7 days post-miracidial infection than when given at 14 days. These periods corresponded respectively to stages when mother sporocysts only or daughter sporocysts as well were present in the snails. Infection of the sporocysts began in the tegumental cells, spread to the brood chamber and ultimately to the cercariae themselves. Heavily infected sporocysts contained fewer developing embryos. Doses of 106 and 107 spores/snail caused significant depression of cercaria output when given at 14 days but not at 7 days.  相似文献   

19.
20.
The aim of the work was primarily to explore the protective activity pathways of lysine against oxidative damage in fish in vivo and in enterocytes in vitro. First, grass carp were fed diets containing six graded levels of lysine (7.1–19.6 g kg-1 diet) for 56 days. Second, the enterocytes were treated with different concentrations of lysine (0–300 mg/L in media) prior to (pre-treatment), along with (co-treatment) or following (post-treatment) with 6 mg/L of Cu for 24 h. The results indicated that lysine improved grass carp growth performance. Meanwhile, lysine ameliorated lipid and protein oxidation by elevating the gene expression and activity of antioxidant enzymes (superoxide dismutase (SOD), glutathioneperoxidase (GPx), glutathione-S-transferase (GST) and reductase (GR)), and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA levels in fish intestine. The in vitro studies showed that co- and post-treatment with lysine conferred significant protection against Cu-induced oxidative damage in fish primary enterocytes as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) OD values, along with alkaline phosphatase (ALP) and lactate dehydrogenase activities, and the depletion of protein carbonyl (PC), malondialdehyde (MDA) and 8-hydroxydeoxyguanosine contents. Moreover, lysine co-treatment decreased the activities and mRNA level of cellular SOD, GPx, GST and GR compared with the Cu-only exposed group. Gene expression of the signalling molecule Nrf2 showed the same pattern as that of SOD activity, whereas Kelch-like ECH-associated protein 1b (Keap1b) followed the opposite trend, indicating that co-treatment with lysine induced antioxidant enzymes that protected against oxidative stress through Nrf2 pathway. In addition, post-treatment with lysine increased proteasomal activity and blocked the Cu-stimulated increase in mRNA levels of GST and associated catalase (CAT) and GST activities (P<0.01 and P<0.001). GR activity and gene expression, and glutathione (GSH) content followed an opposite trend to GST activity (P<0.05). Thus, post-treatment of lysine elevated protein and DNA repair abilities and ameliorated the cellular redox state of enterocytes. The overall results suggest that lysine plays a significant role in the protection of fish intestine in vivo and in vitro through the induction of key antioxidant protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号