首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cell host & microbe》2019,25(5):730-745.e6
  1. Download : Download high-res image (250KB)
  2. Download : Download full-size image
  相似文献   

2.
Plasmacytoid dendritic cells (pDC) are essential innate immune system cells that are lost from the circulation in human immunodeficiency virus (HIV)–infected individuals associated with CD4+ T cell decline and disease progression. pDC depletion is thought to be caused by migration to tissues or cell death, although few studies have addressed this directly. We used precise methods of enumeration and in vivo labeling with 5-bromo-2′-deoxyuridine to track recently divided pDC in blood and tissue compartments of monkeys with acute pathogenic simian immunodeficiency virus (SIV) infection. We show that pDC are lost from blood and peripheral lymph nodes within 14 days of infection, despite a normal frequency of pDC in bone marrow. Paradoxically, pDC loss masked a highly dynamic response characterized by rapid pDC mobilization into blood and a 10- to 20-fold increase in recruitment to lymph nodes relative to uninfected animals. Within lymph nodes, pDC had increased levels of apoptosis and necrosis, were uniformly activated, and were infected at frequencies similar to CD4+ T cells. Nevertheless, remaining pDC had essentially normal functional responses to stimulation through Toll-like receptor 7, with half of lymph node pDC producing both TNF-α and IFN-α. These findings reveal that cell migration and death both contribute to pDC depletion in acute SIV infection. We propose that the rapid recruitment of pDC to inflamed lymph nodes in lentivirus infection has a pathologic consequence, bringing cells into close contact with virus, virus-infected cells, and pro-apoptotic factors leading to pDC death.  相似文献   

3.
In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.  相似文献   

4.
The role of plasmacytoid dendritic cells (pDC) in human immunodeficiency virus type 1 (HIV-1) infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I) induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs) were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.  相似文献   

5.
In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles.  相似文献   

6.
多发性硬化是中枢神经系统炎症性自身免疫性疾病的典型代表,以白质脱髓鞘为主要特征。浆样树突状细胞,是专职抗原提呈细胞,是固有免疫和适应性免疫的桥梁,在启动初级免疫应答和维持免疫耐受中发挥了重要作用。由于浆样树突状细胞可以产生大量的细胞因子,特别是Ⅰ型干扰素,所以它与抗炎、免疫调节联系紧密。而目前Ⅰ型干扰素(β)被认为是治疗多发性硬化的有效的免疫调节剂。本文就浆样树突状细胞的来源、特性及其在固有免疫、适应性免疫及免疫耐受中的作用机制进行系统归纳整理,并就其未来发展前景做一简单介绍,为进一步探索免疫调节新机制和寻求多发性硬化新的治疗靶点提供理论依据和基础。  相似文献   

7.
8.
Circulating plasmacytoid dendritic cells (pDC) decline during HIV-1 infection, but at the same time they express markedly higher levels of interferon alpha (IFNα), which is associated with HIV-1 disease progression. Here we show an accumulation of pDC in lymph nodes (LN) of treatment-naïve HIV-1 patients. This phenomenon was associated with elevated expression of the LN homing marker, CCR7, on pDC in peripheral blood of HIV-1 patients, which conferred increased migratory capacity in response to CCR7 ligands in ex vivo functional assays. LN-homed pDC of HIV-1 patients presented higher CD40 and lower BDCA2 levels, but unchanged CD83 and CD86 expression. In addition, these cells expressed markedly higher amounts of IFNα compared to uninfected individuals, and were undergoing faster rates of cell death. These results demonstrate for the first time that in asymptomatic, untreated HIV-1 patients circulating pDC up-regulate CCR7 expression, accumulate in lymph nodes, and express high amounts of IFNα before undergoing cell death. Since IFNα inhibits cell proliferation and modulates immune responses, chronically high levels of this cytokine in LN of HIV-1 patients may impair differentiation and immune function of bystander CD4+ T cells, thus playing into the mechanisms of AIDS immunopathogenesis.  相似文献   

9.
Plasmacytoid dendritic cells (pDC) are the most potent producers of type-I interferon (IFN) and represent the main interferon (IFN)-α source in response to many viruses. Considering the important roles played by type I IFN’s, not only as antiviral effectors but also as potent alarming cytokine of the immune system, we investigated how such responses are regulated by various cytokines. To this end, we stimulated enriched pDC in the presence or absence of particular cytokines with a strong activator, CpG DNA, or a weak activator of pDC, foot-and-mouth disease virus (FMDV). Alternatively, we pre-incubated pDC for 16 h before stimulation. The pro-inflammatory cytokines tested Interleukin (IL)-6, IL17A, tumour necrosis factor (TNF)-α did not influence IFN-α responses except TNF-α, which promoted responses induced by FMDV. The haematopoietic cytokines Fms-related tyrosine kinase 3 ligand (Flt3-L) and granulocyte-macrophage colony-stimulating factor (GM-CSF) had enhancing effects on pDC activation at least in one of the protocols tested. IFN-β and IFN-γ were the most potent at enhancing FMDV-induced IFN-α, up to 10-fold. Interestingly, also the Th2 cytokine IL-4 was an efficient promoter of pDC activity, while IL-10 was the only negative regulator of IFN-α in pDC identified. The cytokines enhancing IFN-α responses also promoted pDC survival in cell culture with the exception of GM-CSF. Taken together this work illustrates how the cytokine network can influence pDC activation, a knowledge of relevance for improving vaccines and therapeutic interventions during virus infections, cancers and autoimmune diseases in which pDC play a role.  相似文献   

10.
Plasmacytoid dendritic cells (pDC) are an important component of the innate immune response, producing large amounts of alpha interferon in response to viral stimulation in vitro. Under noninflammatory conditions, pDC are not found in the skin and are restricted in location to the blood and lymph nodes. Therefore, their role in mucosal and cutaneous herpes simplex virus (HSV) infection has not been well-defined. In this study we show a role for human pDC in the immune response to HSV infection. First, by confocal microscopy we showed that pDC infiltrate the dermis of recurrent genital herpes simplex lesions at early and late phases, often at the dermo-epidermal junction. We then showed that pDC in vitro are resistant to HSV infection despite expressing the entry receptors CD111, CD112, and HVE-A. Within the lesions, pDC were found closely associated with CD3+ lymphocytes and NK cells, especially those which were activated (CD69+). Furthermore, these HSV-exposed pDC were able to stimulate virus-specific autologous T-lymphocyte proliferation. We conclude from this work that pDC may contribute to the immune control of recurrent herpes virus infection in vivo.  相似文献   

11.
12.
13.
HIV-1 innate sensing requires direct contact of infected CD4+ T cells with plasmacytoid dendritic cells (pDCs). In order to study this process, the protocols described here use freshly isolated human peripheral blood mononuclear cells (PBMCs) or plasmacytoid dendritic cells (pDCs) to sense infections in either T cell line (MT4) or heterologous primary CD4+ T cells. In order to ensure proper sensing, it is essential that PBMC are isolated immediately after blood collection and that optimal percentage of infected T cells are used. Furthermore, multi-parametric flow cytometric staining can be used to confirm that PBMC samples contain the different cell lineages at physiological ratios. A number of controls can also be included to evaluate viability and functionality of pDCs. These include, the presence of specific surface markers, assessing cellular responses to known agonist of Toll-Like Receptors (TLR) pathways, and confirming a lack of spontaneous type-I interferon (IFN) production. In this system, freshly isolated PBMCs or pDCs are co-cultured with HIV-1 infected cells in 96 well plates for 18-22 hr. Supernatants from these co-cultures are then used to determine the levels of bioactive type-I IFNs by monitoring the activation of the ISGF3 pathway in HEK-Blue IFN-α/β cells. Prior and during co-culture conditions, target cells can be subjected to flow cytometric analysis to determine a number of parameters, including the percentage of infected cells, levels of specific surface markers, and differential killing of infected cells. Although, these protocols were initially developed to follow type-I IFN production, they could potentially be used to study other imuno-modulatory molecules released from pDCs and to gain further insight into the molecular mechanisms governing HIV-1 innate sensing.  相似文献   

14.
The arenavirus Junin virus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. We characterized the JUNV infection of human peripheral blood-derived plasmacytoid dendritic cells (hpDC), demonstrating that hpDC are susceptible to infection with the C#1 strain (attenuated) and even more susceptible to infection with the P (virulent) JUNV strain. However, hpDC elicited different responses in terms of viability, activation, maturation, and cytokine expression after infection with both JUNV strains.  相似文献   

15.
16.
Plasmacytoid dendritic cells (pcDC) and myeloid dendritic cells (myDC) are shown to express CD4 and low levels of CCR5 and CXCR4, but only myDC express DC SIGN, a C-type lectin that binds human immunodeficiency virus but does not mediate virus entry. Both DC types were more susceptible to infection with a macrophage than a lymphotropic strain of human immunodeficiency virus type 1, but pcDC were more readily infected than myDC.  相似文献   

17.
Surfactant Protein D (SP-D) is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB) and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs) and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo.  相似文献   

18.
Toll-like receptor 9 (TLR9) recognizes genomes of double-stranded DNA (dsDNA) viruses in the endosome to stimulate plasmacytoid dendritic cells (pDCs). However, how and if viruses with single-stranded DNA (ssDNA) genomes are detected by pDCs remain unclear. Here we have shown that despite the ability of purified genomic DNA to stimulate TLR9 and despite the ability to enter TLR9 endosomes, ssDNA viruses of the Parvoviridae family failed to elicit an interferon (IFN) response in pDCs.  相似文献   

19.
Plasmacytoid dendritic cells (pDC) poorly replicate human immunodeficiency virus type 1 (HIV-1) but efficiently transfer HIV-1 to adjacent CD4 T lymphocytes. We found that coculture with T lymphocytes downregulates SAMHD1 expression, enhances HIV-1 replication, and increases pDC maturation and alpha interferon (IFN-α) secretion. HIV-1 transfer to T lymphocytes is inhibited by broadly neutralizing antibody VRC01 with efficiency similar to that of cell-free infection of T lymphocytes. Interestingly, prevention of HIV-1 transmission by VRC01 retains IFN-α secretion. These results emphasize the multiple functions of VRC01 in protection against HIV-1 acquisition.  相似文献   

20.
Dengue virus (DENV) is the leading cause of mosquito-borne viral illness and death in humans. Like many viruses, DENV has evolved potent mechanisms that abolish the antiviral response within infected cells. Nevertheless, several in vivo studies have demonstrated a key role of the innate immune response in controlling DENV infection and disease progression. Here, we report that sensing of DENV infected cells by plasmacytoid dendritic cells (pDCs) triggers a robust TLR7-dependent production of IFNα, concomitant with additional antiviral responses, including inflammatory cytokine secretion and pDC maturation. We demonstrate that unlike the efficient cell-free transmission of viral infectivity, pDC activation depends on cell-to-cell contact, a feature observed for various cell types and primary cells infected by DENV, as well as West Nile virus, another member of the Flavivirus genus. We show that the sensing of DENV infected cells by pDCs requires viral envelope protein-dependent secretion and transmission of viral RNA. Consistently with the cell-to-cell sensing-dependent pDC activation, we found that DENV structural components are clustered at the interface between pDCs and infected cells. The actin cytoskeleton is pivotal for both this clustering at the contacts and pDC activation, suggesting that this structural network likely contributes to the transmission of viral components to the pDCs. Due to an evolutionarily conserved suboptimal cleavage of the precursor membrane protein (prM), DENV infected cells release uncleaved prM containing-immature particles, which are deficient for membrane fusion function. We demonstrate that cells releasing immature particles trigger pDC IFN response more potently than cells producing fusion-competent mature virus. Altogether, our results imply that immature particles, as a carrier to endolysosome-localized TLR7 sensor, may contribute to regulate the progression of dengue disease by eliciting a strong innate response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号