共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Shukui Guo Israa Alshamy Kelly T. Hughes Fabienne F. V. Chevance 《Journal of bacteriology》2014,196(13):2333-2347
The FlgM protein is secreted in response to flagellar hook-basal body secretion and can be used as a secretion signal to direct selected protein secretion via the flagellar type III secretion (T3S) system [H. M. Singer, M. Erhardt, A. M. Steiner, M. M. Zhang, D. Yoshikami, G. Bulaj, B. M. Olivera, and K. T. Hughes, mBio 3(3):e00115-12, 2012, http://dx.doi.org/10.1128/mBio.00115-12]. Conditions known to affect flagellar gene expression, FlgM stability, and flagellar T3S were tested either alone or in combination to determine their effects on levels of secreted FlgM. These conditions included mutations that affect activity of the flagellar FlhD4C2 master regulatory protein complex or the FlgM T3S chaperone σ28, the removal of Salmonella pathogenicity island 1 (Spi1), the removal of flagellar late secretion substrates that could compete with FlgM for secretion, and changes in the ionic strength of the growth medium. Conditions that enhanced FlgM secretion were combined in order to maximize levels of secreted FlgM. An optimized FlgM secretion strain was used to secrete and isolate otherwise difficult-to-produce proteins and peptides fused to the C terminus of FlgM. These include cysteine-rich, hydrophobic peptides (conotoxins δ-SVIE and MrVIA), nodule-specific, cysteine-rich antimicrobial peptides (NCR), and a malaria surface antigen domain of apical membrane antigen AMA-1. 相似文献
3.
Curcumin has gained immense importance for its vast therapeutic and prophylactic applications. Contrary to this, our study reveals that it regulates the defense pathways of Salmonella enterica serovar Typhimurium (S. Typhimurium) to enhance its pathogenicity. In a murine model of typhoid fever, we observed higher bacterial load in Peyer''s patches, mesenteric lymph node, spleen and liver, when infected with curcumin-treated Salmonella. Curcumin increased the resistance of S. Typhimurium against antimicrobial agents like antimicrobial peptides, reactive oxygen and nitrogen species. This increased tolerance might be attributed to the up-regulation of genes involved in resistance against antimicrobial peptides - pmrD and pmrHFIJKLM and genes with antioxidant function - mntH, sodA and sitA. We implicate that iron chelation property of curcumin have a role in regulating mntH and sitA. Interestingly, we see that the curcumin-mediated modulation of pmr genes is through the PhoPQ regulatory system. Curcumin downregulates SPI1 genes, required for entry into epithelial cells and upregulates SPI2 genes required to intracellular survival. Since it is known that the SPI1 and SPI2 system can be regulated by the PhoPQ system, this common regulator could explain curcumin''s mode of action. This data urges us to rethink the indiscriminate use of curcumin especially during Salmonella outbreaks. 相似文献
4.
5.
Yukie Yoshida Tsuyoshi Miki Sayaka Ono Takeshi Haneda Masahiro Ito Nobuhiko Okada 《PloS one》2014,9(4)
A type III secretion system (T3SS) is utilized by a large number of gram-negative bacteria to deliver effectors directly into the cytosol of eukaryotic host cells. One essential component of a T3SS is an ATPase that catalyzes the unfolding of proteins, which is followed by the translocation of effectors through an injectisome. Here we demonstrate a functional role of the ATPase SsaN, a component of Salmonella pathogenicity island 2 T3SS (T3SS-2) in Salmonella enterica serovar Typhimurium. SsaN hydrolyzed ATP in vitro and was essential for T3SS function and Salmonella virulence in vivo. Protein-protein interaction analyses revealed that SsaN interacted with SsaK and SsaQ to form the C ring complex. SsaN and its complex co-localized to the membrane fraction under T3SS-2 inducing conditions. In addition, SsaN bound to Salmonella pathogenicity island 2 (SPI-2) specific chaperones, including SsaE, SseA, SscA, and SscB that facilitated translocator/effector secretion. Using an in vitro chaperone release assay, we demonstrated that SsaN dissociated a chaperone-effector complex, SsaE and SseB, in an ATP-dependent manner. Effector release was dependent on a conserved arginine residue at position 192 of SsaN, and this was essential for its enzymatic activity. These results strongly suggest that the T3SS-2-associated ATPase SsaN contributes to T3SS-2 effector translocation efficiency. 相似文献
6.
Survival and Filamentation of Salmonella enterica Serovar Enteritidis PT4 and Salmonella enterica Serovar Typhimurium DT104 at Low Water Activity 下载免费PDF全文
K. L. Mattick F. Jrgensen J. D. Legan M. B. Cole J. Porter H. M. Lappin-Scott T. J. Humphrey 《Applied microbiology》2000,66(4):1274-1279
In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (aw). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low aw for long periods, but minimum humectant concentrations of 8% NaCl (aw, 0.95), 96% sucrose (aw, 0.94), and 32% glycerol (aw, 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal aw, incubation at 37°C resulted in more rapid loss of viability than incubation at 21°C. At aw values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 μm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-aw conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low aw highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low aw (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-aw storage. If Salmonella strains form filaments in food products that have low aw values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring. 相似文献
7.
Jigna Shah Prerak T. Desai Bart C. Weimer 《Applied and environmental microbiology》2014,80(22):6943-6953
Salmonella encounters various stresses in the environment and in the host during infection. The effects of cold (5°C, 48 h), peroxide (5 mM H2O2, 5 h) and acid stress (pH 4.0, 90 min) were tested on pathogenicity of Salmonella. Prior exposure of Salmonella to cold stress significantly (P < 0.05) increased adhesion and invasion of cultured intestinal epithelial (Caco-2) cells. This increased Salmonella-host cell association was also correlated with significant induction of several virulence-associated genes, implying an increased potential of cold-stressed Salmonella to cause an infection. In Caco-2 cells infected with cold-stressed Salmonella, genes involved in the electron transfer chain were significantly induced, but no simultaneous significant increase in expression of antioxidant genes that neutralize the effect of superoxide radicals or reactive oxygen species was observed. Increased production of caspase 9 and caspase 3/7 was confirmed during host cell infection with cold-stressed Salmonella. Further, a prophage gene, STM2699, induced in cold-stressed Salmonella and a spectrin gene, SPTAN1, induced in Salmonella-infected intestinal epithelial cells were found to have a significant contribution in increased adhesion and invasion of cold-stressed Salmonella in epithelial cells. 相似文献
8.
9.
10.
Seema Das Swati Singh Michael McClelland Steven Forst Prasad Gyaneshwar 《Applied and environmental microbiology》2013,79(6):2092-2095
Sulfatases of enteric bacteria can provide access to heavily sulfated mucosal glycans. In this study, we show that aslA (STM0084) of Salmonella enterica serovar Typhimurium LT2 encodes a sulfatase that requires mildly acidic pH for its expression and activity. AslA is not regulated by sulfur compounds or tyramine but requires the EnvZ-OmpR and PhoPQ regulatory systems, which play an important role in pathogenesis. 相似文献
11.
Cloning and Transfer of the Salmonella Pathogenicity Island 2 Type III Secretion System for Studies of a Range of Gram-Negative Genera 下载免费PDF全文
The engineering of bacterial strains with specific phenotypes frequently requires the use of blocks or “cassettes” of genes that act together to perform a desired function. The potential benefits of utilizing type III secretion systems in this regard are becoming increasingly realized since these systems can be used to direct interactions with host cells for beneficial purposes such as vaccine development, anticancer therapies, and targeted protein delivery. However, convenient methods to clone and transfer type III secretion systems for studies of a range of different types of bacteria are lacking. In addition to functional applications, such methods would also reveal important information about the evolution of a given type III secretion system, such as its ability to be expressed and functional outside of the strain of origin. We describe here the cloning of the Salmonella enterica serovar Typhimurium pathogenicity island 2 (SPI-2) type III secretion system onto a vector that can be easily transferred to a range of gram-negative bacterial genera. We found that expression of the cloned SPI-2 system in different Gammaproteobacteria and Alphaproteobacteria (as monitored by SseB protein levels) is dependent on the bacterial strain and growth medium. We also demonstrate that the cloned system is functional for secretion, can direct interactions with macrophages, and can be used as a novel tool to analyze the predicted interaction of SseB with host cells. This work provides a foundation for future applications where the cloned SPI-2 region (or other cloned type III systems) can provide a desired function to an engineered gram-negative strain. 相似文献
12.
13.
14.
The crystal structure of the Na+-coupled melibiose permease of Salmonella enterica serovar Typhimurium (MelBSt) demonstrates that MelB is a member of the major facilitator superfamily of transporters. Arg residues at positions 295, 141, and 363 are involved in interdomain interactions at the cytoplasmic side by governing three clusters of electrostatic/polar interactions. Insertion of (one at a time) Glu, Leu, Gln, or Cys at positions R295, R141, and R363, or Lys at position R295, inhibits active transport of melibiose to a level of 2 to 20% of the value for wild-type (WT) MelBSt, with little effect on binding affinities for both sugar and Na+. Interestingly, a spontaneous suppressor, D35E (periplasmic end of helix I), was isolated from the R363Q MelBSt mutant. Introduction of the D35E mutation in each of the mutants at R295, R141 (except R141E), or R363 rescues melibiose transport to up to 91% of the WT value. Single-site mutations for the pair of D35 and R175 (periplasmic end of helix VI) were constructed by replacing Asp with Glu, Gln, or Cys and R175 with Gln, Asn, or Cys. All mutants with mutations at R175 are active, indicating that a positive charge at R175 is not necessary. Mutant D35E shows reduced transport; D35Q and D35C are nearly inactivated. Surprisingly, the D35Q mutation partially rescues both R141C and R295Q mutations. The data support the idea that Arg at position 295 and a positive charge at positions 141 and 363 are required for melibiose transport catalyzed by MelBSt, and their mutation inhibits conformational cycling, which is suppressed by a minor modification at the opposite side of the membrane. 相似文献
15.
16.
Vanessa K. Wong Derek J. Pickard Lars Barquist Karthikeyan Sivaraman Andrew J. Page Peter J. Hart Mark J. Arends Kathryn E. Holt Leanne Kane Lynda F. Mottram Louise Ellison Ruben Bautista Chris J. McGee Sally J. Kay Thomas M. Wileman Linda J. Kenney Calman A. MacLennan Robert A. Kingsley Gordon Dougan 《PloS one》2013,8(12)
17.
Anne-Batrice Blanc-Potard Felix Solomon Jayson Kayser Eduardo A. Groisman 《Journal of bacteriology》1999,181(3):998-1004
18.
19.
Tyler Jarvik Chris Smillie Eduardo A. Groisman Howard Ochman 《Journal of bacteriology》2010,192(2):560-567
Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that causes gastroenteritis in humans and a typhoid-like disease in mice and is often used as a model for the disease promoted by the human-adapted S. enterica serovar Typhi. Despite its health importance, the only S. Typhimurium strain for which the complete genomic sequence has been determined is the avirulent LT2 strain, which is extensively used in genetic and physiologic studies. Here, we report the complete genomic sequence of the S. Typhimurium strain 14028s, as well as those of its progenitor and two additional derivatives. Comparison of these S. Typhimurium genomes revealed differences in the patterns of sequence evolution and the complete inventory of genetic alterations incurred in virulent and avirulent strains, as well as the sequence changes accumulated during laboratory passage of pathogenic organisms.The genomes of related bacteria can differ in three ways: (i) gene content, where one bacterial species or strain harbors genes absent from the other organism; (ii) nucleotide substitutions within largely conserved DNA sequences, which can result in amino acid changes in orthologous proteins, form pseudogenes, and promote distinct expression patterns of genes present in the two organisms; and (iii) changes in gene arrangement, caused by inversions and translocations. These differences have been observed not only across bacterial species but also among strains belonging to the same species. Recent genomic analyses have revealed that many bacterial pathogens of humans are virtually monomorphic (1) and exhibit very limited sequence diversity, raising questions about the nature of the genetic changes governing distinct behaviors. Furthermore, several bacterial pathogens that have been subjected to extensive passage in the laboratory display altered virulence characteristics, but the genetic basis for these alterations remains largely unknown. Here, we address both of these questions by determining and analyzing the genome sequences of closely related isolates of Salmonella enterica serovar Typhimurium, a Gram-negative pathogen that has been used as a preeminent model to investigate basic genetic mechanisms (2, 8, 46, 59), as well as the interaction between bacterial pathogens and mammalian hosts (11, 41).The genus Salmonella is divided into two species: Salmonella bongori and Salmonella enterica, which together comprise over 2,300 serovars differing in host specificity and the disease conditions they promote in various hosts. For example, S. enterica serovar Typhi is human restricted and causes typhoid fever, whereas serovar Typhimurium is a broad-host-range organism that causes gastroenteritis in humans and a typhoid-like disease in mice. Although the complete genome sequences of 15 Salmonella enterica strains are available, there is only a single representative of S. Typhimurium—strain LT2 (31). Despite its wide application in genetic analysis, strain LT2 is highly attenuated for virulence in both in vitro and in vivo assays (52, 56), leading many investigators to use other S. Typhimurium isolates to examine the genetic basis for bacterial pathogenesis (11, 14, 16).Over 300 virulence genes (3, 5, 47) have already been identified in Salmonella enterica serovar Typhimurium 14028 (now termed S. enterica subsp. enterica serovar Typhimurium ATCC 14028), which is a descendant of CDC 60-6516, a strain isolated in 1960 from pools of hearts and livers of 4-week-old chickens (P. Fields, personal communication). Whereas strain 14028 has been typed as LT2, a designation based on phage sensitivity (27), the two strains were isolated from distinct sources decades apart, which makes their genealogy and exact relationship obscure. A derivative of the original 14028 strain with a rough colony morphology (due to changes in O-antigen expression) was designated 14028r to distinguish it from the original smooth strain, renamed 14028s, and was used in a genetic screen for Salmonella virulence genes because it retained lethality for mice and the ability to survive within murine macrophages. Strain 14028 was also used for the identification of Salmonella genes that were specifically expressed during infection of a mammalian host (30). Both 14028 and LT2 possess a 90-kb virulence plasmid promoting intracellular replication and systemic disease (14), but they differ in their prophage contents, as is often the case among S. Typhimurium strains (12, 13).To identify the individual changes that differentiate S. Typhimurium strains and to assess the nature of variation that arises during laboratory storage and passage, we determined the genome sequence of strain 14028s. This genome was then used as a reference for sequencing its progenitors, including the original source strain CDC 60-6516 and the earliest smooth and rough variants. Our analysis uncovered the genomic differences that arose during the past decades of laboratory cultivation and showed that derivatives with different virulence potentials can follow distinct patterns of sequence evolution. 相似文献
20.
Sanna Koskiniemi Fernando Garza-Sánchez Linus Sandegren Julia S. Webb Bruce A. Braaten Stephen J. Poole Dan I. Andersson Christopher S. Hayes David A. Low 《PLoS genetics》2014,10(3)
Clonally derived bacterial populations exhibit significant genotypic and phenotypic diversity that contribute to fitness in rapidly changing environments. Here, we show that serial passage of Salmonella enterica serovar Typhimurium LT2 (StLT2) in broth, or within a mouse host, results in selection of an evolved population that inhibits the growth of ancestral cells by direct contact. Cells within each evolved population gain the ability to express and deploy a cryptic “orphan” toxin encoded within the rearrangement hotspot (rhs) locus. The Rhs orphan toxin is encoded by a gene fragment located downstream of the “main” rhs gene in the ancestral strain StLT2. The Rhs orphan coding sequence is linked to an immunity gene, which encodes an immunity protein that specifically blocks Rhs orphan toxin activity. Expression of the Rhs orphan immunity protein protects ancestral cells from the evolved lineages, indicating that orphan toxin activity is responsible for the observed growth inhibition. Because the Rhs orphan toxin is encoded by a fragmented reading frame, it lacks translation initiation and protein export signals. We provide evidence that evolved cells undergo recombination between the main rhs gene and the rhs orphan toxin gene fragment, yielding a fusion that enables expression and delivery of the orphan toxin. In this manner, rhs locus rearrangement provides a selective advantage to a subpopulation of cells. These observations suggest that rhs genes play important roles in intra-species competition and bacterial evolution. 相似文献