首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nramp1 (natural resistance-associated macrophage protein-1) is a functionally conserved iron-manganese transporter in macrophages. Manganese (Mn), a superoxide scavenger, is required in trace amounts and functions as a cofactor for most antioxidants. Three Nramp homologs, smf-1, smf-2, and smf-3, have been identified thus far in the nematode Caenorhabditis elegans. A GFP promoter assay revealed largely intestinal expression of the smf genes from early embryonic through adult stages. In addition, smf deletion mutants showed increased sensitivity to excess Mn and mild sensitivity to EDTA. Interestingly, these smf deletion mutants demonstrated hypersensitivity to the pathogen Staphylococcus aureus, an effect that was rescued by Mn feeding or knockdown of the Golgi calcium/manganese ATPase, pmr-1, indicating that Mn uptake is essential for the innate immune system. This reversal of pathogen sensitivity by Mn feeding suggests a protective and therapeutic role of Mn in pathogen evasion systems. We propose that the C. elegans intestinal lumen may mimic the mammalian macrophage phagosome and thus could be a simple model for studying Mn-mediated innate immunity.  相似文献   

2.
Parkinson disease (PD) and manganism are characterized by motor deficits and a loss of dopamine (DA) neurons in the substantia nigra pars compacta. Epidemiological studies indicate significant correlations between manganese exposure and the propensity to develop PD. The vertebrate divalent metal transporter-1 (DMT-1) contributes to maintaining cellular Mn2+ homeostasis and has recently been implicated in Fe2+-mediated neurodegeneration in PD. In this study we describe a novel model for manganism that incorporates the genetically tractable nematode Caenorhabditis elegans. We show that a brief exposure to Mn2+ increases reactive oxygen species and glutathione production, decreases oxygen consumption and head mitochondria membrane potential, and confers DA neuronal death. DA neurodegeneration is partially dependent on a putative homologue to DMT-1, SMF-1, as genetic knockdown or deletion partially inhibits the neuronal death. Mn2+ also amplifies the DA neurotoxicity of the PD-associated protein α-synuclein. Furthermore, both SMF-1 and SMF-2 are expressed in DA neurons and contribute to PD-associated neurotoxicant-induced DA neuron death. These studies describe a C. elegans model for manganism and show that DMT-1 homologues contribute to Mn2+- and PD-associated DA neuron vulnerability.  相似文献   

3.
Abstract

Exposure to asbestos fiber is central to mesothelial carcinogenesis, for which iron overload in or near mesothelial cells is a key pathogenic mechanism. Alternatively, iron chelation therapy with deferasirox or regular phlebotomy was significantly preventive against crocidolite-induced mesothelial carcinogenesis in rats. However, the role of iron transporters during asbestos-induced carcinogenesis remains elusive. Here, we studied the role of divalent metal transporter 1 (DMT1; Slc11a2), which is a Fe(II) transporter, that is present not only on the apical plasma membrane of duodenal cells but also on the lysosomal membrane of every cell, in crocidolite-induced mesothelial carcinogenesis using DMT1 transgenic (DMT1Tg) mice. DMT1Tg mice show mucosal block of iron absorption without cancer susceptibility under normal diet. We unexpectedly found that superoxide production was significantly decreased upon stimulation with crocidolite both in neutrophils and macrophages of DMT1Tg mice, and the macrophage surface revealed higher iron content 1?h after contact with crocidolite. Intraperitoneal injection of 3?mg crocidolite ultimately induced malignant mesothelioma in ~50% of both wild-type and DMT1Tg mice (23/47 and 14/28, respectively); this effect was marginally (p?=?0.069) delayed in DMT1Tg mice, promoting survival. The promotional effect of nitrilotriacetic acid was limited, and the liver showed significantly higher iron content both in DMT1Tg mice and after crocidolite exposure. The results indicate that global DMT1 overexpression causes decreased superoxide generation upon stimulation in inflammatory cells, which presumably delayed the promotional stage of crocidolite-induced mesothelial carcinogenesis. DMT1Tg mice with low-stamina inflammatory cells may be helpful to evaluate the involvement of inflammation in various pathologies.  相似文献   

4.
Despite important advancesin the understanding of copper secretion and excretion, the molecularcomponents of intestinal copper absorption remain a mystery. DMT1, alsoknown as Nramp2 and DCT1, is the transporter responsible for intestinaliron uptake. Electrophysiological evidence suggests that DMT1 can alsobe a copper transporter. Thus we examined the potential role of DMT1 asa copper transporter in intestinal Caco-2 cells. Treatment of cellswith a DMT1 antisense oligonucleotide resulted in 80 and 48%inhibition of iron and copper uptake, respectively. Cells incorporatedconsiderable amounts of copper as Cu1+, whereasCu2+ transport was about 10-fold lower. Cu1+inhibited apical Fe2+ transport. Fe2+, but notFe3+, effectively inhibited Cu1+ uptake. Theiron content of the cells influenced both copper and iron uptake. Cellswith low iron content transported fourfold more iron and threefold morecopper than cells with high iron content. These results demonstratethat DMT1 is a physiologically relevant Cu1+ transporter inintestinal cells, indicating that intestinal absorption of copper andiron are intertwined.

  相似文献   

5.
6.
Divalent Metal Transporter 1 (DMT1) is an apical Fe transporter in the duodenum and is involved in endosomal Fe export. Four protein isoforms have been described for DMT1, two from mRNA with an iron responsive element (IRE) and two from mRNA without it. The sets of two begin in exon 1A or 2. We have characterized copper transport using mouse 2/?IRE DMT1 during regulated ectopic expression. HEK293 cells carrying a TetR:Hyg element were stably transfected with pDEST31 containing a 2/?IRE construct. 64Cu1+ incorporation in doxycycline treated cells exhibited 18.6 and 30.0-fold increases in Cu content, respectively when were exposed to 10 and 100 μM of extracellular Cu. Cu content was ~4-fold above that of parent cells or cells carrying just the vector. 64Cu uptake in transfected cells pre-incubated with 5 μM of Cu-His revealed a Vmax and Km of 11.98 ± 0.52 pmol mg protein?1 min?1 and 2.03 ± 0.03 μM, respectively. Doxycycline-stimulated Cu uptake was linear with time. The rates of apical Cu uptake decreased and transepithelial transport increased when intracellular Cu increased. The optimal pH for Cu transport was 6.5; uptake of Cu was temperature dependent. Silver does not inhibit Cu uptake in cells carrying the vector. In conclusion, Cu uptake in HEK293 cells that over-expressed the 2/?IRE isoform of DMT1 transporter supports our earlier contention that DMT1 transports Cu as Cu1+.  相似文献   

7.

Background

In metazoans, Piwi-related Argonaute proteins play important roles in maintaining germline integrity and fertility and have been linked to a class of germline-enriched small RNAs termed piRNAs. Caenorhabditis elegans encodes two Piwi family proteins called PRG-1 and PRG-2, and PRG-1 interacts with the C. elegans piRNAs (21U-RNAs). Previous studies found that mutation of prg-1 causes a marked reduction in the expression of 21U-RNAs, temperature-sensitive defects in fertility and other phenotypic defects.

Results

In this study, we wanted to systematically demonstrate the function of PRG-1 in the regulation of small RNAs and their targets. By analyzing small RNAs and mRNAs with and without a mutation in prg-1 during C. elegans development, we demonstrated that (1) mutation of prg-1 leads to a decrease in the expression of 21U-RNAs, and causes 35 ~ 40% of miRNAs to be down-regulated; (2) in C. elegans, approximately 3% (6% in L4) of protein-coding genes are differentially expressed after mutating prg-1, and 60 ~ 70% of these substantially altered protein-coding genes are up-regulated; (3) the target genes of the down-regulated miRNAs and the candidate target genes of the down-regulated 21U-RNAs are enriched in the up-regulated protein-coding genes; and (4) PRG-1 regulates protein-coding genes by down-regulating small RNAs (miRNAs and 21U-RNAs) that target genes that participate in the development of C. elegans.

Conclusions

In prg-1-mutated C. elegans, the expression of miRNAs and 21U-RNAs was reduced, and the protein-coding targets, which were associated with the development of C. elegans, were up-regulated. This may be the mechanism underlying PRG-1 function.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-321) contains supplementary material, which is available to authorized users.  相似文献   

8.
Caenorhabditis elegans (C. elegans) is an attractive animal model for biological and biomedical research because it permits relatively easy genetic dissection of cellular pathways, including insulin/IGF-like signaling (IIS), that are conserved in mammalian cells. To explore C. elegans as a model system to study the regulation of the facilitative glucose transporter (GLUT), we have characterized the GLUT gene homologues in C. elegans: fgt-1, R09B5.11, C35A11.4, F53H8.3, F48E3.2, F13B12.2, Y61A9LA.1, K08F9.1 and Y37A1A.3. The exogenous expression of these gene products in Xenopus oocytes showed transport activity to unmetabolized glucose analogue 2-deoxy-D-glucose only in FGT-1. The FGT-1-mediated transport activity was inhibited by the specific GLUT inhibitor phloretin and exhibited a Michaelis constant (K m) of 2.8 mM. Mannose, galactose, and fructose were able to inhibit FGT-1-mediated 2-deoxy-D-glucose uptake (P < 0.01), indicating that FGT-1 is also able to transport these hexose sugars. A GFP fusion protein of FGT-1 was observed only on the basolateral membrane of digestive tract epithelia in C. elegans, but not in other tissues. FGT-1::eGFP expression was observed from early embryonic stages. The knockdown or mutation of fgt-1 resulted in increased fat staining in both wild-type and daf-2 (mammalian insulin receptor homologue) mutant animals. Other common phenotypes of IIS mutant animals, including dauer formation and brood size reduction, were not affected by fgt-1 knockdown in wild-type or daf-2 mutants. Our results indicated that in C. elegans, FGT-1 is mainly a mammalian GLUT2-like intestinal glucose transporter and is involved in lipid metabolism.  相似文献   

9.
DMT1: A mammalian transporter for multiple metals   总被引:13,自引:0,他引:13  
DMT1 has four names, transports as many as eight metals, may have four or more isoforms and carries out its transport for multiple purposes. This review is a start at sorting out these multiplicities. A G185R mutation results in diminished gastrointestinal iron uptake and decreased endosomal iron exit in microcytic mice and Belgrade rats. Comparison of mutant to normal rodents is one analytical tool. Ectopic expression is another. Antibodies that distinguish the isoforms are also useful. Two mRNA isoforms differ in the 3′ UTR: +IRE DMT1 has an IRE (Iron Responsive Element) but -IRE DMT1 lacks this feature. The ±IRE proteins differ in the distal 18 or 25 amino acid residues after shared identity for the proximal 543 residues. A major function is serving as the apical iron transporter in the lumen of the gut. The +IRE isoform appears to have that role. Another role is endosomal exit of iron. Some evidence indicts the -IRE isoform for this function. In our ectopic expression assay for metal uptake, four metals – Fe2+, Mn2+, Ni2+ and Co2+ – respond to the normal DMT1 cDNA but not the G185 R mutant. Two metals did not – Cd2+ and Zn2+ – and two – Cu2+ and Pb2+–remain to be tested. In competition experiments in the same assay, Cd2+, Cu2+ and Pb2+ inhibit Mn2+ uptake but Zn2+ did not. In rodent mutants, Fe and Mn appear more dependent on DMT1 than Cu and Zn. Experiments based on ectopic expression, specific antibodies that inhibit metal uptake and labeling data indicate that Fe3+ uptake depends on a different pathway in multiple cells. Two isoforms localize differently in a number of cell types. Unexpectedly, the -IRE isoform is in the nuclei of cells with neuronal properties. While the function of -IRE DMT1 in the nucleus is speculative, one may safely infer that this localization identifies new role(s) for this multifunctional transporter. Management of toxic challenges is another function related to metal homeostasis. Airways represent a gateway tissue for metal entry. Preliminary evidence using specific PCR primers and antibodies specific to the two isoforms indicates that -IRE mRNA and protein increase in response to exposure to metal in lungs and in a cell culture model; the +IRE form is unresponsive. Thus the -IRE form could be part of a detoxification system in which +IRE DMT1 does not participate. How does iron status affect other metals' toxicity? In the case of Mn, iron deficiency may enhance cellular responses.  相似文献   

10.
11.
Two experiments were conducted to investigate the kinetics of manganese (Mn) transport in Caco-2 cell monolayers and the gene expressions of Mn transport carriers in apical (AP) and basolateral (BL) membranes. In experiment 1, the cells were treated with the medium containing 146 μmol/L of Mn (MnSO4·H2O). Both the uptake and transport of Mn from AP–BL or from BL–AP at different time-points were assessed to determine the optimal time for kinetics of Mn transport. The transport of Mn increased linearly with higher efficiency values in AP–BL than in BL–AP direction, however, the uptake of Mn revealed an asymptotic pattern within 120 min. In experiment 2, the kinetics of Mn transport in AP–BL was determined with media containing Mn concentrations from 0 to 2,500 μmol/L at 40 and 120 min, respectively, and mRNA levels of divalent metal transporter 1 (DMT1) and ferroportin (FPN1) were determined in Caco-2 cells treated with the medium containing 0 or 800 μmol/L of Mn for 120 min. The kinetics of Mn transport showed a carrier-mediated process when Mn concentrations were lower than 1,000 μmol/L and a linear increment when Mn concentrations exceeded 1,000 μmol/L at either 40 or 120 min. Mn treatment decreased (P < 0.01) DMT1 mRNA level and increased (P < 0.01) FPN1 mRNA level. The results from the present study suggested that Mn transport in AP–BL fit both carrier-mediated saturable and non-saturable diffusion processes, and Mn transport carriers DMT1 and FPN1 mediate the apical uptake and basolateral exit of Mn in Caco-2 cells.  相似文献   

12.
Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported.  相似文献   

13.
14.
15.
Iron (Fe), copper (Cu), and zinc (Zn) fulfill various essential biological functions and are vital for all living organisms. They play important roles in oxygen transport, cell growth and differentiation, neurotransmitter synthesis, myelination, and synaptic transmission. Because of their role in many critical functions, they are commonly used in food fortification and supplementation strategies globally. To determine the involvement of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) on Fe, Cu, and Zn uptake, Caco-2 cells were transfected with four different shRNA plasmids to selectively inhibit DMT1 or hCTR1 transporter expression. Fe and Cu uptake and total Zn content measurements were performed in shRNA-DMT1 and shRNA-hCTR1 cells. Both shRNA-DMT1 and shRNA-hCTR1 cells had lower apical Fe uptake (a decrease of 51% and 41%, respectively), Cu uptake (a decrease of 25.8% and 38.5%, respectively), and Zn content (a decrease of 23.1% and 22.7%, respectively) compared to control cells. These results confirm that DMT1 is involved in active transport of Fe, Cu, and Zn although Zn showed a different relative capacity. These results also show that hCTR1 is able to transport Fe and Zn.  相似文献   

16.
Wilson's disease (WND) is an inherited disorder of copper metabolism. Divalent metal transporter1 (DMT1) and ATP7A play important roles in metal transport in humans. The frequency of two single nucleotide polymorphisms of the DMT1 gene: DMT1 IVS4 C>A, DMT1 11245 T>C and two of the ATP7A gene: rs1062472 T>C, ATP7A rs 2227291 G>C have been evaluated in a population of 108 Wilson's disease patients and 108 sex- and age-matched healthy volunteers. The DMT1 IVS4 C(+) allele occurred more frequently in WND than in the healthy controls. The allele frequencies of other studied polymorphisms in WND group were in line with frequencies obtained for healthy volunteers. Neither of the polymorphisms had an impact on the age at onset or clinical phenotype of WND.  相似文献   

17.
Divalent metal transporter 1 (DMT1 also known as DCT1, NRAMP2 or SCL11A2) is a membrane-bound divalent metal transporter which is conserved from prokaryotes to higher eukaryotes. It has been postulated to play important roles in intestinal iron absorption at the brush border of duodenal enterocytes, erythroid iron utilization, hepatic iron accumulation, placental iron transfer, and other processes. DMT1 gene which contains at least four isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE) is located on chromosome 12q13 in human. DMT1 mediates the transport of a wide range of metals, including the essential metals Fe2+, Zn2+, Mn2+, Cu2+, Co2+, Ni2+ and toxic metals such as Cd2+ and Pb2+. The intention of this study is to determine that IVS4+44C/A single nucleotide polymorphism in DMT1 gene of Turkish population. For this purpose blood samples from 192 female and 192 male volunteers were analyzed. DMT1 gene was amplified with the polymerase chain reaction-restriction fragment length polymorphism technique and 351 bp oligonucleotide was produced. The amplified oligonucleotides were cut with MnlI restriction enzyme according to their polymorphic characteristics. Digested and undigested products were separated on a 2% agarose gel electrophoresis, visualized by ethidium bromide staining under an ultraviolet illuminator. The genotype frequencies of DMT1 IVS4+44C/A polymorphism were determined as 47.9% for CC, 40.1% for AC and 12.0% for AA genotypes. The frequency of the C allele was found to as 68.0% and of the A allele as 32.0%. The genotype frequencies were consistent with Hardy-Weinberg equilibrium (χ2=2.394; Exact P=0.128).  相似文献   

18.
The C. elegans eat-3 gene encodes a mitochondrial dynamin family member homologous to Opa1 in humans and Mgm1 in yeast. We find that mutations in the C. elegans eat-3 locus cause mitochondria to fragment in agreement with the mutant phenotypes observed in yeast and mammalian cells. Electron microscopy shows that the matrices of fragmented mitochondria in eat-3 mutants are divided by inner membrane septae, suggestive of a specific defect in fusion of the mitochondrial inner membrane. In addition, we find that C. elegans eat-3 mutant animals are smaller, grow slower, and have smaller broodsizes than C. elegans mutants with defects in other mitochondrial fission and fusion proteins. Although mammalian Opa1 is antiapoptotic, mutations in the canonical C. elegans cell death genes ced-3 and ced-4 do not suppress the slow growth and small broodsize phenotypes of eat-3 mutants. Instead, the phenotypes of eat-3 mutants are consistent with defects in oxidative phosphorylation. Moreover, eat-3 mutants are hypersensitive to paraquat, which promotes damage by free radicals, and they are sensitive to loss of the mitochondrial superoxide dismutase sod-2. We conclude that free radicals contribute to the pathology of C. elegans eat-3 mutants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号