首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oseltamivir-resistant H1N1 influenza viruses emerged in 2007 to 2008 and have subsequently circulated widely. However, prior to 2007 to 2008, viruses possessing the neuraminidase (NA) H274Y mutation, which confers oseltamivir resistance, generally had low growth capability. NA mutations that compensate for the deleterious effect of the NA H274Y mutation have since been identified. Given the importance of the functional balance between hemagglutinin (HA) and NA, we focused on amino acid changes in HA. Reverse genetic analysis showed that a mutation at residue 82, 141, or 189 of the HA protein promotes virus replication in the presence of the NA H274Y mutation. Our findings thus identify HA mutations that contributed to the replacement of the oseltamivir-sensitive viruses of 2007 to 2008.  相似文献   

2.
2009年A(H1N1)pdm09亚型流感病毒在墨西哥暴发,之后在全世界流行。为了解海南省2016-2018年A(H1N1)pdm09亚型流感病毒流行态势,分析血凝素(HA)与神经氨酸酶(NA)基因遗传进化特征与变异情况,本研究从中国流感监测信息系统获取海南省2016-2018年流感病毒病原学监测数据,选取5家流感监测网络实验室分离鉴定的37株A(H1N1)pdm09亚型流感毒株进行HA与NA基因测序,利用MEGA 10.1.8构建HA与NA基因种系进化树,并分析其氨基酸变异情况。结果显示,2016-2018年共出现3次A(H1N1)pdm09亚型流感病毒活动高峰。2017年10月份以后的分离株(4/8)与2018年大部分分离株(21/22)独立于疫苗株A/Michigan/45/2015聚为一个小支,发生20余处HA与NA氨基酸位点变异。与疫苗株A/California/7/2009(2010-2016)相比,2016-2018年流感病毒分离株在HA基因抗原决定簇上发生7处氨基酸变异并有一个潜在糖基化位点,未发现HA基因受体结合位点变异与NA基因耐药性变异。本研究提示,2016-2018年,A(H1N1)pdm09亚型流感病毒逐步发生规律性进化,氨基酸变异频率有增加趋势,今后应持续加强流感病毒病原学监测,密切追踪A(H1N1)pdm09亚型流感病毒基因变异情况,为科学防控提供理论依据。  相似文献   

3.
The novel swine-origin influenza A/H1N1 virus (S-OIV) first detected in April 2009 has been identified to transmit from human to human directly and is the cause of currently emerged pandemic. In this study, nucleotide and deduced amino acid sequences of hemagglutinin (HA) and neuraminidase (NA) of the S-OIV and other influenza A viruses were analyzed through bioinformatic tools for phylogenetic analysis, genetic recombination and point mutation to investigate the emergence and adaptation of the S-OIV in human. The phylogenetic analysis showed that the HA comes from triple reassortant influenza A/H1N2 and the NA from Eurasian swine influenza A/H1N1 indicating HA and NA to descend from different lineages during the genesis of the S-OIV. Recombination analysis nullified the possibility of occurrence of recombination in HA and NA denoting the role of reassortment in the outbreak. Several conservative mutations are observed in the amino acid sequences of the HA and NA and this mutated residues are identical in the S-OIV. The results reported herein suggested the notion that the recent pandemic is the result of reassortment of different genes from different lineages of two envelope proteins, HA and NA which are responsible for antigenic activity of virus. This study further suggests that the adaptive capability of the S-OIV in human is acquired by the unique mutations generated during emergence.  相似文献   

4.
After the World Health Organization officially declared the end of the first pandemic of the XXI century in August 2010, the influenza A(H1N1)pdm09 virus has been disseminated in the human population. In spite of its sustained circulation, very little on phylogenetic data or oseltamivir (OST) resistance is available for the virus in equatorial regions of South America. In order to shed more light on this topic, we analysed the haemagglutinin (HA) and neuraminidase (NA) genes of influenza A(H1N1)pdm09 positive samples collected during the pandemic period in the Pernambuco (PE), a northeastern Brazilian state. Complete HA sequences were compared and amino acid changes were related to clinical outcome. In addition, the H275Y substitution in NA, associated with OST resistance, was investigated by pyrosequencing. Samples from PE were grouped in phylogenetic clades 6 and 7, being clustered together with sequences from South and Southeast Brazil. The D222N/G HA gene mutation, associated with severity, was found in one deceased patient that was pregnant. Additionally, the HA mutation K308E, which appeared in Brazil in 2010 and was only detected worldwide the following year, was identified in samples from hospitalised cases. The resistance marker H275Y was not identified in samples tested. However, broader studies are needed to establish the real frequency of resistance in this Brazilian region.  相似文献   

5.
H3N2 influenza viruses have now circulated in the human population for 43 years since the pandemic of 1968, accumulating sequence changes in the hemagglutinin (HA) and neuraminidase (NA) that are believed to be predominantly due to selection for escape from antibodies. Examination of mutations that persist and accumulate led to identification of antigenically significant mutations that are contained in five antigenic sites (A-E) mapped on to the H3 HA. In early H3N2 isolates, antigenic site A appeared to be dominant while in the 1990s site B seemed more important. To obtain experimental evidence for dominance of antigenic sites on modern H3 HAs, we have measured antibodies in plasma of human subjects who received the 2006-07 trivalent subunit influenza vaccine (H3 component A/Wisconsin/67/05) or the 2008-09 formulation (H3 component A/Uruguay/716/07). Plasmas were tested against expressed HA of Wisconsin-like influenza A/Oklahoma/309/06 and site-directed mutants in antigenic site A (NNES121-124ITEG, N126T, N133D, TSSS135-138GSNA, K140I, RSNNS142-146PGSG), and antigenic site B (HL156-157KS, KFK158-160GST, NDQI189-192QEQT, A196V). "Native ELISA" analysis and escape mutant selection with two human monoclonal antibodies demonstrated that antibody E05 binds to antigenic site A and 1_C02 binds to site B. We find that most individuals, after vaccination in seasons 2006-07 and/or 2008-09, showed dominance of antigenic site B recognition over antigenic site A. A minority showed dominance of site A in 2006 but these were reduced in 2008 when the vaccine virus had a site A mutation. A better understanding of immunodominance may allow prediction of future antigenic drift and assist in vaccine strain selection.  相似文献   

6.
In the vast majority of influenza A viruses characterized to date, hemagglutinin (HA) is the receptor-binding and fusion protein, whereas neuraminidase (NA) is a receptor-cleaving protein that facilitates viral release but is expendable for entry. However, the NAs of some recent human H3N2 isolates have acquired receptor-binding activity via the mutation D151G, although these isolates also appear to retain the ability to bind receptors via HA. We report here the laboratory generation of a mutation (G147R) that enables an N1 NA to completely co-opt the receptor-binding function normally performed by HA. Viruses with this mutant NA grow to high titers even in the presence of extensive mutations to conserved residues in HA''s receptor-binding pocket. When the receptor-binding NA is paired with this binding-deficient HA, viral infectivity and red blood cell agglutination are blocked by NA inhibitors. Furthermore, virus-like particles expressing only the receptor-binding NA agglutinate red blood cells in an NA-dependent manner. Although the G147R NA receptor-binding mutant virus that we characterize is a laboratory creation, this same mutation is found in several natural clusters of H1N1 and H5N1 viruses. Our results demonstrate that, at least in tissue culture, influenza virus receptor-binding activity can be entirely shifted from HA to NA.  相似文献   

7.
Limited antiviral compounds are available for the control of influenza, and the emergence of resistant variants would further narrow the options for defense. The H275Y neuraminidase (NA) mutation, which confers resistance to oseltamivir carboxylate, has been identified among the seasonal H1N1 and 2009 pandemic influenza viruses; however, those H275Y resistant variants demonstrated distinct epidemiological outcomes in humans. Specifically, dominance of the H275Y variant over the oseltamivir-sensitive viruses was only reported for a seasonal H1N1 variant during 2008-2009. Here, we systematically analyze the effect of the H275Y NA mutation on viral fitness and transmissibility of A(H1N1)pdm09 and seasonal H1N1 influenza viruses. The NA genes from A(H1N1)pdm09 A/California/04/09 (CA04), seasonal H1N1 A/New Caledonia/20/1999 (NewCal), and A/Brisbane/59/2007 (Brisbane) were individually introduced into the genetic background of CA04. The H275Y mutation led to reduced NA enzyme activity, an increased Km for 3′-sialylactose or 6′-sialylactose, and decreased infectivity in mucin-secreting human airway epithelial cells compared to the oseltamivir-sensitive wild-type counterparts. Attenuated pathogenicity in both RG-CA04NA-H275Y and RG-CA04 × BrisbaneNA-H275Y viruses was observed in ferrets compared to RG-CA04 virus, although the transmissibility was minimally affected. In parallel experiments using recombinant Brisbane viruses differing by hemagglutinin and NA, comparable direct contact and respiratory droplet transmissibilities were observed among RG-NewCalHA,NA, RG-NewCalHA,NA-H275Y, RG-BrisbaneHA,NA-H275Y, and RG-NewCalHA × BrisbaneNA-H275Y viruses. Our results demonstrate that, despite the H275Y mutation leading to a minor reduction in viral fitness, the transmission potentials of three different antigenic strains carrying this mutation were comparable in the naïve ferret model.  相似文献   

8.
Drugs inhibiting the influenza A virus (IAV) neuraminidase (NA) are the cornerstone of anti-IAV chemotherapy and prophylaxis in man. Drug-resistant mutations in NA arise frequently in human isolates, limiting the therapeutic application of NA inhibitors. Here, we show that antibody-driven antigenic variation in one domain of the H1 hemagglutinin Sa site leads to compensatory mutations in NA, resulting in NA antigenic variation and acquisition of drug resistance. These findings indicate that influenza A virus resistance to NA inhibitors can potentially arise from antibody driven HA escape, confounding analysis of influenza NA evolution in nature.  相似文献   

9.
The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA) sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked α2–6 to galactose. The neuraminidase (NA) of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84), a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP), and matrix (M) genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential.  相似文献   

10.
Complete nucleotide sequence of the genome segments encoding the surface glycoproteins, hemagglutinin, and neuraminidase of influenza A virus H1N1 derived from the patients with influenza in the context of pandemic (H1N1) 2009 was determined out of 14 isolates of pandemic influenza. The philogenetic analysis of these sequences demonstrated their genetic similarity to the corresponding genes of the pandemic influenza virus A (H1N1) 2009 isolates obtained in other countries; each gene homology was greater than 99%. Neuraminidase mutations causing virus resistance to oseltamivir and other neuraminidase inhibitors, known from the literature, were not detected. The hemagglutinin gene mutation D222G was found in 4 isolates from autopsy material. In the hemagglutinin of pandemic A/Salekhard/01/2009(H1N1) isolate a mutation G155E leading to the increase in viral replication in developing chick embryos was detected. The nature and frequency of nucleotides substitutions within HA and NA genes were determined in the current research.  相似文献   

11.

Background

The Influenza A pandemic H1N1 2009 (H1N1pdm) virus appeared in India in May 2009 and thereafter outbreaks with considerable morbidity and mortality have been reported from many parts of the country. Continuous monitoring of the genetic makeup of the virus is essential to understand its evolution within the country in relation to global diversification and to track the mutations that may affect the behavior of the virus.

Methods

H1N1pdm viruses were isolated from both recovered and fatal cases representing major cities and sequenced. Phylogenetic analyses of six concatenated whole genomes and the hemagglutinin (HA) gene of seven more isolates from May-September 2009 was performed with reference to 685 whole genomes of global isolates available as of November 24, 2009. Molecular characterization of all the 8 segments was carried out for known pathogenic markers.

Results

The first isolate of May 2009 belonged to clade 5. Although clade 7 was the dominant H1N1pdm lineage in India, both clades 6 and 7 were found to be co-circulating. The neuraminidase of all the Indian isolates possessed H275, the marker for sensitivity to the neuraminidase inhibitor Oseltamivir. Some of the mutations in HA are at or in the vicinity of antigenic sites and may therefore be of possible antigenic significance. Among these a D222G mutation in the HA receptor binding domain was found in two of the eight Indian isolates obtained from fatal cases.

Conclusions

The majority of the 13 Indian isolates grouped in the globally most widely circulating H1N1pdm clade 7. Further, correlations of the mutations specific to clade 7 Indian isolates to viral fitness and adaptability in the country remains to be understood. The D222G mutation in HA from isolates of fatal cases needs to be studied for pathogenicity.  相似文献   

12.
The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.  相似文献   

13.
When avian influenza viruses (AIVs) are transmitted from their reservoir hosts (wild waterfowl and shorebirds) to domestic bird species, they undergo genetic changes that have been linked to higher virulence and broader host range. Common genetic AIV modifications in viral proteins of poultry isolates are deletions in the stalk region of the neuraminidase (NA) and additions of glycosylation sites on the hemagglutinin (HA). Even though these NA deletion mutations occur in several AIV subtypes, they have not been analyzed comprehensively. In this study, 4,920 NA nucleotide sequences, 5,596 HA nucleotide and 4,702 HA amino acid sequences were analyzed to elucidate the widespread emergence of NA stalk deletions in gallinaceous hosts, the genetic polymorphism of the deletion patterns and association between the stalk deletions in NA and amino acid variants in HA. Forty-seven different NA stalk deletion patterns were identified in six NA subtypes, N1-N3 and N5-N7. An analysis that controlled for phylogenetic dependence due to shared ancestry showed that NA stalk deletions are statistically correlated with gallinaceous hosts and certain amino acid features on the HA protein. Those HA features included five glycosylation sites, one insertion and one deletion. The correlations between NA stalk deletions and HA features are HA-NA-subtype-specific. Our results demonstrate that stalk deletions in the NA proteins of AIV are relatively common. Understanding the NA stalk deletion and related HA features may be important for vaccine and drug development and could be useful in establishing effective early detection and warning systems for the poultry industry.  相似文献   

14.
The surface proteins hemagglutinin (HA) and neuraminidase (NA) of human influenza A virus evolve under selection pressures to escape adaptive immune responses and antiviral drug treatments. In addition to these external selection pressures, some mutations in HA are known to affect the adaptive landscape of NA, and vice versa, because these two proteins are physiologically interlinked. However, the extent to which evolution of one protein affects the evolution of the other one is unknown. Here we develop a novel phylogenetic method for detecting the signatures of such genetic interactions between mutations in different genes – that is, inter-gene epistasis. Using this method, we show that influenza surface proteins evolve in a coordinated way, with mutations in HA affecting subsequent spread of mutations in NA and vice versa, at many sites. Of particular interest is our finding that the oseltamivir-resistance mutations in NA in subtype H1N1 were likely facilitated by prior mutations in HA. Our results illustrate that the adaptive landscape of a viral protein is remarkably sensitive to its genomic context and, more generally, that the evolution of any single protein must be understood within the context of the entire evolving genome.  相似文献   

15.
The 2009 H1N1 influenza pandemic is the first human pandemic in decades and was of swine origin. Although swine are believed to be an intermediate host in the emergence of new human influenza viruses, there is still little known about the host barriers that keep swine influenza viruses from entering the human population. We surveyed swine progenitors and human viruses from the 2009 pandemic and measured the activities of the hemagglutinin (HA) and neuraminidase (NA), which are the two viral surface proteins that interact with host glycan receptors. A functional balance of these two activities (HA binding and NA cleavage) is found in human viruses but not in the swine progenitors. The human 2009 H1N1 pandemic virus exhibited both low HA avidity for glycan receptors as a result of mutations near the receptor binding site and weak NA enzymatic activity. Thus, a functional match between the hemagglutinin and neuraminidase appears to be necessary for efficient transmission between humans and may be an indicator of the pandemic potential of zoonotic viruses.  相似文献   

16.
Yang JR  Lin YC  Huang YP  Su CH  Lo J  Ho YL  Yao CY  Hsu LC  Wu HS  Liu MT 《PloS one》2011,6(3):e18177
A dramatic increase in the frequency of the H275Y mutation in the neuraminidase (NA), conferring resistance to oseltamivir, has been detected in human seasonal influenza A/H1N1 viruses since the influenza season of 2007-2008. The resistant viruses emerged in the ratio of 14.3% and quickly reached 100% in Taiwan from September to December 2008. To explore the mechanisms responsible for emergence and spread of the resistant viruses, we analyzed the complete genome sequences of 25 viruses collected during 2005-2009 in Taiwan, which were chosen from various clade viruses, 1, 2A, 2B-1, 2B-2, 2C-1 and 2C-2 by the classification of hemagglutinin (HA) sequences. Our data revealed that the dominant variant, clade 2B-1, in the 2007-2008 influenza emerged through an intra-subtype 4+4 reassortment between clade 1 and 2 viruses. The dominant variant acquired additional substitutions, including A206T in HA, H275Y and D354G in NA, L30R and H41P in PB1-F2, and V411I and P453S in basic polymerase 2 (PB2) proteins and subsequently caused the 2008-2009 influenza epidemic in Taiwan, accompanying the widespread oseltamivir-resistant viruses. We also characterized another 3+5 reassortant virus which became double resistant to oseltamivir and amantadine. Comparison of oseltamivir-resistant influenza A/H1N1 viruses belonging to various clades in our study highlighted that both reassortment and mutations were associated with emergence and spread of these viruses and the specific mutation, H275Y, conferring to antiviral resistance, was acquired in a hitch-hiking mechanism during the viral evolutionary processes.  相似文献   

17.
An influenza pandemic caused by swine-origin influenza virus A/H1N1 (H1N1pdm) spread worldwide in 2009, with 12,080 confirmed cases and 626 deaths occurring in Argentina. A total of 330 H1N1pdm viruses were detected from May to August 2009, and phylogenetic and genetic analyses of 21 complete genome sequences from both mild and fatal cases were achieved with reference to concatenated whole genomes. In addition, the analysis of another 16 hemagglutinin (HA), neuraminidase (NA), and matrix (M) gene sequences of Argentinean isolates was performed. The microevolution timeline was assessed and resistance monitoring of an NA fragment from 228 samples throughout the 2009 pandemic peak was performed by sequencing and pyrosequencing. We also assessed the viral growth kinetics for samples with replacements at the genomic level or special clinical features. In this study, we found by Bayesian inference that the Argentinean complete genome sequences clustered with globally distributed clade 7 sequences. The HA sequences were related to samples from the northern hemisphere autumn-winter from September to December 2009. The NA of Argentinean sequences belonged to the New York group. The N-4 fragment as well as the hierarchical clustering of samples showed that a consensus sequence prevailed in time but also that different variants, including five H275Y oseltamivir-resistant strains, arose from May to August 2009. Fatal and oseltamivir-resistant isolates had impaired growth and a small plaque phenotype compared to oseltamivir-sensitive and consensus strains. Although these strains might not be fit enough to spread in the entire population, molecular surveillance proved to be essential to monitor resistance and viral dynamics in our country.  相似文献   

18.
The hemagglutinin (HA) and neuraminidase (NA) genes of H7 avian influenza virus (AIV) isolated between 1994 and 2002 from live-bird markets (LBMs) in the northeastern United States and from three outbreaks in commercial poultry have been characterized. Phylogenetic analysis of the HA and NA genes demonstrates that the isolates from commercial poultry were closely related to the viruses circulating in the LBMs. Also, since 1994, two distinguishing genetic features have appeared in this AIV lineage: a deletion of 17 amino acids in the NA protein stalk region and a deletion of 8 amino acids in the HA1 protein which is putatively in part of the receptor binding site. Furthermore, analysis of the HA cleavage site amino acid sequence, a marker for pathogenicity in chickens and turkeys, shows a progression toward a cleavage site sequence that fulfills the molecular criteria for highly pathogenic AIV.  相似文献   

19.
The 2009 pandemic H1N1 (H1N1pdm09) influenza virus is naturally susceptible to neuraminidase (NA) inhibitors, but mutations in the NA protein can cause oseltamivir resistance. The H275Y and I223V amino acid substitutions in the NA of the H1N1pdm09 influenza strain have been separately observed in patients exhibiting oseltamivir-resistance. Here, we apply mathematical modelling techniques to compare the fitness of the wild-type H1N1pdm09 strain relative to each of these two mutants. We find that both the H275Y and I223V mutations in the H1N1pdm09 background significantly lengthen the duration of the eclipse phase (by 2.5 h and 3.6 h, respectively), consistent with these NA mutations delaying the release of viral progeny from newly infected cells. Cells infected by H1N1pdm09 virus carrying the I223V mutation display a disadvantageous, shorter infectious lifespan (17 h shorter) than those infected with the wild-type or MUT-H275Y strains. In terms of compensating traits, the H275Y mutation in the H1N1pdm09 background results in increased virus infectiousness, as we reported previously, whereas the I223V exhibits none, leaving it overall less fit than both its wild-type counterpart and the MUT-H275Y strain. Using computer simulated competition experiments, we determine that in the presence of oseltamivir at doses even below standard therapy, both the MUT-H275Y and MUT-I223V dominate their wild-type counterpart in all aspects, and the MUT-H275Y outcompetes the MUT-I223V. The H275Y mutation should therefore be more commonly observed than the I223V mutation in circulating H1N1pdm09 strains, assuming both mutations have a similar impact or no significant impact on between-host transmission. We also show that mathematical modelling offers a relatively inexpensive and reliable means to quantify inter-experimental variability and assess the reproducibility of results.  相似文献   

20.
The increasing availability of complete influenza virus genomes is deepening our understanding of influenza evolutionary dynamics and facilitating the selection of vaccine strains. However, only one complete African influenza virus sequence is available in the public domain. Here we present a complete genome analysis of 59 influenza A/H3N2 viruses isolated from humans in Uganda during the 2008 and 2009 season. Isolates were recovered from hospital-based sentinel surveillance for influenza-like illnesses and their whole genome sequenced. The viruses circulating during these two seasons clearly differed from each other phylogenetically. They showed a slow evolution away from the 2009/10 recommended vaccine strain (A/Brisbane/10/07), instead clustering with the 2010/11 recommended vaccine strain (A/Perth/16/09) in the A/Victoria/208/09 clade, as observed in other global regions. All of the isolates carried the adamantane resistance marker S31N in the M2 gene and carried several markers of enhanced transmission; as expected, none carried any marker of neuraminidase inhibitor resistance. The hemagglutinin gene of the 2009 isolates differed from that of the 2008 isolates in antigenic sites A, B, D, and to a lesser extent, C and E indicating evidence of an early phylogenetic shift from the 2008 to 2009 viruses. The internal genes of the 2009 isolates were similar to those of one 2008 isolate, A/Uganda/MUWRP-050/2008. Another 2008 isolate had a truncated PB1-F2 protein. Whole genome sequencing can enhance surveillance of future seasonal changes in the viral genome which is crucial to ensure that selected vaccine strains are protective against the strains circulating in Eastern Africa. This data provides an important baseline for this surveillance. Overall the influenza virus activity in Uganda appears to mirror that observed in other regions of the southern hemisphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号