首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

To compare the event-related potentials (ERPs) and brain topographic maps characteristic and change in normal controls and subjective tinnitus patients before and after repetitive transcranial magnetic stimulation (rTMS) treatment.

Methods and Participants

The ERPs and brain topographic maps elicited by target stimulus were compared before and after 1-week treatment with rTMS in 20 subjective tinnitus patients and 16 healthy controls.

Results

Before rTMS, target stimulus elicited a larger N1 component than the standard stimuli (repeating sounds)in control group but not in tinnitus patients. Instead, the tinnitus group pre-treatment exhibited larger amplitude of N1 in response to standard stimuli than to deviant stimuli. Furthermore tinnitus patients had smaller mismatch negativity (MMN) and late discriminative negativity (LDN)component at Fz compared with the control group. After rTMS treatment, tinnitus patients showed increased N1 response to deviant stimuli and larger MMN and LDN compared with pre-treatment. The topographic maps for the tinnitus group before rTMS -treatment demonstrated global asymmetry between the left and right cerebral hemispheres with more negative activities in left side and more positive activities in right side. In contrast, the brain topographic maps for patients after rTMS-treatment and controls seem roughly symmetrical. The ERP amplitudes and brain topographic maps in post-treatment patient group showed no significant difference with those in controls.

Conclusions

The characterical changes in ERP and brain topographic maps in tinnitus patients maybe related with the electrophysiological mechanism of tinnitus induction and development. It can be used as an objective biomarker for the evaluation of auditory central in subjective tinnitus patients. These findings support the notion that rTMS treatment in tinnitus patients may exert a beneficial effect.  相似文献   

2.

Objectives

Recent repetitive TMS (rTMS) mapping protocols for language mapping revealed deficits of this method, mainly in posterior brain regions. Therefore this study analyzed the impact of different language tasks on the localization of language-positive brain regions and compared their effectiveness, especially with regard to posterior brain regions.

Methods

Nineteen healthy, right-handed subjects performed object naming, pseudoword reading, verb generation, and action naming during rTMS language mapping of the left hemisphere. Synchronically, 5 Hz/10 pulses were applied with a 0 ms delay

Results

The object naming task evoked the highest error rate (14%), followed by verb generation (13%) and action naming (11%). The latter revealed more errors in posterior than in anterior areas. Pseudoword reading barely generated errors, except for phonological paraphasias.

Conclusions

In general, among the evaluated language tasks, object naming is the most discriminative task to detect language-positive regions via rTMS. However, other tasks might be used for more specific questions.  相似文献   

3.

Background

Repetitive transcranial magnetic stimulation of the left temporo-parietal junction area has been studied as a treatment option for auditory verbal hallucinations. Although the right temporo-parietal junction area has also shown involvement in the genesis of auditory verbal hallucinations, no studies have used bilateral stimulation. Moreover, little is known about durability effects. We studied the short and long term effects of 1 Hz treatment of the left temporo-parietal junction area in schizophrenia patients with persistent auditory verbal hallucinations, compared to sham stimulation, and added an extra treatment arm of bilateral TPJ area stimulation.

Methods

In this randomized controlled trial, 51 patients diagnosed with schizophrenia and persistent auditory verbal hallucinations were randomly allocated to treatment of the left or bilateral temporo-parietal junction area or sham treatment. Patients were treated for six days, twice daily for 20 minutes. Short term efficacy was measured with the Positive and Negative Syndrome Scale (PANSS), the Auditory Hallucinations Rating Scale (AHRS), and the Positive and Negative Affect Scale (PANAS). We included follow-up measures with the AHRS and PANAS at four weeks and three months.

Results

The interaction between time and treatment for Hallucination item P3 of the PANSS showed a trend for significance, caused by a small reduction of scores in the left group. Although self-reported hallucination scores, as measured with the AHRS and PANAS, decreased significantly during the trial period, there were no differences between the three treatment groups.

Conclusion

We did not find convincing evidence for the efficacy of left-sided rTMS, compared to sham rTMS. Moreover, bilateral rTMS was not superior over left rTMS or sham in improving AVH. Optimizing treatment parameters may result in stronger evidence for the efficacy of rTMS treatment of AVH. Moreover, future research should consider investigating factors predicting individual response.

Trial Registration

Dutch Trial Register NTR1813  相似文献   

4.

Background

Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson''s disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA).

Methodology/Principal Findings

Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [11C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [11C]FLB 457 BP following right DLPFC rTMS.

Conclusions/Significance

To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.  相似文献   

5.

Background

While hemispheric specialization of language processing is well established, lateralization of emotion processing is still under debate. Several conflicting hypotheses have been proposed, including right hemisphere hypothesis, valence asymmetry hypothesis and region-specific lateralization hypothesis. However, experimental evidence for these hypotheses remains inconclusive, partly because direct comparisons between hemispheres are scarce.

Methods

The present fMRI study systematically investigated functional lateralization during affective stimulus processing in 36 healthy participants. We normalized our functional data on a symmetrical template to avoid confounding effects of anatomical asymmetries. Direct comparison of BOLD responses between hemispheres was accomplished taking two approaches: a hypothesis-driven region of interest analysis focusing on brain areas most frequently reported in earlier neuroimaging studies of emotion; and an exploratory whole volume analysis contrasting non-flipped with flipped functional data using paired t-test.

Results

The region of interest analysis revealed lateralization towards the left in the medial prefrontal cortex (BA 10) during positive stimulus processing; while negative stimulus processing was lateralized towards the right in the dorsolateral prefrontal cortex (BA 9 & 46) and towards the left in the amygdala and uncus. The whole brain analysis yielded similar results and, in addition, revealed lateralization towards the right in the premotor cortex (BA 6) and the temporo-occipital junction (BA 19 & 37) during positive stimulus processing; while negative stimulus processing showed lateralization towards the right in the temporo-parietal junction (BA 37,39,42) and towards the left in the middle temporal gyrus (BA 21).

Conclusion

Our data suggests region-specific functional lateralization of emotion processing. Findings show valence asymmetry for prefrontal cortical areas and left-lateralized negative stimulus processing in subcortical areas, in particular, amygdala and uncus.  相似文献   

6.
Tian L  Meng C  Yan H  Zhao Q  Liu Q  Yan J  Han Y  Yuan H  Wang L  Yue W  Zhang Y  Li X  Zhu C  He Y  Zhang D 《PloS one》2011,6(12):e28794

Background

Shared neuropathological features between schizophrenic patients and their first-degree relatives have potential as indicators of genetic vulnerability to schizophrenia. We sought to explore genetic influences on brain morphology and function in schizophrenic patients and their relatives.

Methods

Using a multimodal imaging strategy, we studied 33 schizophrenic patients, 55 of their unaffected parents, 30 healthy controls for patients, and 29 healthy controls for parents with voxel-based morphometry of structural MRI scans and functional connectivity analysis of resting-state functional MRI data.

Results

Schizophrenic patients showed widespread gray matter reductions in the bilateral frontal cortices, bilateral insulae, bilateral occipital cortices, left amygdala and right thalamus, whereas their parents showed more localized reductions in the left amygdala, left thalamus and right orbitofrontal cortex. Patients and their parents shared gray matter loss in the left amygdala. Further investigation of the resting-state functional connectivity of the amygdala in the patients showed abnormal functional connectivity with the bilateral orbitofrontal cortices, bilateral precunei, bilateral dorsolateral frontal cortices and right insula. Their parents showed slightly less, but similar changes in the pattern in the amygdala connectivity. Co-occurrences of abnormal connectivity of the left amygdala with the left orbitofrontal cortex, right dorsolateral frontal cortex and right precuneus were observed in schizophrenic patients and their parents.

Conclusions

Our findings suggest a potential genetic influence on structural and functional abnormalities of the amygdala in schizophrenia. Such information could help future efforts to identify the endophenotypes that characterize the complex disorder of schizophrenia.  相似文献   

7.

Background

Motor imagery is considered as a promising therapeutic tool for rehabilitation of motor planning problems in patients with cerebral palsy. However motor planning problems may lead to poor motor imagery ability.

Aim

The aim of this functional magnetic resonance imaging study was to examine and compare brain activation following motor imagery tasks in patients with hemiplegic cerebral palsy with left or right early brain lesions. We tested also the influence of the side of imagined hand movement.

Method

Twenty patients with clinical hemiplegic cerebral palsy (sixteen males, mean age 12 years and 10 months, aged 6 years 10 months to 20 years 10 months) participated in this study. Using block design, brain activations following motor imagery of a simple opening-closing hand movement performed by either the paretic or nonparetic hand was examined.

Results

During motor imagery tasks, patients with early right brain damages activated bilateral fronto-parietal network that comprise most of the nodes of the network well described in healthy subjects. Inversely, in patients with left early brain lesion brain activation following motor imagery tasks was reduced, compared to patients with right brain lesions. We found also a weak influence of the side of imagined hand movement.

Conclusion

Decreased activations following motor imagery in patients with right unilateral cerebral palsy highlight the dominance of the left hemisphere during motor imagery tasks. This study gives neuronal substrate to propose motor imagery tasks in unilateral cerebral palsy rehabilitation at least for patients with right brain lesions.  相似文献   

8.

Background

In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP) and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively). Although a human homologue of such a circuit has been identified whether activity within this circuit varies depending on handedness has yet to be investigated.

Methodology/Principal Findings

We used functional magnetic resonance imaging (fMRI) to explicitly test how handedness modulates activity within human grasping-related brain areas. Right- and left-handers subjects were requested to reach towards and grasp an object with either the right or the left hand using a precision grip while scanned. A kinematic study was conducted with similar procedures as a behavioral counterpart for the fMRI experiment. Results from a factorial design revealed significant activity within the right dPMC, the right cerebellum and AIP bilaterally. The pattern of activity within these areas mirrored the results found for the behavioral study.

Conclusion/Significance

Data are discussed in terms of an handedness-independent role for the right dPMC in monitoring hand shaping, the need for bilateral AIP activity for the performance of precision grip movements which varies depending on handedness and the involvement of the cerebellum in terms of its connections with AIP. These results provide the first compelling evidence of specific grasping related neural activity depending on handedness.  相似文献   

9.

Background

Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established.

Methodology/Principal Findings

We exposed 15 participants to short duration (50 s) monochromatic violet (430 nm), blue (473 nm), and green (527 nm) light exposures of equal photon flux (1013ph/cm2/s) while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus.

Conclusion/Significance

These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function.  相似文献   

10.

Object

This study investigates the effect of tumor location on alterations of language network by brain tumors at different locations using blood oxygenation level dependent (BOLD) fMRI and group independent component analysis (ICA).

Subjects and Methods

BOLD fMRI data were obtained from 43 right handed brain tumor patients. Presurgical mapping of language areas was performed on all 43 patients with a picture naming task. All data were retrospectively analyzed using group ICA. Patents were divided into three groups based on tumor locations, i.e., left frontal region, left temporal region or right hemisphere. Laterality index (LI) was used to assess language lateralization in each group.

Results

The results from BOLD fMRI and ICA revealed the different language activation patterns in patients with brain tumors located in different brain regions. Language areas, such as Broca’s and Wernicke’s areas, were intact in patients with tumors in the right hemisphere. Significant functional changes were observed in patients with tumor in the left frontal and temporal areas. More specifically, the tumors in the left frontal region affect both Broca’s and Wernicke’s areas, while tumors in the left temporal lobe affect mainly Wernicke’s area. The compensated activation increase was observed in the right frontal areas in patients with left hemisphere tumors.

Conclusion

Group ICA provides a model free alternative approach for mapping functional networks in brain tumor patients. Altered language activation by different tumor locations suggested reorganization of language functions in brain tumor patients and may help better understanding of the language plasticity.  相似文献   

11.

Background

Apart from findings on both functional and motor asymmetries in captive aquatic mammals, only few studies have focused on lateralized behaviour of these species in the wild.

Methodology/Principal Findings

In this study we focused on lateralized visual behaviour by presenting wild striped dolphins with objects of different degrees of familiarity (fish, ball, toy). Surveys were conducted in the Gulf of Taranto, the northern Ionian Sea portion delimited by the Italian regions of Calabria, Basilicata and Apulia. After sighting striped dolphins from a research vessel, different stimuli were presented in a random order by a telescopic bar connected to the prow of the boat. The preferential use of the right/left monocular viewing during inspection of the stimuli was analysed.

Conclusion

Results clearly showed a monocular viewing preference with respect to the type of the stimulus employed. Due to the complete decussation of the optical nerves in dolphin brain our results reflected a different specialization of brain hemispheres for visual scanning processes confirming that in this species different stimuli evoked different patterns of eye use. A preferential use of the right eye (left hemisphere) during visual inspection of unfamiliar targets was observed supporting the hypothesis that, in dolphins, the organization of the functional neural structures which reflected cerebral asymmetries for visual object recognition could have been subjected to a deviation from the evolutionary line of most terrestrial vertebrates.  相似文献   

12.

Background

The left and right amygdalae are key regions distinctly involved in emotion-regulation processes. Individual differences, such as personality features, may affect the implicated neurocircuits. The lateralized amygdala affective processing linked with the temperament dimension Harm Avoidance (HA) remains poorly understood. Resting state functional connectivity imaging (rsFC) may provide more insight into these neuronal processes.

Methods

In 56 drug-naive healthy female subjects, we have examined the relationship between the personality dimension HA on lateralized amygdala rsFC.

Results

Across all subjects, left and right amygdalae were connected with distinct regions mainly within the ipsilateral hemisphere. Females scoring higher on HA displayed stronger left amygdala rsFC with ventromedial prefrontal cortical (vmPFC) regions involved in affective disturbances. In high HA scorers, we also observed stronger right amygdala rsFC with the dorsomedial prefrontal cortex (dmPFC), which is implicated in negative affect regulation.

Conclusions

In healthy females, left and right amygdalae seem implicated in distinct mPFC brain networks related to HA and may represent a vulnerability marker for sensitivity to stress and anxiety (disorders).  相似文献   

13.

Background

Repetitive transcranial magnetic stimulation (rTMS) allows non-invasive stimulation of the human brain. However, no suitable marker has yet been established to monitor the immediate rTMS effects on cortical areas in children.

Objective

TMS-evoked EEG potentials (TEPs) could present a well-suited marker for real-time monitoring. Monitoring is particularly important in children where only few data about rTMS effects and safety are currently available.

Methods

In a single-blind sham-controlled study, twenty-five school-aged children with ADHD received subthreshold 1 Hz-rTMS to the primary motor cortex. The TMS-evoked N100 was measured by 64-channel-EEG pre, during and post rTMS, and compared to sham stimulation as an intraindividual control condition.

Results

TMS-evoked N100 amplitude decreased during 1 Hz-rTMS and, at the group level, reached a stable plateau after approximately 500 pulses. N100 amplitude to supra-threshold single pulses post rTMS confirmed the amplitude reduction in comparison to the pre-rTMS level while sham stimulation had no influence. EEG source analysis indicated that the TMS-evoked N100 change reflected rTMS effects in the stimulated motor cortex. Amplitude changes in TMS-evoked N100 and MEPs (pre versus post 1 Hz-rTMS) correlated significantly, but this correlation was also found for pre versus post sham stimulation.

Conclusion

The TMS-evoked N100 represents a promising candidate marker to monitor rTMS effects on cortical excitability in children with ADHD. TMS-evoked N100 can be employed to monitor real-time effects of TMS for subthreshold intensities. Though TMS-evoked N100 was a more sensitive parameter for rTMS-specific changes than MEPs in our sample, further studies are necessary to demonstrate whether clinical rTMS effects can be predicted from rTMS-induced changes in TMS-evoked N100 amplitude and to clarify the relationship between rTMS-induced changes in TMS-evoked N100 and MEP amplitudes. The TMS-evoked N100 amplitude reduction after 1 Hz-rTMS could either reflect a globally decreased cortical response to the TMS pulse or a specific decrease in inhibition.  相似文献   

14.

Background

Repetitive transcranial magnetic stimulation (rTMS) at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a “virtual lesion” in stimulated brain regions, with correspondingly diminished behavioral performance.

Methodology/Principal Findings

Here we investigated the effects of rTMS to visual cortex on subjects'' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz) stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task.

Conclusions/Significance

Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception.  相似文献   

15.

Background and Purpose

Imaging studies of traumatic brain injury demonstrate that the cerebellum is often affected. We aim to examine fractional anisotropy alteration in acute-phase mild traumatic brain injury patients in cerebellum-related white matter tracts.

Materials and Methods

This prospective study included 47 mild traumatic brain injury patients in the acute stage and 37 controls. MR imaging and neurocognitive tests were performed in patients within 7 days of injury. White matter integrity was examined by using diffusion tensor imaging. We used three approaches, tract-based spatial statistics, graphical-model-based multivariate analysis, and region-of-interest analysis, to detect altered cerebellar white matter integrity in mild traumatic brain injury patients.

Results

Results from three analysis methods were in accordance with each other, and suggested fractional anisotropy in the middle cerebellar peduncle and the pontine crossing tract was changed in the acute-phase mild traumatic brain injury patients, relative to controls (adjusted p-value < 0.05). Higher fractional anisotropy in the middle cerebellar peduncle was associated with worse performance in the fluid cognition composite (r = -0.289, p-value = 0.037).

Conclusion

Altered cerebellar fractional anisotropy in acute-phase mild traumatic brain injury patients is localized in specific regions and statistically associated with cognitive deficits detectable on neurocognitive testing.  相似文献   

16.

Purpose

PET (positron emission tomography) imaging researches of functional metabolism using fluorodeoxyglucose (18F-FDG) of animal brain are important in neuroscience studies. FDG-PET imaging studies are often performed on groups of rats, so it is desirable to establish an objective voxel-based statistical methodology for group data analysis.

Material and Methods

This study establishes a statistical parametric mapping (SPM) toolbox (plug-ins) named spmratIHEP for voxel-wise analysis of FDG-PET images of rat brain, in which an FDG-PET template and an intracranial mask image of rat brain in Paxinos & Watson space were constructed, and the default settings were modified according to features of rat brain. Compared to previous studies, our constructed rat brain template comprises not only the cerebrum and cerebellum, but also the whole olfactory bulb which made the later cognitive studies much more exhaustive. And with an intracranial mask image in the template space, the brain tissues of individuals could be extracted automatically. Moreover, an atlas space is used for anatomically labeling the functional findings in the Paxinos & Watson space. In order to standardize the template image with the atlas accurately, a synthetic FDG-PET image with six main anatomy structures is constructed from the atlas, which performs as a target image in the co-registration.

Results

The spatial normalization procedure is evaluated, by which the individual rat brain images could be standardized into the Paxinos & Watson space successfully and the intracranial tissues could also be extracted accurately. The practical usability of this toolbox is evaluated using FDG-PET functional images from rats with left side middle cerebral artery occlusion (MCAO) in comparison to normal control rats. And the two-sample t-test statistical result is almost related to the left side MCA.

Conclusion

We established a toolbox of SPM8 named spmratIHEP for voxel-wise analysis of FDG-PET images of rat brain.  相似文献   

17.
Xu H  Li X  Zhang Z  Qiu M  Mu Q  Wu Y  Tan L  Zhang S  Zhang X 《PloS one》2011,6(11):e27166

Background

The major hindrance to multidetector CT imaging of the left extraperitoneal space (LES), and the detailed spatial relationships to its related spaces, is that there is no obvious density difference between them. Traditional gross anatomy and thick-slice sectional anatomy imagery are also insufficient to show the anatomic features of this narrow space in three-dimensions (3D). To overcome these obstacles, we used a new method to visualize the anatomic features of the LES and its spatial associations with related spaces, in random sections and in 3D.

Methods

In conjunction with Mimics® and Amira® software, we used thin-slice cross-sectional images of the upper abdomen, retrieved from the Chinese and American Visible Human dataset and the Chinese Virtual Human dataset, to display anatomic features of the LES and spatial relationships of the LES to its related spaces, especially the gastric bare area. The anatomic location of the LES was presented on 3D sections reconstructed from CVH2 images and CT images.

Principal Findings

What calls for special attention of our results is the LES consists of the left sub-diaphragmatic fat space and gastric bare area. The appearance of the fat pad at the cardiac notch contributes to converting the shape of the anteroexternal surface of the LES from triangular to trapezoidal. Moreover, the LES is adjacent to the lesser omentum and the hepatic bare area in the anterointernal and right rear direction, respectively.

Conclusion

The LES and its related spaces were imaged in 3D using visualization technique for the first time. This technique is a promising new method for exploring detailed communication relationships among other abdominal spaces, and will promote research on the dynamic extension of abdominal diseases, such as acute pancreatitis and intra-abdominal carcinomatosis.  相似文献   

18.

Background

A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices.

Methods

Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy.

Results

Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position.

Conclusions

Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections.  相似文献   

19.

Background

The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres.

Methods/Principal Findings

To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate.

Conclusions/Significance

These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization.  相似文献   

20.

Background

Gamma (γ) oscillations (30–50 Hz) have been shown to be excessive in patients with schizophrenia (SCZ) during working memory (WM). WM is a cognitive process that involves the online maintenance and manipulation of information that is mediated largely by the dorsolateral prefrontal cortex (DLPFC). Repetitive transcranial magnetic stimulation (rTMS) represents a non-invasive method to stimulate the cortex that has been shown to enhance cognition and γ oscillatory activity during WM.

Methodology and Principal Findings

We examined the effect of 20 Hz rTMS over the DLPFC on γ oscillatory activity elicited during the N-back task in 24 patients with SCZ compared to 22 healthy subjects. Prior to rTMS, patients with SCZ elicited excessive γ oscillatory activity compared to healthy subjects across WM load. Active rTMS resulted in the reduction of frontal γ oscillatory activity in patients with SCZ, while potentiating activity in healthy subjects in the 3-back, the most difficult condition. Further, these effects on γ oscillatory activity were found to be specific to the frontal brain region and were absent in the parieto-occipital brain region.

Conclusions and Significance

We suggest that this opposing effect of rTMS on γ oscillatory activity in patients with SCZ versus healthy subjects may be related to homeostatic plasticity leading to differential effects of rTMS on γ oscillatory activity depending on baseline differences. These findings provide important insights into the neurophysiological mechanisms underlying WM deficits in SCZ and demonstrated that rTMS can modulate γ oscillatory activity that may be a possible avenue for cognitive potentiation in this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号