首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD43 is a leukocyte-specific surface molecule which plays an important role both in adhesion and signal transduction. We have identified a site spanning nucleotides +18 to +39 within the human CD43 gene promoter which in vitro is hypersensitive to cleavage by nuclease S1. Repeats of this region are sufficient to activate expression of a heterologous promoter in CD43-positive cell lines. Two nuclear factors, PyRo1 and PyRo2, interact with the hypersensitive site. PyRo1 is a single-stranded DNA-binding protein which binds the pyrimidine-rich sense strand. Mutation analysis demonstrates that the motif TCCCCT is critical for PyRo1 interaction. Replacement of this motif with the sequence CATATA abolishes PyRo1 binding and reduces expression of the CD43 promoter by 35% in Jurkat T lymphocytic cells and by 52% in the pre-erythroid/pre-megakaryocytic cell line K562. However, this same replacement failed to affect expression in U937 monocytic cells or in CEM T lymphocytic cells. PyRo1, therefore, exhibits cell-specific differences in its functional activity. Further analysis demonstrated that PyRo1 not only interacts with the CD43 gene promoter but also motifs present within the promoters of the CD11a, CD11b, CD11c and CD11d genes. These genes encode the α subunits of the β2 integrin family of leukocyte adhesion receptors. Deletion of the PyRo1 binding site within the CD11c gene reduced promoter activity in T lymphocytic cells by 47%. However, consistent with our analysis of the CD43 gene, the effect of this same deletion within U937 monocytic cells was less severe. That PyRo1 binds preferentially to single-stranded DNA and sequences within the CD43 and CD11 gene promoters suggests that expression of these genes is influenced by DNA secondary structure.  相似文献   

2.
3.
The type III secretion system (T3SS) is required for virulence in the gram-negative plant pathogen Pseudomonas syringae pv. tomato DC3000. The alternative sigma factor HrpL directly regulates expression of T3SS genes via a promoter sequence, often designated as the “hrp promoter.” Although the HrpL regulon has been extensively investigated in DC3000, it is not known whether additional regulon members remain to be found. To systematically search for HrpL-regulated genes, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) and bulk mRNA sequencing (RNA-Seq) to identify HrpL-binding sites and likely hrp promoters. The analysis recovered 73 sites of interest, including 20 sites that represent new hrp promoters. The new promoters lie upstream of a diverse set of genes encoding potential regulators, enzymes and hypothetical proteins. PSPTO_5633 is the only new HrpL regulon member that is potentially an effector and is now designated HopBM1. Deletions in several other new regulon members, including PSPTO_5633, PSPTO_0371, PSPTO_2130, PSPTO_2691, PSPTO_2696, PSPTO_3331, and PSPTO_5240, in either DC3000 or ΔhopQ1-1 backgrounds, do not affect the hypersensitive response or in planta growth of the resulting strains. Many new HrpL regulon members appear to be unrelated to the T3SS, and orthologs for some of these can be identified in numerous non-pathogenic bacteria. With the identification of 20 new hrp promoters, the list of HrpL regulon members is approaching saturation and most likely includes all DC3000 effectors.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Summary Placental chorionic somatomammotropin (hCS-A or B) and growth hormone variant (hGH-V) are members of the human growth hormone family, and are related by structure and function to pituitary growth hormone (hGH-N). However, while the hGH-N gene is expressed specifically in the anterior pituitary, hGH-V and hCS are produced in the placenta. Hybrid hGH-N, hGH-V and hCS-A genes containing 5-flanking sequences, including the endogenous promoter, are preferentially expressed in rat pituitary tumor (GC) cells, after gene transfer. Since interaction with a pituitary-specific protein (Pit 1) is required for efficient hGH-N as well as rat growth hormone (rGH) gene expression in GC cells, binding of pituitary proteins to the hGH-V and hCS-A promoter sequences was investigated. Rat Pit 1 binds at two locations on the hGH-N gene, a distal (–140/–107) and proximal site (–97/–66), in a similar manner to that observed with the rGH gene. By contrast, efficient Pit 1 binding was seen only to the distal site of the hGH-V gene and the proximal site of the hCS-A gene. Although binding of a protein to the distal hCS-A sequences was observed, the site of interaction was truncated (–140/–116), not pituitary-specific, and was more consistent with the binding of Sp1. These data indicate that rat Pit 1 binds to the placental hGH-V and hCS-A genes and correlates with their promoter activity in GC cells after gene transfer. However, the data also indicate that rat Pit 1 binds to human and rat pituitary growth hormone in a similar manner (two sites of interaction) and that the pattern of binding is distinct from the placental members of the hGH gene family. These data indicate that human Pit 1, unlike the rat equivalent, might distinguish these genes functionally (tissue-specifically) as well as structurally.  相似文献   

11.
In mammals, the complex tissue- and developmental-specific expression of genes within the β-globin cluster is known to be subject to control by the gene promoters, by a locus control region (LCR) located upstream of the cluster, and by sequence elements located across the intergenic regions. Despite extensive investigation, however, the complement of sequences that is required for normal regulation of chromatin structure and gene expression within the cluster is not fully defined. To further elucidate regulation of the adult β-globin genes, we investigate the effects of two deletions engineered within the endogenous murine β-globin locus. First, we find that deletion of the β2-globin gene promoter, while eliminating β2-globin gene expression, results in no additional effects on chromatin structure or gene expression within the cluster. Notably, our observations are not consistent with competition among the β-globin genes for LCR activity. Second, we characterize a novel enhancer located 3′ of the β2-globin gene, but find that deletion of this sequence has no effect whatsoever on gene expression or chromatin structure. This observation highlights the difficulty in assigning function to enhancer sequences identified by the chromatin “landscape” or even by functional assays.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.

Background

The immune-related evolution of influenza viruses is exceedingly complex and current vaccines against influenza must be reformulated for each influenza season because of the high degree of antigenic drift among circulating influenza strains. Delay in vaccine production is a serious problem in responding to a pandemic situation, such as that of the current H1N1 strain. Immune escape is generally attributed to reduced antibody recognition of the viral hemagglutinin and neuraminidase proteins whose rate of mutation is much greater than that of the internal non-structural proteins. As a possible alternative, vaccines directed at T cell epitope domains of internal influenza proteins, that are less susceptible to antigenic variation, have been investigated.

Methodology/Principal Findings

HLA transgenic mouse strains expressing HLA class I A*0201, A*2402, and B*0702, and class II DRB1*1501, DRB1*0301 and DRB1*0401 were immunized with 196 influenza H1N1 peptides that contained residues of highly conserved proteome sequences of the human H1N1, H3N2, H1N2, H5N1, and avian influenza A strains. Fifty-four (54) peptides that elicited 63 HLA-restricted peptide-specific T cell epitope responses were identified by IFN-γ ELISpot assay. The 54 peptides were compared to the 2007–2009 human H1N1 sequences for selection of sequences in the design of a new candidate H1N1 vaccine, specifically targeted to highly-conserved HLA-restricted T cell epitopes.

Conclusions/Significance

Seventeen (17) T cell epitopes in PB1, PB2, and M1 were selected as vaccine targets based on sequence conservation over the past 30 years, high functional avidity, non-identity to human peptides, clustered localization, and promiscuity to multiple HLA alleles. These candidate vaccine antigen sequences may be applicable to any avian or human influenza A virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号