首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Assortative mating can help explain how genetic variation for male quality is maintained even in highly polygynous species. Here, we present a longitudinal study examining how female and male ages, as well as male social dominance, affect assortative mating in fallow deer (Dama dama) over 10 years. Assortative mating could help explain the substantial proportion of females that do not mate with prime-aged, high ranking males, despite very high mating skew. We investigated the temporal pattern of female and male matings, and the relationship between female age and the age and dominance of their mates.

Results

The peak of yearling female matings was four days later than the peak for older females. Younger females, and especially yearlings, mated with younger and lower-ranking males than older females. Similarly, young males and lower-ranking males mated with younger females than older males and higher-ranking males. Furthermore, the timing of matings by young males coincided with the peak of yearling female matings, whereas the timing of older male matings (irrespective of rank) coincided with the peak of older female matings.

Conclusions

Assortative mating, through a combination of indirect and/or direct female mate choice, can help explain the persistence of genetic variation for male traits associated with reproductive success.  相似文献   

2.

Background

Heritability in mate preferences is assumed by models of sexual selection, and preference evolution may contribute to adaptation to changing environments. However, mate preference is difficult to measure in natural populations as detailed data on mate availability and mate sampling are usually missing. Often the only available information is the ornamentation of the actual mate. The single long-term quantitative genetic study of a wild population found low heritability in female mate ornamentation in Swedish collared flycatchers. One potentially important cause of low heritability in mate ornamentation at the population level is reduced mate preference expression among inexperienced individuals.

Methodology/Principal Findings

Applying animal model analyses to 21 years of data from a Hungarian collared flycatcher population, we found that additive genetic variance was 50 percent and significant for ornament expression in males, but less than 5 percent and non-significant for mate ornamentation treated as a female trait. Female breeding experience predicted breeding date and clutch size, but mate ornamentation and its variance components were unrelated to experience. Although we detected significant area and year effects on mate ornamentation, more than 85 percent of variance in this trait remained unexplained. Moreover, the effects of area and year on mate ornamentation were also highly positively correlated between inexperienced and experienced females, thereby acting to remove difference between the two groups.

Conclusions/Significance

The low heritability of mate ornamentation was apparently not explained by the presence of inexperienced individuals. Our results further indicate that the expression of mate ornamentation is dominated by temporal and spatial constraints and unmeasured background factors. Future studies should reduce unexplained variance or use alternative measures of mate preference. The heritability of mate preference in the wild remains a principal but unresolved question in evolutionary ecology.  相似文献   

3.

Background

Mate preference behavior is an essential first step in sexual selection and is a critical determinant in evolutionary biology. Previously an environmental compound (the fungicide vinclozolin) was found to promote the epigenetic transgenerational inheritance of an altered sperm epigenome and modified mate preference characteristics for three generations after exposure of a gestating female.

Results

The current study investigated gene networks involved in various regions of the brain that correlated with the altered mate preference behavior in the male and female. Statistically significant correlations of gene clusters and modules were identified to associate with specific mate preference behaviors. This novel systems biology approach identified gene networks (bionetworks) involved in sex-specific mate preference behavior. Observations demonstrate the ability of environmental factors to promote the epigenetic transgenerational inheritance of this altered evolutionary biology determinant.

Conclusions

Combined observations elucidate the potential molecular control of mate preference behavior and suggests environmental epigenetics can have a role in evolutionary biology.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-377) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background and Aims

Evolutionary change in response to natural selection will occur only if a trait confers a selective advantage and there is heritable variation. Positive connections between pollen traits and fitness have been found, but few studies of heritability have been conducted, and they have yielded conflicting results. To understand better the evolutionary significance of pollen competition and its potential role in sexual selection, the heritability of pollen tube-growth rate and the relationship between this trait and sporophytic offspring fitness were investigated in Collinsia heterophylla.

Methods

Because the question being asked was if female function benefited from obtaining genetically superior fathers by enhancing pollen competition, one-donor (per flower) crosses were used in order to exclude confounding effects of post-fertilization competition/allocation caused by multiple paternity. Each recipient plant was crossed with an average of five pollen donors. Pollen-tube growth rate and sporophytic traits were measured in both generations.

Key Results

Pollen-tube growth rate in vitro differed among donors, and the differences were correlated with in vivo growth rate averaged over two to four maternal plants. Pollen-tube growth rate showed significant narrow-sense heritability and evolvability in a father–offspring regression. However, this pollen trait did not correlate significantly with sporophytic-offspring fitness.

Conclusions

These results suggest that pollen-tube growth rate can respond to selection via male function. The data presented here do not provide any support for the hypothesis that intense pollen competition enhances maternal plant fitness through increased paternity by higher-quality sporophytic fathers, although this advantage cannot be ruled out. These data are, however, consistent with the hypothesis that pollen competition is itself selectively advantageous, through both male and female function, by reducing the genetic load among successful gametophytic fathers (pollen), and reducing inbreeding depression associated with self–pollination in plants with mix-mating systems.Key words: Collinsia heterophylla, evolvability, female fitness, good genes, heritability, male fitness, mixed-mating system, Plantaginaceae, pollen competition, sexual selection  相似文献   

5.

Background

Studies of animal mating systems increasingly emphasize female multiple mating and cryptic sexual selection, particularly sperm competition. Males under intense sperm competition may manipulate sperm quantity and quality through masturbation, which could waste sperm and decrease fertility. I examined the factors influencing masturbation by male Cape ground squirrels (Xerus inauris) in light of a number of functional hypotheses.

Methodology

Observational data on a marked population of squirrels were collected in east-central Namibia using scan and all-occurrences sampling.

Findings

Masturbation was far more frequent on days of female oestrus and mostly occurred after copulation. Masturbation rates were higher in dominant males, which copulate more, than in subordinates and increased with number of mates a female accepts.

Conclusions

These results suggest that masturbation in this species was not a response to sperm competition nor a sexual outlet by subordinates that did not copulate. Instead masturbation could function as a form of genital grooming. Female Cape ground squirrels mate with up to 10 males in a 3-hr oestrus, and by masturbating after copulation males could reduce the chance of infection. Sexually transmitted infections (STIs) can profoundly affect fertility, and their consequences for mating strategies need to be examined more fully.  相似文献   

6.

Background

Previous genome-wide association analyses identified QTL regions in the X chromosome for percentage of normal sperm and scrotal circumference in Brahman and Tropical Composite cattle. These traits are important to be studied because they are indicators of male fertility and are correlated with female sexual precocity and reproductive longevity. The aim was to investigate candidate genes in these regions and to identify putative causative mutations that influence these traits. In addition, we tested the identified mutations for female fertility and growth traits.

Results

Using a combination of bioinformatics and molecular assay technology, twelve non-synonymous SNPs in eleven genes were genotyped in a cattle population. Three and nine SNPs explained more than 1% of the additive genetic variance for percentage of normal sperm and scrotal circumference, respectively. The SNPs that had a major influence in percentage of normal sperm were mapped to LOC100138021 and TAF7L genes; and in TEX11 and AR genes for scrotal circumference. One SNP in TEX11 was explained ~13% of the additive genetic variance for scrotal circumference at 12 months. The tested SNP were also associated with weight measurements, but not with female fertility traits.

Conclusions

The strong association of SNPs located in X chromosome genes with male fertility traits validates the QTL. The implicated genes became good candidates to be used for genetic evaluation, without detrimentally influencing female fertility traits.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1595-0) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background and Aims

Heterodichogamy (a dimorphic breeding system comprising protandrous and protogynous individuals) is a potential starting point in the evolution of dioecy from hermaphroditism. In the genus Acer, previous work suggests that dioecy evolved from heterodichogamy through an initial spread of unisexual males. Here, the question is asked as to whether the different morphs in Acer opalus, a species in which males co-exist with heterodichogamous hermaphrodites, differ in various components of male in fitness.

Methods

Several components of male fertility were analysed. Pollination rates in the male phase were recorded across one flowering period. Pollen viability was compared among morphs through hand pollinations both with pollen from a single sexual morph and also simulating a situation of pollen competition; in the latter experiment, paternity was assessed with microsatellite markers. It was also determined whether effects of genetic relatedness between pollen donors and recipients could influence the siring success. Finally, paternal effects occurring beyond the fertilization process were tested for by measuring the height reached by seedlings with different sires over three consecutive growing seasons.

Key Results

The males and protandrous morphs had higher pollination rates than the protogynous morph, and the seedlings they sired grew taller. No differences in male fertility were found between males and protandrous individuals. Departures from random mating due to effects of genetic relatedness among sires and pollen recipients were also ruled out.

Conclusions

Males and protandrous individuals are probably better sires than protogynous individuals, as shown by the higher pollination rates and the differential growth of the seedlings sired by these morphs. In contrast, the fertility of males was not higher than the male fertility of the protandrous morph. While the appearance of males in sexually specialized heterodichogamous populations is possible, even in the absence of a fitness advantage, it is not clear that males can be maintained at an evolutionary equilibrium with two classes of heterodichogamous hermaphrodites.Key words: Acer opalus, heterodichogamy, male fertility, microsatellites, paternal effects, pollen competition, pollination rates, genetic relatedness  相似文献   

8.
Harley E  Fowler K  Cotton S 《PloS one》2010,5(12):e14309

Background

Multiple mating by female insects is widespread, and the explanation(s) for repeated mating by females has been the subject of much discussion. Females may profit from mating multiply through direct material benefits that increase their own reproductive output, or indirect genetic benefits that increase offspring fitness. One particular direct benefit that has attracted significant attention is that of fertility assurance, as females often need to mate multiply to achieve high fertility. This hypothesis has never been tested in a wild insect population.

Methodology/Principal Findings

Female Malaysian stalk-eyed flies (Teleopsis dalmanni) mate repeatedly during their lifetime, and have been shown to be sperm limited under both laboratory and field conditions. Here we ask whether receiving an additional mating alleviates sperm limitation in wild females. In our experiment one group of females received a single additional mating, while a control group received an interrupted, and therefore unsuccessful, mating. Females that received an additional mating did not lay more fertilised eggs in total, nor did they lay proportionately more fertilised eggs. Female fertility declined significantly through time, demonstrating that females were sperm limited. However, receipt of an additional mating did not significantly alter the rate of this decline.

Conclusions/Significance

Our data suggest that the fertility consequences of a single additional mating were small. We discuss this effect (or lack thereof), and suggest that it is likely to be attributed to small ejaculate size, a high proportion of failed copulations, and the presence of X-linked meiotic drive in this species.  相似文献   

9.

Background and Aims

Heritable genetic variation is crucial for selection to operate, yet there is a paucity of studies quantifying such variation in interactive male/female sexual traits, especially those of plants. Previous work on the annual plant Collinsia heterophylla, a mixed-mating species, suggests that delayed stigma receptivity is involved in a sexual conflict: pollen from certain donors fertilize ovules earlier than others at the expense of reduced maternal seed set and lower levels of pollen competition.

Methods

Parent–offspring regressions and sib analyses were performed to test for heritable genetic variation and co-variation in male and female interactive traits related to the sexual conflict.

Key Results

Some heritable variation and evolvability were found for the female trait (delayed stigma receptivity in presence of pollen), but no evidence was found for genetic variation in the male trait (ability to fertilize ovules early). The results further indicated a marginally significant correlation between a male''s ability to fertilize early and early stigma receptivity in offspring. However, despite potential indirect selection of these traits, antagonistic co-evolution may not occur given the lack of heritability of the male trait.

Conclusions

To our knowledge, this is the first study of a plant or any hermaphrodite that examines patterns of genetic correlation between two interactive sexual traits, and also the first to assess heritabilities of plant traits putatively involved in a sexual conflict. It is concluded that the ability to delay fertilization in presence of pollen can respond to selection, while the pollen trait has lower evolutionary potential.  相似文献   

10.

Background

The ‘gynodioecy–dioecy pathway’ is considered to be one of the most important evolutionary routes from hermaphroditism to separate sexes (dioecy). Despite a large accumulation of evidence for female seed fertility advantages in gynodioecious species (females and hermaphrodites coexist) in support of the first step in the gynodioecy–dioecy pathway, we still have very little evidence for the second step, i.e. the transition from gynodioecy to dioecy.

Scope

We review the literature to evaluate whether basic predictions by theory are supported. To establish whether females'' seed fertility advantage and frequencies are sufficient to favour the invasion of males, we review these for species along the gynodioecy–dioecy pathway published in the last 5 years. We then review the empirical evidence for predictions deriving from the second step, i.e. hermaphrodites'' male fertility increases with female frequency, selection favours greater male fertility in hermaphrodites in gynodioecious species, and, where males and hermaphrodites coexist with females (subdioecy), males have greater male fertility than hermaphrodites. We review how genetic control and certain ecological features (pollen limitation, selfing, plasticity in sex expression and antagonists) influence the trajectory of a population along the gynodioecy–dioecy pathway.

Conclusions

Females tend to have greater seed fertility advantages over hermaphrodites where the two coexist, and this advantage is positively correlated with female frequency across species, as predicted by theory. A limited number of studies in subdioecious species have demonstrated that males have an advantage over hermaphrodites, as also predicted by theory. However, less evidence exists for phenotypic selection to increase male traits of hermaphrodites or for increasing male function of hermaphrodites in populations with high female frequency. A few key case studies underline the importance of examining multiple components of male fertility and the roles of pollen limitation, selfing and plasticity, when evaluating advantages. We conclude that we do not yet have a full understanding of the transition from gynodioecy to dioecy.  相似文献   

11.

Background

Evidence suggests that subliminal odorants influence human perception and behavior. It has been hypothesized that the human sex-steroid derived compound 4,16-androstadien-3-one (androstadienone) functions as a human chemosignal. The most intensively studied steroid compound, androstadienone is known to be biologically relevant since it seems to convey information about male mate quality to women. It is unclear if the effects of androstadienone are menstrual cycle related.

Methodology/Principal Findings

In the first experiment, heterosexual women were exposed to androstadienone or a control compound and asked to view stimuli such as female faces, male faces and familiar objects while their eye movements were recorded. In the second experiment the same women were asked to rate the level of stimuli attractiveness following exposure to the study or control compound. The results indicated that women at high conception risk spent more time viewing the female than the male faces regardless of the compound administered. Women at a low conception risk exhibited a preference for female faces only following exposure to androstadienone.

Conclusions/Significance

We contend that a woman''s level of fertility influences her evaluation of potential competitors (e.g., faces of other women) during times critical for reproduction. Subliminally perceived odorants, such as androstadienone, might similarly enhance intrasexual competition strategies in women during fertility phases not critical for conception. These findings offer a substantial contribution to the current debate about the effects that subliminally perceived body odors might have on behavior.  相似文献   

12.

Background

Mothers that mate with multiple males often produce higher quality offspring than mothers that mate with a single male. By engaging in polyandry, mothers may increase their chances of mating with a compatible male or promote sperm competition - both of which act to increase maternal fitness via the biasing of the paternity of offspring. Surprisingly, mating with multiple males, can carry benefits without biasing paternity and may be due simply to differences in genetic diversity between monandrous and polyandrous clutches but role of genetic diversity effects in driving the benefits of polyandry remains poorly tested. Disentangling indirect, genetic benefits from genetic diversity effects is challenging but crucial if we are to understand the selection pressures acting to promote polyandry.

Methodology/Principal Findings

Here, we examine the post-fertilisation benefits of accessing the sperm of multiple males in an externally fertilising polychaete worm. Accessing the sperm of multiple males increases offspring performance but this benefit was driven entirely by genetic diversity effects and not by the biasing of paternity at fertilisation.

Conclusions/Significance

Previous studies on polyandry should be interpreted cautiously as genetic diversity effects alone can explain the benefits of polyandry yet these diversity effects may be difficult to disentangle from other mechanisms. We suggest that future studies use a modified experimental design in order to discriminate between genetic diversity effects and indirect, genetic benefits.  相似文献   

13.

Background

When some combinations of maternal and paternal alleles have a detrimental effect on offspring fitness, females should be able to choose mates on the basis of their genetic compatibility. In numerous Hymenoptera, the sex of an individual depends of the allelic combination at a specific locus (single-locus Complementary Sex Determination), and in most of these species individuals that are homozygous at this sexual locus develop into diploid males with zero fitness.

Methods and Findings

In this paper, we tested the hypothesis of genetic incompatibility avoidance by investigating sib-mating avoidance in the solitary wasp parasitoid, Venturia canescens. In the context of mate choice we show, for the first time in a non-social hymenopteran species, that females can avoid mating with their brothers through kin recognition. In “no-choice” tests, the probability a female will mate with an unrelated male is twice as high as the chance of her mating with her brothers. In contrast, in choice tests in small test arenas, no kin discrimination effect was observed. Further experiments with male extracts demonstrate that chemical cues emanating from related males influence the acceptance rate of unrelated males.

Conclusions

Our results are compatible with the genetic incompatibility hypothesis. They suggest that the female wasps recognize sibs on the basis of a chemical signature carried or emitted by males possibly using a “self-referent phenotype matching” mechanism.  相似文献   

14.

Background

As more and more genotypes become available, accuracy of genomic evaluations can potentially increase. However, the impact of genotype data on accuracy depends on the structure of the genotyped cohort. For populations such as dairy cattle, the greatest benefit has come from genotyping sires with high accuracy, whereas the benefit due to adding genotypes from cows was smaller. In broiler chicken breeding programs, males have less progeny than dairy bulls, females have more progeny than dairy cows, and most production traits are recorded for both sexes. Consequently, genotyping both sexes in broiler chickens may be more advantageous than in dairy cattle.

Methods

We studied the contribution of genotypes from males and females using a real dataset with genotypes on 15 723 broiler chickens. Genomic evaluations used three training sets that included only males (4648), only females (8100), and both sexes (12 748). Realized accuracies of genomic estimated breeding values (GEBV) were used to evaluate the benefit of including genotypes for different training populations on genomic predictions of young genotyped chickens.

Results

Using genotypes on males, the average increase in accuracy of GEBV over pedigree-based EBV for males and females was 12 and 1 percentage points, respectively. Using female genotypes, this increase was 1 and 18 percentage points, respectively. Using genotypes of both sexes increased accuracies by 19 points for males and 20 points for females. For two traits with similar heritabilities and amounts of information, realized accuracies from cross-validation were lower for the trait that was under strong selection.

Conclusions

Overall, genotyping males and females improves predictions of all young genotyped chickens, regardless of sex. Therefore, when males and females both contribute to genetic progress of the population, genotyping both sexes may be the best option.  相似文献   

15.

Objective

To develop a reference of population-based gestational age-specific birth weight percentiles for contemporary Chinese.

Methods

Birth weight data was collected by the China National Population-based Birth Defects Surveillance System. A total of 1,105,214 live singleton births aged ≥28 weeks of gestation without birth defects during 2006–2010 were included. The lambda-mu-sigma method was utilized to generate percentiles and curves.

Results

Gestational age-specific birth weight percentiles for male and female infants were constructed separately. Significant differences were observed between the current reference and other references developed for Chinese or non-Chinese infants.

Conclusion

There have been moderate increases in birth weight percentiles for Chinese infants of both sexes and most gestational ages since 1980s, suggesting the importance of utilizing an updated national reference for both clinical and research purposes.  相似文献   

16.

Background

The environment can moderate the effect of genes - a phenomenon called gene-environment (GxE) interaction. Several studies have found that socioeconomic status (SES) modifies the heritability of children''s intelligence. Among low-SES families, genetic factors have been reported to explain less of the variance in intelligence; the reverse is found for high-SES families. The evidence however is inconsistent. Other studies have reported an effect in the opposite direction (higher heritability in lower SES), or no moderation of the genetic effect on intelligence.

Methods

Using 8716 twin pairs from the Twins Early Development Study (TEDS), we attempted to replicate the reported moderating effect of SES on children''s intelligence at ages 2, 3, 4, 7, 9, 10, 12 and 14: i.e., lower heritability in lower-SES families. We used a twin model that allowed for a main effect of SES on intelligence, as well as a moderating effect of SES on the genetic and environmental components of intelligence.

Results

We found greater variance in intelligence in low-SES families, but minimal evidence of GxE interaction across the eight ages. A power calculation indicated that a sample size of about 5000 twin pairs is required to detect moderation of the genetic component of intelligence as small as 0.25, with about 80% power - a difference of 11% to 53% in heritability, in low- (−2 standard deviations, SD) and high-SES (+2 SD) families. With samples at each age of about this size, the present study found no moderation of the genetic effect on intelligence. However, we found the greater variance in low-SES families is due to moderation of the environmental effect – an environment-environment interaction.

Conclusions

In a UK-representative sample, the genetic effect on intelligence is similar in low- and high-SES families. Children''s shared experiences appear to explain the greater variation in intelligence in lower SES.  相似文献   

17.
Sherman CD  Sagvik J  Olsson M 《PloS one》2010,5(10):e13634

Background

Studies of mate choice in anuran amphibians have shown female preference for a wide range of male traits despite females gaining no direct resources from males (i.e. non-resource based mating system). Nevertheless, theoretical and empirical studies have shown that females may still gain indirect genetic benefits from choosing males of higher genetic quality and thereby increase their reproductive success.

Methodology/Principal Findings

We investigated two components of sexual selection in the Moor frog (Rana arvalis), pre-copulatory female choice between two males of different size (‘large’ vs. ‘small’), and their fertilization success in sperm competition and in isolation. Females'' showed no significant preference for male size (13 small and six large male preferences) but associated preferentially with the male that subsequently was the most successful at fertilizing her eggs in isolation. Siring success of males in competitive fertilizations was unrelated to genetic similarity with the female and we detected no effect of sperm viability on fertilization success. There was, however, a strong positive association between a male''s innate fertilization ability with a female and his siring success in sperm competition. We also detected a strong negative effect of a male''s thumb length on his competitive siring success.

Conclusions/Significance

Our results show that females show no preference for male size but are still able to choose males which have greater fertilization success. Genetic similarity and differences in the proportion of viable sperm within a males ejaculate do not appear to affect siring success. These results could be explained through pre- and/or postcopulatory choice for genetic benefits and suggest that females are able to perceive the genetic quality of males, possibly basing their choice on multiple phenotypic male traits.  相似文献   

18.

Background

Bovine respiratory disease complex (BRDC) is an infectious disease of cattle that is caused by a combination of viral and/or bacterial pathogens. Selection for cattle with reduced susceptibility to respiratory disease would provide a permanent tool for reducing the prevalence of BRDC. The objective of this study was to identify BRDC susceptibility loci in pre-weaned Holstein calves as a prerequisite to using genetic improvement as a tool for decreasing the prevalence of BRDC. High density SNP genotyping with the Illumina BovineHD BeadChip was conducted on 1257 male and 757 female Holstein calves from California (CA), and 767 calves identified as female from New Mexico (NM). Of these, 1382 were classified as BRDC cases, and 1396 were classified as controls, with all phenotypes assigned using the McGuirk health scoring system. During the acquisition of blood for DNA isolation, two deep pharyngeal and one mid-nasal diagnostic swab were obtained from each calf for the identification of bacterial and viral pathogens. Genome-wide association analyses were conducted using four analytical approaches (EIGENSTRAT, EMMAX-GRM, GBLUP and FvR). The most strongly associated SNPs from each individual analysis were ranked and evaluated for concordance. The heritability of susceptibility to BRDC in pre-weaned Holstein calves was estimated.

Results

The four statistical approaches produced highly concordant results for 373 top ranked SNPs that defined 126 chromosomal regions for the CA population. Similarly, in NM, 370 SNPs defined 138 genomic regions that were identified by all four approaches. When the two populations were combined (i.e., CA + NM) and analyzed, 324 SNPs defined 116 genomic regions that were associated with BRDC across all analytical methods. Heritability estimates for BRDC were 21% for both CA and NM as individual populations, but declined to 13% when the populations were combined.

Conclusions

Four analytical approaches utilizing both single and multi-marker association methods revealed common genomic regions associated with BRDC susceptibility that can be further characterized and used for genomic selection. Moderate heritability estimates were observed for BRDC susceptibility in pre-weaned Holstein calves, thereby supporting the application of genomic selection to reduce the prevalence of BRDC in U.S. Holsteins.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1164) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

The recent decline in fertility in India has been unprecedented especially in southern India, where fertility is almost exclusively controlled by means of permanent contraceptive methods, mainly female sterilization, which constitutes about two-thirds of overall contraceptive use. Many Indian women undergo sterilization at relatively young ages as a consequence of early marriage and childbearing in short birth intervals. This research aims to investigate the socioeconomic factors determining the choices for alternative contraceptive choices against the dominant preference for sterilization among married women in India.

Methods

Data for this study are drawn from the 2005–06 National Family Health Surveys focusing on a sample of married women who reported having used a method of contraception in the five years preceding the survey. A multilevel multinomial logit regression is used to estimate the impact of socioeconomic factors on contraceptive choices, differentiating temporary modern or traditional methods versus sterilization.

Findings

Religious affiliation, women''s education and occupation had overarching influence on method choices amongst recent users. Muslim women were at higher odds of choosing a traditional or modern temporary method than sterilization. Higher level of women''s education increased the odds of modern temporary method choices but the education effect on traditional method choices was only marginally significant. Recent users belonging to wealthier households had higher odds of choosing modern methods over sterilization. Exposure to family planning messages through radio had a positive effect on modern and traditional method choices. Community variations in method choices were highly significant.

Conclusion

The persistent dominance of sterilization in the Indian family planning programme is largely determined by socioeconomic conditions. Reproductive health programmes should address the socioeconomic barriers and consider multiple cost-effective strategies such as mass media to promote awareness of modern temporary methods.  相似文献   

20.

Background

Correlational studies strongly suggest that both genetic similarity and heterozygosity can influence female mate choice. However, the influence of each variable has usually been tested independently, although similarity and heterozygosity might be correlated. We experimentally determined the relative influence of genetic similarity and heterozygosity in divorce and re-mating in the monogamous endoparasite Schistosoma mansoni.

Methodology/Principal Findings

We performed sequential infections of vertebrate hosts with controlled larval populations of parasites, where sex and individual genetic diversity and similarity were predetermined before infection. Divorce rate increased significantly when females were given the opportunity to increase genetic dissimilarity through re-mating with a new partner, independently of the intensity of male-male competition. We found however no evidence for females attempting to maximize the level of heterozygosity of their reproductive partner through divorce.

Conclusions/Significance

Female preference for genetically dissimilar males should result in more heterozygous offspring. Because genetic heterozygosity might partly determine the ability of parasites to counter host resistance, adaptive divorce could be an important factor in the evolutionary arms race between schistosomes and their hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号