首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
The genomes of the two lytic mutant Staphylococcus aureus bacteriophages, vB_SauS-phiIPLA35 (phiIPLA35) and vB_SauS-phiIPLA88 (phiIPLA88), isolated from milk have been analyzed. Their genomes are 45,344 bp and 42,526 bp long, respectively, and contain 62 and 61 open reading frames (ORFS). Enzymatic analyses and sequencing revealed that the phiIPLA35 DNA molecule has 3′-protruding cohesive ends (cos) 10 bp long, whereas phiIPLA88 DNA is 4.5% terminally redundant and most likely is packaged by a headful mechanism. N-terminal amino acid sequencing, mass spectrometry, bioinformatic analyses, and functional analyses enabled the assignment of putative functions to 58 gene products, including DNA packaging proteins, morphogenetic proteins, lysis components, and proteins necessary for DNA recombination, modification, and replication. Point mutations in their lysogeny control-associated genes explain their strictly lytic behavior. Muralytic activity associated with other structural components has been detected in virions of both phages. Comparative analysis of phiIPLA35 and phiIPLA88 genome structures shows that they resemble those of φ12 and φ11, respectively, both representatives of large genomic groupings within the S. aureus-infecting phages.Staphylococcus aureus is an important etiologic agent of food-borne diseases due to its ability to produce heat-resistant staphylococcal enterotoxins (SEs) when it grows in foods. In fact some S. aureus strains may produce up to 20 serologically distinct SEs, which could be responsible for food poisoning (30). SEs have been divided initially into serological types SEA through SEE, and recently the existence of new types of SEs has also been reported (5).S. aureus strains harboring enterotoxin genes have been isolated from a variety of foods (38) including dairy products (9, 46, 56). Mastitis caused by this pathogen and poor hygienic processing conditions are the most important sources of dairy product contamination. Growth of enterotoxigenic S. aureus in both raw milk and dairy products poses a potential health hazard to consumers. In this context, new biocontrol strategies to prevent growth of S. aureus, suitable to be applied in the food industry, are being explored.Currently, there is a renewed interest in exploiting the antimicrobial potential of bacterial viruses for bacterial-control applications in agriculture, aquaculture, and the food industry (11, 18, 23, 49). In fact, the use of phages for the treatment of infectious diseases (or phage therapy) has a long successful history in the countries of Eastern Europe (or former Soviet Union) (50). Specifically, S. aureus bacteriophages have been assayed in the treatment of venous leg ulcers and eye infections (22, 42).Prior to any phage application, genome analysis is a prerequisite to examine the safety of the phages, specifically, traits which might enhance the virulence of the infected bacterium. In addition, genome analysis might uncover novel antibacterial targets or agents (33) with promising biotechnological applications (6). For example, various lytic phage proteins (endolysins) have shown great potential in veterinary and human medicine for the treatment and prophylaxis of infections (12) and have been applied as biocontrol agents in dairy products (36). Several technologies employing phages and endolysins for pathogen detection and decontamination have also been patented (7).To date, genomes of over 47 S. aureus phages are available in public databases. The number of known, strictly lytic phages is limited to the close-knit Myoviridae genus of the SPO1-like viruses, containing phages K, Twort, and G1. Apart from this group, a large number of genomes from unclassified Siphoviridae in lysogenic S. aureus strains are available (26, 37). Some temperate bacteriophages may play an important role in the pathogenicity of S. aureus by carrying virulence factors, mediating lateral gene transfer, and even facilitating the adaptation of the pathogen during infection (1, 21, 52).In previous work, we have characterized phiIPLA35 and phiIPLA88 S. aureus phages (17). These two lytic phages, previously named φ35 and φ88, were selected as mutants of the temperate phages φA72 and φH5, respectively, isolated from raw bovine milk. They belong to the Siphoviridae family of double-stranded DNA bacterial viruses in the order Caudovirales. Remarkably, these phages infect S. aureus of bovine and dairy origin while clinical isolates appear to be resistant. Both phiIPLA35 and phiIPLA88 are very well adapted to the dairy environment and effectively inhibit S. aureus growth in milk and curd-manufacturing processes (17, 20).In this study, we have sequenced and annotated the genomes of both bacteriophages, elucidated their physical genome structures, and identified peptidoglycan hydrolytic activities. Comparative genome analysis also allowed us to put phiIPLA35 and phiIPLA88 into a phylogenetic context.  相似文献   

4.
Glutathione constitutes a key player in the thiol redox buffer in many organisms. However, the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus lack this low-molecular-weight thiol. Recently, we identified S-cysteinylated proteins in B. subtilis after treatment of cells with the disulfide-generating electrophile diamide. S cysteinylation is thought to protect protein thiols against irreversible oxidation to sulfinic and sulfonic acids. Here we show that S thiolation occurs also in S. aureus proteins after exposure to diamide. We further analyzed the formation of inter- and intramolecular disulfide bonds in cytoplasmic proteins using diagonal nonreducing/reducing sodium dodecyl sulfate gel electrophoresis. However, only a few proteins were identified that form inter- or intramolecular disulfide bonds under control and diamide stress conditions in B. subtilis and S. aureus. Depletion of the cysteine pool was concomitantly measured in B. subtilis using a metabolomics approach. Thus, the majority of reversible thiol modifications that were previously detected by two-dimensional gel fluorescence-based thiol modification assay are most likely based on S thiolations. Finally, we found that a glutathione-producing B. subtilis strain which expresses the Listeria monocytogenes gshF gene did not show enhanced oxidative stress resistance compared to the wild type.Cysteine thiols in proteins fulfill an important and diverse set of cellular functions. In particular, they participate in enzymatic catalysis; in metal coordination, such as in the generation of Fe-S-clusters; and in determining the spatial structure of proteins via disulfide bond formation (3, 22, 23, 38). Cysteines are strong nucleophiles amenable to posttranslational modifications by reactive oxygen species (ROS) and reactive nitrogen species, leading to disulfides; to sulfenic, sulfinic, or sulfonic acids; mixed disulfides with low-molecular-weight (LMW) thiols (S thiolations); and S nitrosylations (7, 16, 17, 27).The redox status of the cytoplasm is under physiological conditions in a reduced state. Thus, most cysteines are present as free thiols (6). Because aerobic organisms have to cope with oxidative stress caused by ROS, such as superoxide anions, hydrogen peroxide, or hydroxyl radicals, they need to employ effective mechanisms that maintain the reduced state. In gram-negative bacteria, the thiol-disulfide balance is accomplished by the glutathione (GSH) system, a thiol-based redox buffer. The GSH system consists of glutaredoxin (Grx), GSH (γ-glutamylcysteinyl glycine), GSH reductase, and GSH peroxidase (34). Reduction of disulfides occurs via sequential electron transfer from glutaredoxin and reduced GSH; oxidized GSH (GSSG) is reduced by the NADPH-dependent GSH reductase. GSH peroxidase enables the direct detoxification of ROS by GSH oxidation.However, many gram-positive bacteria lack genes for GSH biosynthesis. Actinomycetes instead use a thiol redox buffer based on mycothiol (50). Bacillus subtilis, Staphylococcus aureus, and other gram-positive bacteria rely on different thiol redox buffers based on cysteine, the novel 398-Da bacillithiol (BSH), or coenzyme A (CoA) (15, 52). To maintain the reduced state of the cytoplasm, most bacteria use enzymatic systems for disulfide bond reduction such as the thioredoxin (Trx) system, which is highly conserved in gram-negative bacteria (3, 10). The Trx system consists of thioredoxin (TrxA) and the NADPH-dependent thioredoxin reductase (TrxB).Any imbalance in the cellular redox state caused by ROS elicits expression of a repertoire of different proteins, commonly under the control of a redox-sensing regulator: for example, OxyR in Escherichia coli and PerR, OhrR, SarZ, and Spx in B. subtilis and S. aureus, respectively (11, 12, 41, 55, 58, 64-66). The subsequently induced proteins detoxify ROS and restore and protect the normal physiological redox state in the cell.Besides ROS and reactive nitrogen species, so-called “reactive electrophilic species” (RES) affect the thiol redox balance. RES include different chemical compounds such as aldehydes, quinones, and the azo compound diamide (2, 43, 45, 46, 53, 66). Quinones and aldehydes have electron-deficient centers that result in thiol-(S) alkylation of cysteine. Exposure of cells to diamide induces the oxidative as well as the electrophile stress response in B. subtilis (43, 45, 53). The toxicity of diamide is based on disulfide bond formation (40), which was recently visualized in B. subtilis and S. aureus by the fluorescence alkylation of oxidized thiols (FALKO) assay (32, 64). It was thought that the formation of nonnative inter- and intramolecular disulfide bonds results in damage of proteins.However, more recent findings demonstrate that diamide stress leads also to S thiolations: formation of disulfide bonds between proteins and LMW thiols (8, 13, 33). S thiolations prevent protein thiols from irreversible oxidation to sulfinic and sulfonic acids, but also affect enzyme activity (35, 47) and signal transduction (39, 42). In B. subtilis, we have identified a few cytoplasmic proteins that are S cysteinylated (33). In addition, the organic peroxide sensor OhrR was inactivated by an S bacillithiolation in B. subtilis (42).Cysteine, BSH, and CoA are also dominant LMW thiols in S. aureus (52). In this study, we have investigated in more detail the extents of S thiolations and inter- and intramolecular disulfide bond formation of B. subtilis and S. aureus in response to disulfide stress. The results showed that exposure to diamide leads to S thiolations in S. aureus. Using a nonreducing/reducing sodium dodecyl sulfate (SDS) diagonal electrophoresis approach, proteins with intermolecular disulfide bonds could be distinguished from proteins with intramolecular disulfide bonds (57). The results support that the majority of reversible thiol oxidations are based on S thiolations rather than disulfide bonds between proteins. Depletion of the free cysteine pool in B. subtilis after exposure to diamide supports this finding. To assess if GSH may have a bearing on the thiol redox buffer of B. subtilis, the gshF gene of Listeria monocytogenes (gshFLm) was expressed in B. subtilis, enabling GSH biosynthesis (29). Although GSH production does not enhance the resistance to oxidative stress in B. subtilis, it participates in the formation of S thiolations.  相似文献   

5.
6.
Staphylococcus aureus is a highly versatile and evolving bacterium of great clinical importance. S. aureus can evolve by acquiring single nucleotide polymorphisms and mobile genetic elements and by recombination events. Identification and location of novel genomic elements in a bacterial genome are not straightforward, unless the whole genome is sequenced. Optical mapping is a new tool that creates a high-resolution, in situ ordered restriction map of a bacterial genome. These maps can be used to determine genomic organization and perform comparative genomics to identify genomic rearrangements, such as insertions, deletions, duplications, and inversions, compared to an in silico (virtual) restriction map of a known genome sequence. Using this technology, we report here the identification, approximate location, and characterization of a genetic inversion of ∼500 kb of a DNA element between the NRS387 (USA800) and FPR3757 (USA300) strains. The presence of the inversion and location of its junction sites were confirmed by site-specific PCR and sequencing. At both the left and right junction sites in NRS387, an IS1181 element and a 73-bp sequence were identified as inverted repeats, which could explain the possible mechanism of the inversion event.Staphylococcus aureus is a gram-positive bacterium of immense clinical importance. This opportunistic pathogen is capable of causing a wide range of diseases from skin and soft-tissue infections to life-threatening bacteremia, endocarditis, and osteomyelitis (14). Approximately 75% of the S. aureus genome is composed of a core genome that is common in all strains, and 25% of the genome is composed of variable regions which can differ between different strains (4, 16, 24-26). S. aureus evolves primarily by introducing single nucleotide polymorphisms in its core genome and by acquiring mobile genetic elements (MGEs) through horizontal gene transfer. These MGEs include pathogenicity/genomic islands, plasmids, transposons, and bacteriophages that become integrated in the chromosome (4, 11, 16, 31, 32). Despite being a heterogeneous organism, genetic recombination in S. aureus is proposed to be rather rare (20, 24, 29, 35). Its clones are more likely to evolve by point mutations than by recombination events (12). The MGEs contribute to the phenotypic and genotypic diversity seen with the S. aureus population. Acquisition of the staphylococcal cassette chromosome (SCCmec) elements through site-specific recombinases has led to the epidemic of methicillin-resistant S. aureus (MRSA) strains in hospitals and communities all over the world (6, 10, 15). In recent years, the integration of arginine catabolite mobile element in the USA300 lineage of MRSA has been proposed to give the pathogen its epidemiological advantage, including traits for surviving in low-pH conditions and oxygen tension environments (11). In addition, chromosomal replacements have been observed within lineages of sequence type 34 (ST34) and ST42 (34) and ST8 and ST30 (13).Genomic rearrangements, such as inversions, have been observed with genomes of enteric bacteria, such as Salmonella enterica, Shigella flexneri, Yersinia pestis KIM, Escherichia coli (K12 and O157:H7), and group A Streptococcus pyogenes (8, 9, 18, 27, 28, 30, 37). No genomic inversions in S. aureus have been reported to date. With the use of optical mapping, large genomic rearrangements, such as inversions, that would otherwise be missed with other comparative genotyping approaches, including microarray analysis, can be identified. Optical mapping uses high-resolution restriction maps (optical maps) of a bacterial genome to determine its genomic organization (5, 21, 23, 33, 36). These optical maps can be compared to an in silico (virtual) restriction map of a known genome sequence and can be used to identify gene rearrangements and their locations. Using optical mapping in conjunction with subsequent site-specific PCR and sequencing, we report the identification, approximate location, and partial characterization of an ∼500-kb DNA element in NRS387, a USA800 strain that was found to be inverted relative to USA300FPR3757. Identification of IS1181 elements and a novel 73-bp element at both ends of the ∼500-kb element in NRS387 could suggest the possibility of an inversion event in an ancestral strain of NRS387.  相似文献   

7.
Among the most difficult bacterial infections encountered in treating patients are wound infections, which may occur in burn victims, patients with traumatic wounds, necrotic lesions in people with diabetes, and patients with surgical wounds. Within a wound, infecting bacteria frequently develop biofilms. Many current wound dressings are impregnated with antimicrobial agents, such as silver or antibiotics. Diffusion of the agent(s) from the dressing may damage or destroy nearby healthy tissue as well as compromise the effectiveness of the dressing. In contrast, the antimicrobial agent selenium can be covalently attached to the surfaces of a dressing, prolonging its effectiveness. We examined the effectiveness of an organoselenium coating on cellulose discs in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus biofilm formation. Colony biofilm assays revealed that cellulose discs coated with organoselenium completely inhibited P. aeruginosa and S. aureus biofilm formation. Scanning electron microscopy of the cellulose discs confirmed these results. Additionally, the coating on the cellulose discs was stable and effective after a week of incubation in phosphate-buffered saline. These results demonstrate that 0.2% selenium in a coating on cellulose discs effectively inhibits bacterial attachment and biofilm formation and that, unlike other antimicrobial agents, longer periods of exposure to an aqueous environment do not compromise the effectiveness of the coating.Among the most difficult bacterial infections encountered in treating patients are wound infections, which may occur in burn victims (10), patients with traumatic wounds (33), people with diabetes (27), and patients with surgical wounds (29, 31). Two of the more common causative agents of wound infections are Staphylococcus aureus and Pseudomonas aeruginosa (10, 27, 29, 31, 33). Such infections often lead to fatality; the mortality rate among patients infected with P. aeruginosa ranges from 26% to 55% (9, 49), while mortality from S. aureus infection ranges from 19% to 38% (28, 46, 50). As opportunistic pathogens, S. aureus and P. aeruginosa cause few infections in healthy individuals but readily cause infection once host defenses are compromised, such as with the removal of skin from burns (10). S. aureus infection originates from the normal flora of either the patient or health care workers (48), while P. aeruginosa is acquired from the environment surrounding the patient (41). Once established on the skin, S. aureus and P. aeruginosa are then able to colonize the wound. Infection results if the organisms proliferate in the wound environment.Both P. aeruginosa and S. aureus often exist within burn wounds as biofilms (43, 47). A biofilm is presently defined as a sessile microbial community characterized by cells that are irreversibly attached either to a substratum or to each other (16). Biofilms, which can attain over 100 μm in thickness, are made up of multiple layers of bacteria in an exopolysaccharide matrix (12, 16, 42). Sauer et al. showed that P. aeruginosa biofilms form in distinct developmental stages: reversible attachment, irreversible attachment, two stages of maturation, and a dispersion phase (42). Clinically, biofilms present serious medical management problems through their association with different chronic infections (37). During vascular catheter-related infections and sepsis, biofilms serve as a reservoir of bacteria from which planktonic cells detach and spread throughout the tissue and/or enter the circulatory system, resulting in bacteremia or septicemia (15). Factors specific to the bacterium may influence the formation of bacterial biofilms at different infection sites or surfaces. For example, during the initial attachment stage the flagellum, lipopolysaccharide, and possibly outer membrane proteins play a major role in bringing P. aeruginosa into proximity with the surface as well as mediating the interaction with the substratum (12). Using the murine model of thermal injury, we recently showed that P. aeruginosa forms a biofilm within the thermally injured tissues (43). Clinically, the surgeons debride the infected or dead tissues; however, a few microorganisms may remain on the tissue surface and reinitiate biofilm formation.Antibiotics, silver, or chitosan, attached to or embedded in gauze, have been shown to be efficacious in preventing wound infection (21, 24, 26, 36). However, the resistance of P. aeruginosa and S. aureus to available antibiotics severely limits the choices for antibiotic treatment (13, 40). Additionally, silver compounds, such as silver nitrate and silver sulfadiazine, leaching from dressings are toxic to human fibroblasts even at low concentrations (20, 25). Thus, effective alternative antimicrobial agents that contact the thermally injured/infected tissues and prevent the development of bacterial biofilms are required. Previous studies have shown that selenium (Se) can be covalently bound to a solid matrix and retain its ability to catalyze the formation of superoxide radicals (O2·−) (30). These superoxide radicals inhibit bacterial attachment to the solid surface (30). In this study, we examined the ability of a newly synthesized organoselenium-methacrylate polymer (Se-MAP) to block biofilm formation by both S. aureus and P. aeruginosa. These bacteria were chosen since they cause a major share of wound infections and because drug-resistant forms of these bacteria have become a serious problem in the treatment and management of these wound infections (6, 13, 17, 18, 38). Results of the study show that 0.2% (wt/wt) Se in Se-MAP covalently attached to cellulose discs inhibited P. aeruginosa and S. aureus biofilm formation. This could lead to the development of a selenium-based antimicrobial coating for cotton materials that will prevent the bacterial attachment and colonization that can ultimately lead to bacterial biofilm formation during chronic infections.  相似文献   

8.
9.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

10.
11.
Staphylococci contain a class Ib NrdEF ribonucleotide reductase (RNR) that is responsible, under aerobic conditions, for the synthesis of deoxyribonucleotide precursors for DNA synthesis and repair. The genes encoding that RNR are contained in an operon consisting of three genes, nrdIEF, whereas many other class Ib RNR operons contain a fourth gene, nrdH, that determines a thiol redoxin protein, NrdH. We identified a 77-amino-acid open reading frame in Staphylococcus aureus that resembles NrdH proteins. However, S. aureus NrdH differs significantly from the canonical NrdH both in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that S. aureus NrdH is a thiol redox protein. It is not essential for aerobic or anaerobic growth and appears to have a marginal role in protection against oxidative stress. In vitro, S. aureus NrdH was found to be an efficient reductant of disulfide bonds in low-molecular-weight substrates and proteins using dithiothreitol as the source of reducing power and an effective reductant for the homologous class Ib RNR employing thioredoxin reductase and NADPH as the source of the reducing power. Its ability to reduce NrdEF is comparable to that of thioredoxin-thioredoxin reductase. Hence, S. aureus contains two alternative thiol redox proteins, NrdH and thioredoxin, with both proteins being able to function in vitro with thioredoxin reductase as the immediate hydrogen donors for the class Ib RNR. It remains to be clarified under which in vivo physiological conditions the two systems are used.Ribonucleotide reductases (RNRs) are essential enzymes in all living cells, providing the only known de novo pathway for the biosynthesis of deoxyribonucleotides, the immediate precursors of DNA synthesis and repair. RNRs catalyze the controlled reduction of all four ribonucleotides to maintain a balanced pool of deoxyribonucleotides during the cell cycle (29). Three main classes of RNRs are known. Class I RNRs are oxygen-dependent enzymes, class II RNRs are oxygen-independent enzymes, and class III RNRs are oxygen-sensitive enzymes. Class I RNRs are divided into two subclasses, subclasses Ia and Ib.Staphylococcus aureus is a Gram-positive facultative aerobe and a major human pathogen (24). S. aureus contains class Ib and class III RNRs, which are essential for aerobic and anaerobic growth, respectively (26). The class Ib NrdEF RNR is encoded by the nrdE and nrdF genes: NrdE contains the substrate binding and allosteric binding sites, and NrdF contains the catalytic site for ribonucleotide reduction. The S. aureus nrdEF genes form an operon containing a third gene, nrdI, the product of which, NrdI, is a flavodoxin (5, 33). Many other bacteria such as Escherichia coli (16), Lactobacillus lactis (17), and Mycobacterium and Corynebacterium spp. possess class Ib RNR operons that contain a fourth gene, nrdH (30, 44, 50), whose product, NrdH, is a thiol-disulfide redoxin (16, 17, 40, 43, 49). More-complex situations are found for some bacteria, where the class Ib RNR operon may be duplicated and one or more of the nrdI and nrdH genes may be missing or located in another part of the chromosome (29).NrdH proteins are glutaredoxin-like protein disulfide oxidoreductases that alter the redox state of target proteins via the reversible oxidation of their active-site dithiol proteins. NrdH proteins function with high specificity as electron donors for class I RNRs (9, 16-18). They are widespread in bacteria, particularly in those bacteria that lack glutathione (GSH), where they function as a hydrogen donor for the class Ib RNR (12, 16, 17). In E. coli, which possesses class Ia and class Ib RNRs, NrdH functions in vivo as the primary electron donor for the class Ib RNR, whereas thioredoxin or glutaredoxin is used by the class Ia NrdAB RNR (12, 17). NrdH redoxins contain a conserved CXXC motif, have a low redox potential, and can reduce insulin disulfides. NrdH proteins possess an amino acid sequence similar to that of glutaredoxins but behave functionally more like thioredoxins. NrdH proteins are reduced by thioredoxin reductase but not by GSH and lack those residues in glutaredoxin that bind GSH and the GSH binding cleft (39, 40). The structures of the E. coli and Corynebacterium ammoniagenes NrdH redoxins reveal the presence of a wide hydrophobic pocket at the surface, like that in thioredoxin, that is presumed to be involved in binding to thioredoxin reductase (39, 40). NrdI proteins are flavodoxin proteins that function as electron donors for class Ib RNRs and are involved in the maintenance of the NrdF diferric tyrosyl radical (5, 33). In Streptococcus pyogenes, NrdI is essential for the activity of the NrdHEF system in a heterologous E. coli in vivo complementation assay (33). Class Ib RNRs are proposed to depend on two specific electron donors, NrdH, which provides reducing power to the NrdE subunit, and NrdI, which supplies electrons to the NrdF subunit (33).In this report we identify an open reading frame (ORF) in S. aureus encoding an NrdH-like protein with partial sequence relatedness to the E. coli, Salmonella enterica serovar Typhimurium, L. lactis, and C. ammoniagenes NrdH proteins. In contrast to these bacteria, the S. aureus nrdH gene does not form part of the class Ib RNR operon. The S. aureus NrdH protein differs in its structure from the canonical NrdH in its redox-active site, C-P-P-C instead of C-M/V-Q-C, and in the absence of the C-terminal [WF]SGFRP[DE] structural motif. We show that in vitro, S. aureus NrdH reduces protein disulfides and is an electron donor for the homologous class Ib NrdEF ribonucleotide reductase.  相似文献   

12.
A survey of chromosomal variation in the ST239 clonal group of methicillin-resistant Staphylococcus aureus (MRSA) revealed a novel genetic element, ICE6013. The element is 13,354 bp in length, excluding a 6,551-bp Tn552 insertion. ICE6013 is flanked by 3-bp direct repeats and is demarcated by 8-bp imperfect inverted repeats. The element was present in 6 of 15 genome-sequenced S. aureus strains, and it was detected using genetic markers in 19 of 44 diverse MRSA and methicillin-susceptible strains and in all 111 ST239 strains tested. Low integration site specificity was discerned. Multiple chromosomal copies and the presence of extrachromosomal circular forms of ICE6013 were detected in various strains. The circular forms included 3-bp coupling sequences, located between the 8-bp ends of the element, that corresponded to the 3-bp direct repeats flanking the chromosomal forms. ICE6013 is predicted to encode 15 open reading frames, including an IS30-like DDE transposase in place of a Tyr/Ser recombinase and homologs of gram-positive bacterial conjugation components. Further sequence analyses indicated that ICE6013 is more closely related to ICEBs1 from Bacillus subtilis than to the only other potential integrative conjugative element known from S. aureus, Tn5801. Evidence of recombination between ICE6013 elements is also presented. In summary, ICE6013 is the first member of a new family of active, integrative genetic elements that are widely dispersed within S. aureus strains.ST239 is a globally distributed clonal group of methicillin-resistant Staphylococcus aureus (MRSA). Currently, ST239 is a major cause of MRSA infections in Asian hospitals (5, 18, 25, 37, 45, 64, 74). Pulsed-field gel electrophoresis has detected extensive chromosomal variation in local ST239 populations (3, 24, 52, 72). As ST239 has geographically spread and diversified, its variants have been given more than a dozen different names (20, 22, 24, 25, 49, 52, 61, 67, 68, 73), which reflects their clinical significance in various locales. The molecular basis for the ecological success of ST239 is unclear, but virulence-associated traits such as enhanced biofilm development and epidemiological characteristics such as a propensity to cause device-associated bacteremia and pulmonary infections have been highlighted (3, 19, 27, 54).Multilocus genetic investigations of the ST239 chromosome revealed that it is a hybrid with estimated parental contributions of approximately 20% and 80% from distantly related ST30- and ST8-like parents, respectively (58). Unusual for naturally isolated bacteria was the finding that these parental contributions were large chromosomal replacements rather than a patchwork of localized recombinations. It was postulated that conjugation might be responsible for the natural transfer of hundreds of kilobases of contiguous chromosomal DNA that resulted in ST239 (58). Recent genomic investigations have presented evidence that large chromosomal replacements also occur within Streptococcus agalactiae strains and that they can be mimicked with laboratory conjugation experiments (12). Importantly, conjugative transfer frequencies in S. agalactiae were found to be highest near three genomic islands (12), two of which were identified as being integrative conjugative elements (ICEs) (13).ICEs and conjugative transposons are synonyms and refer to genetic elements that are maintained by integration into a replicon and are transmitted by self-encoded conjugation functions (56). ICEs abound in the genomes of S. agalactiae (11), but only one potential ICE has been identified in staphylococci to date: Tn5801 was discovered through the genomic sequencing of S. aureus strain Mu50 (46). Tn5801 is most similar to a truncated genetic element, CW459tet(M), from Clostridium perfringens (57). Both Tn5801 and CW459tet(M) have Tyr recombinases, regulatory genes, and tetM modules that are similar to those of the prototypical gram-positive conjugative transposon, Tn916. Moreover, both Tn5801 and CW459tet(M) integrate into the same locus, guaA, at a nearly identical 11-bp sequence. Although the conjugative transfer module of CW459tet(M) is deleted (57), the conjugative transfer module of Tn5801 is similar to that of Tn916.We suspected that ST239 strains might carry novel accessory genes that contribute to their chromosomal variation and ecological success. To explore this possibility, we conducted a survey of chromosomal variation in ST239 using a PCR scanning approach. We report the discovery and partial characterization of a novel genetic element, ICE6013, that resulted from the survey.  相似文献   

13.
14.
15.
The temperate phage φSLT of Staphylococcus aureus carries genes for Panton-Valentine leukocidin. Here, we identify ORF636, a constituent of the phage tail tip structure, as a recognition/adhesion protein for a poly(glycerophosphate) chain of lipoteichoic acid on the cell surface of S. aureus. ORF636 bound specifically to S. aureus; it did not bind to any other staphylococcal species or to several gram-positive bacteria.Staphylococcus aureus, a ubiquitous and harmful human pathogen, produces three types of bicomponent pore-forming cytotoxins, namely, γ-hemolysin (LukF and Hlg2), leukocidin (LukF and LukS), and Panton-Valentine leukocidin (PVL) (LukF-Pv and LukS-Pv) (16). Of these, PVL has been investigated as a virulence-related factor of some S. aureus infectious diseases (7, 11, 23, 24, 31, 37). PVL shows high cytolytic specificity against human polymorphonuclear leukocytes and macrophages, and it is closely associated with most cutaneous necrotic lesions, such as furuncles or primary abscesses, and severe necrotic skin infection (24, 31), as well as with severe necrotic hemorrhagic pneumonia (11, 23). LukF-Pv and LukS-Pv are expressed by the PVL locus (pvl), which is distinct from the γ-hemolysin locus (hlg) (16, 32). In previous research, we found that pvl genes are located in the genome of the lysogenic bacteriophage φPVL (17, 18). We also found another PVL-carrying temperate elongated-head Siphoviridae phage, φSLT, which has the ability to convert S. aureus to the PVL-producing strain from a clinical isolate (29). These findings indicated that at least two types of staphylococcal temperate phages are involved in the horizontal transfer of pvl genes among S. aureus strains (16, 29). Recently, the emergence of a single clonal community-acquired methicillin-resistant S. aureus (CA-MRSA), which produces PVL, was reported (7). Most CA-MRSA strains isolated in the United States and Australia carry the staphylococcal cassette chromosome mec (SCCmec) IV, and they were divided into five clonal complexes by multilocus sequence typing (30). The analysis of the CA-MRSA clones confirmed the presence of PVL genes and SCCmec IV in CA-MRSA and suggested that various CA-MRSA strains have arisen from the diverse genetic backgrounds associated with each geographic origin, rather than from the worldwide spread of a single clone (30, 37). Although there is great debate as to whether PVL is an important virulence factor, numerous studies support the hypothesis that PVL plays an important role in the pathogenesis of CA-MRSA necrotizing pneumonia (3, 6). In regard to the acquisition of PVL gene clusters and the proliferation of PVL-carrying CA-MRSA, the horizontal transfer of PVL via PVL-carrying phages, as well as that of SCCmec, has become the focus of intense research interest. To understand the horizontal transfer of PVL, the analysis of the infection ability of a PVL-carrying phage is important. If the phage has a wide host range, the PVL-carrying phage might threaten to become a source of emerging PVL-positive bacteria. Phage infection starts from an interaction between a phage virion and its host cell surface receptor. Nevertheless, little is known about phage receptors on the surface of S. aureus, and the mechanism of host cell-specific binding of staphylococcal phages has been poorly characterized. In addition, there is no information about staphylococcal phage proteins involved in host cell recognition and/or binding. Here, we identify ORF636, with a mass of 66 kDa, as a structural protein of the φSLT tail and determine that it acts as a protein for recognition/adhesion of a poly(glycerophosphate) moiety of lipoteichoic acid (LTA) on the cell surface of the host S. aureus in the first stage of infection by φSLT.  相似文献   

16.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

17.
18.
19.
20.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号