首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The prion protein (PrPC) is highly expressed within the nervous system. Similar to other GPI-anchored proteins, PrPC is found in lipid rafts, membrane domains enriched in cholesterol and sphingolipids. PrPC raft association, together with raft lipid composition, appears essential for the conversion of PrPC into the scrapie isoform PrPSc, and the development of prion disease. Controversial findings were reported on the nature of PrPC-containing rafts, as well as on the distribution of PrPC between rafts and non-raft membranes. We investigated PrPC/ganglioside relationships and their influence on PrPC localization in a neuronal cellular model, cerebellar granule cells. Our findings argue that in these cells at least two PrPC conformations coexist: in lipid rafts PrPC is present in the native folding (α-helical), stabilized by chemico-physical condition, while it is mainly present in other membrane compartments in a PrPSc-like conformation. We verified, by means of antibody reactivity and circular dichroism spectroscopy, that changes in lipid raft-ganglioside content alters PrPC conformation and interaction with lipid bilayers, without modifying PrPC distribution or cleavage. Our data provide new insights into the cellular mechanism of prion conversion and suggest that GM1-prion protein interaction at the cell surface could play a significant role in the mechanism predisposing to pathology.  相似文献   

2.
The cellular prion protein (PrPC) is an N-glycosylated GPI-anchored protein usually present in lipid rafts with numerous putative functions. When it changes its conformation to a pathological isoform (then referred to as PrPSc), it is an essential part of the prion, the agent causing fatal and transmissible neurodegenerative prion diseases. There is growing evidence that toxicity and neuronal damage on the one hand and propagation/infectivity on the other hand are two distinct processes of the disease and that the GPI-anchor attachment of PrPC and PrPSc plays an important role in protein localization and in neurotoxicity. Here we review how the signal sequence of the GPI-anchor matters in PrPC localization, how an altered cellular localization of PrPC or differences in GPI-anchor composition can affect prion infection, and we discuss through which mechanisms changes on the anchorage of PrPC can modify the disease process.  相似文献   

3.
Conversion of prion protein (PrPC) into a pathological isoform (PrPSc) during prion infection occurs in lipid rafts and is dependent on cholesterol. Here, we show that prion infection increases the abundance of cholesterol transporter, ATP-binding cassette transporter type A1 (ATP-binding cassette transporter type A1), but reduces cholesterol efflux from neuronal cells leading to the accumulation of cellular cholesterol. Increased abundance of ABCA1 in prion disease was confirmed in prion-infected mice. Mechanistically, conversion of PrPC to the pathological isoform led to PrPSc accumulation in rafts, displacement of ABCA1 from rafts and the cell surface, and enhanced internalization of ABCA1. These effects were abolished with reversal of prion infection or by loading cells with cholesterol. Stimulation of ABCA1 expression with liver X receptor agonist or overexpression of heterologous ABCA1 reduced the conversion of prion protein into the pathological form upon infection. These findings demonstrate a reciprocal connection between prion infection and cellular cholesterol metabolism, which plays an important role in the pathogenesis of prion infection in neuronal cells.  相似文献   

4.
A hallmark of prion diseases is the conversion of the host-encoded prion protein (PrPC where C is cellular) into an alternatively folded, disease-related isoform (PrPSc, where Sc is scrapie), the accumulation of which is associated with synapse degeneration and ultimately neuronal death. The formation of PrPSc is dependent upon the presence of PrPC in specific, cholesterol-sensitive membrane microdomains, commonly called lipid rafts. PrPC is targeted to these lipid rafts because it is attached to membranes via a glycosylphosphatidylinositol anchor. Here, we show that treatment of prion-infected neuronal cell lines (ScN2a, ScGT1, or SMB cells) with synthetic glycosylphosphatidylinositol analogues, glucosamine-phosphatidylinositol (glucosamine-PI) or glucosamine 2-O-methyl inositol octadecyl phosphate, reduced the PrPSc content of these cells in a dose-dependent manner. In addition, ScGT1 cells treated with glucosamine-PI did not transmit infection following intracerebral injection to mice. Treatment with glucosamine-PI increased the cholesterol content of ScGT1 cell membranes and reduced activation of cytoplasmic phospholipase A2 (PLA2), consistent with the hypothesis that the composition of cell membranes affects key PLA2-dependent signaling pathways involved in PrPSc formation. The effect of glucosamine-PI on PrPSc formation was also reversed by the addition of platelet-activating factor. Glucosamine-PI caused the displacement of PrPC from lipid rafts and reduced expression of PrPC at the cell surface, putative sites for PrPSc formation. We propose that treatment with glucosamine-PI modifies local micro-environments that control PrPC expression and activation of PLA2 and subsequently inhibits PrPSc formation.  相似文献   

5.
The prion diseases occur following the conversion of the cellular prion protein (PrPC) into disease-related isoforms (PrPSc). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrPC in prion formation was examined using a cell painting technique. PrPSc formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrPC. In contrast, PrPC containing a GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc. Furthermore, the presence of desialylated PrPC inhibited the production of PrPSc within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrPC contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrPC. Desialylated PrPC was less sensitive to cholesterol depletion than PrPC and was not released from cells by treatment with glimepiride. The presence of desialylated PrPC in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases.  相似文献   

6.

Background

The cellular prion protein (PrPC) plays a key role in the pathogenesis of Transmissible Spongiform Encephalopathies in which the protein undergoes post-translational conversion to the infectious form (PrPSc). Although endocytosis appears to be required for this conversion, the mechanism of PrPC internalization is still debated, as caveolae/raft- and clathrin-dependent processes have all been reported to be involved.

Methodology/Principal Findings

We have investigated the mechanism of PrPC endocytosis in Fischer Rat Thyroid (FRT) cells, which lack caveolin-1 (cav-1) and caveolae, and in FRT/cav-1 cells which form functional caveolae. We show that PrPC internalization requires activated Cdc-42 and is sensitive to cholesterol depletion but not to cav-1 expression suggesting a role for rafts but not for caveolae in PrPC endocytosis. PrPC internalization is also affected by knock down of clathrin and by the expression of dominant negative Eps15 and Dynamin 2 mutants, indicating the involvement of a clathrin-dependent pathway. Notably, PrPC co-immunoprecipitates with clathrin and remains associated with detergent-insoluble microdomains during internalization thus indicating that PrPC can enter the cell via multiple pathways and that rafts and clathrin cooperate in its internalization.

Conclusions/Significance

These findings are of particular interest if we consider that the internalization route/s undertaken by PrPC can be crucial for the ability of different prion strains to infect and to replicate in different cell lines.  相似文献   

7.
Mammalian prions refold host glycosylphosphatidylinositol-anchored PrPC into β-sheet–rich PrPSc. PrPSc is rapidly truncated into a C-terminal PrP27-30 core that is stable for days in endolysosomes. The nature of cell-associated prions, their attachment to membranes and rafts, and their subcellular locations are poorly understood; live prion visualization has not previously been achieved. A key obstacle has been the inaccessibility of PrP27-30 epitopes. We overcame this hurdle by focusing on nascent full-length PrPSc rather than on its truncated PrP27-30 product. We show that N-terminal PrPSc epitopes are exposed in their physiological context and visualize, for the first time, PrPSc in living cells. PrPSc resides for hours in unexpected cell-surface, slow moving strings and webs, sheltered from endocytosis. Prion strings observed by light and scanning electron microscopy were thin, micrometer-long structures. They were firmly cell associated, resisted phosphatidylinositol-specific phospholipase C, aligned with raft markers, fluoresced with thioflavin, and were rapidly abolished by anti-prion glycans. Prion strings and webs are the first demonstration of membrane-anchored PrPSc amyloids.  相似文献   

8.
Prion diseases are fatal neurodegenerative disorders resulting from structural conversion of the cellular isoform of PrPC to the infectious scrapie isoform PrPSc. It is believed that such structural alteration may occur within the internalization pathway. However, there is no direct evidence to support this hypothesis. Employing quantum dots (QDs) as a probe, we have recorded a real-time movie demonstrating the process of prion internalization in a living cell for the first time. The entire internalization process can be divided into four discrete but connected stages. In addition, using methyl-beta-cyclodextrin to disrupt cell membrane cholesterol, we show that lipid rafts play an important role in locating cellular PrPC to the cell membrane and in initiating PrPC endocytosis.  相似文献   

9.
The prion diseases occur following the conversion of the cellular prion protein (PrPC) into a disease-related isoform (PrPSc). In this study a cell painting technique was used to examine the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrPC in prion formation. The introduction of PrPC to infected neuronal cells increased the cholesterol content of cell membranes, increased activation of cytoplasmic phospholipase A2 (cPLA2) and increased PrPSc formation. In contrast, PrPC with a monoacylated GPI anchor did not alter the amount of cholesterol in cell membranes, was not found within lipid rafts and did not activate cPLA2. Although monoacylated PrPC remains within cells for longer than native PrPC it was not converted to PrPSc. Moreover, the presence of monoacylated PrPC displaced cPLA2 from PrPSc-containing lipid rafts, reducing the activation of cPLA2 and PrPSc formation. We conclude that acylation of the GPI anchor attached to PrPC modifies the local membrane microenvironments that control some cell signaling pathways, the trafficking of PrPC and PrPSc formation. In addition, such observations raise the possibility that the pharmacological modification of GPI anchors might constitute a novel therapeutic approach to prion diseases.Key words: cholesterol, glycosylphosphatidylinositol, lipid rafts, membranes, phospholipase A2, prion, trafficA key event in the prion diseases is the conversion of a normal host protein (PrPC) into a disease-associated isoform (PrPSc).1 Although the presence of PrPC is essential for prion formation,2,3 not all cells that express PrPC are permissive for PrPSc replication. The reasons why some cells that express PrPC do not replicate PrPSc are not fully understood. Reports that the targeting of PrPC to specific membranes is required for efficient PrPSc formation4 indicate that the factors that affect the cellular targeting and intracellular trafficking of PrPC are critical in determining PrPSc replication.Our study examined the effects of the glycosylphosphatidylinositol (GPI) anchor that links the majority of PrPC molecules to cell membranes5 on PrPSc formation. Originally GPI anchors were seen as a simple method of attaching proteins to cell membranes. However, there is increasing interest in the role of GPI anchors in complex biological functions including the regulation of membrane composition, cell signaling and protein trafficking.6 To examine the role of the GPI anchor PrPC preparations were digested with phosphatidylinositol-phospholipase C (PI-PLC) (deacylated PrPC) or phospholipase A2 (PLA2) (monoacylated PrPC) (Fig. 1) and isolated by reverse phase chromatography. These digestions, coupled with a cell painting technique, allowed us to examine modifications of the GPI anchor that could not be achieved by genetic manipulation methods. Controversy surrounds the role of the GPI anchor in PrPSc formation; the seminal observation that transgenic mice producing anchorless PrPC produced large amounts of extracellular PrPSc,7 suggests that the GPI has little effect upon PrPSc replication. In contrast, a recent study showed that cells that produce anchorless PrPC were not permissive to PrPSc formation8 and in our study deacylated PrPC did not affect PrPSc production. Although at first glance these results appear contradictory, they may be explained by reference to the site of conversion of PrPC to PrPSc. Clearly anchorless PrPC can be converted to PrPSc in a process that occurs within the extracellular milieu. However, as anchorless PrPC is rapidly secreted from cells7 it has little contact with cell-associated PrPSc. Similarly we found that deacylated PrPC was fully soluble and did not readily associate with cells.Open in a separate windowFigure 1Phospholipase digestion of PrPC affects the acylation of the GPI anchor. Cartoon showing the putative GPI anchor attached to PrPC, monoacylated PrPC and deacylated PrPC. Glycan residues shown include inositol (Inos), mannose (Man), sialic acid (SA), galactose (Gal), N-acetyl galactosamine (GalNAc) and glucosamine (GlcN) as well as phosphate (P).Native PrPC is rapidly transferred to cells9 and we showed that the addition of PrPC caused a dose-dependent increase in the PrPSc content of all prion-infected cell lines tested. We used this cell painting technique to introduce monoacylated PrPC to recipient cells. Our paper describes three major observations; firstly that monoacylated PrPC behaves differently to native PrPC with regards to cellular distribution, intracellular trafficking and cell signaling; secondly, that monoacylated PrPC was not converted to PrPSc and thirdly, that monoacylated PrPC inhibited the conversion of endogenous PrPC to PrPSc.The presence of GPI anchors targets proteins including PrPC and PrPSc to specialized membrane micro-domains that are commonly called lipid rafts.10,11 Lipid rafts are patches of membranes that are highly enriched in cholesterol and sphingolipids and which are operationally defined by their insolubility in cold non-ionic detergents and floatation as low density membranes on sucrose density gradients. The importance of lipid rafts in prion diseases is based upon studies showing that treatment with cholesterol synthesis inhibitors reduced cellular cholesterol and the formation of PrPSc.12 Since the cholesterol content of cell membranes is critical for the formation of lipid rafts13 it is assumed that the integrity of these lipid rafts is necessary for efficient PrPSc formation. The presence of GPI-anchored proteins is thought to help lipid rafts form as the saturated fatty acids that are contained within GPI anchors facilitate the solubilisation of cholesterol in the membrane14 and the glycan component protect cholesterol from water.15 Thus the nature and number of the acyl chains contained within GPI anchors are factors that affect lipid raft formation (Fig. 2).Open in a separate windowFigure 2Acylation of PrPC affects the underlying cell membrane. Cartoon showing the proposed membranes surrounding native PrPC and monoacylated PrPC, including cholesterol (), lyso-phospholipids (), saturated phospholipids () and unsaturated phospholipids (). Monoacylated PrPC is not directed to lipid rafts and the membrane surrounding contains less cholesterol and more unsaturated phospholipids.We observed that the addition of native PrPC significantly increased the amount of cholesterol in cell membranes. This result was unexpected as the amount of cholesterol in cell membranes is tightly controlled by an esterification and hydrolysis cycle which releases cholesterol from stored cholesterol esters.16 The PrPC-induced increase in cholesterol was accompanied by a reduction in cholesterol esters suggesting that it was derived from the hydrolysis of cholesterol esters. Pharmacological inhibition of cholesterol ester hydrolysis not only blocked the PrPC-induced increase in cholesterol and the reduction in cholesterol esters, but also reduced the PrPC-induced increase in PrPSc formation. Collectively, these results indicate that cells respond to the introduction of PrPC by the hydrolysis of cholesterol esters; which provides cholesterol to stabilize PrPC within the lipid rafts that are necessary to facilitate PrPSc formation.The differences in the cellular distribution of PrPC and monoacylated PrPC were examined using neurons from Prnp knockout mice. While PrPC was targeted to lipid rafts, monoacylated PrPC was found predominantly within the normal (non-raft) cell membranes. Unlike native PrPC, monoacylated PrPC did not affect the cholesterol content of cell membranes; an observation that highlights the critical role of the presence of two saturated fatty acids contained within the GPI anchor to sequester cholesterol and precipitate the formation of lipid rafts.14 Critically, monoacylated PrPC was unable to solubilize cholesterol or precipitate lipid raft formation and was consequently found outside lipid rafts (Fig. 2).Since many raft-associated proteins including PrPC traffic within cells via specific pathways,17 we argued that monoacylated PrPC might undergo alternative trafficking pathways to those utilized by native PrPC. Our observations, that greater amounts of monoacylated PrPC than native PrPC were expressed at the cell surface, and that while most of the native PrPC was removed from these cells within 24 h, monoacylated PrPC remained in neurons for longer, are indicative of altered intracellular trafficking. It is possible that the cellular location and/or pathway(s) used by monoacylated PrPC may be physically segregated from PrPSc. This hypothesis would explain our observation that the addition of monoacylated PrPC to prion-infected cell lines did not increase PrPSc formation indicating that it was not converted to PrPSc.Since monoacylated phospholipids exist only transiently within cell membranes, they are rapidly reacylated by esterases,18 we wondered whether the monoacylated PrPC could also be reacylated to form the native, diacylated PrPC. We found no evidence that the monoacylated PrPC added to Prnp knockout neurons was reacylated suggesting that the enzymes involved in reacylation of membrane phospholipids do not recognize phosphatidylinositol when it is incorporated as part of the GPI anchor. In addition we were unable to detect monoacylated PrPC occurring naturally within Prnp wild-type neurons.While these theories explain why monoacylated PrPC was not readily converted to PrPSc; a more refined hypothesis is required to explain why monoacylated PrPC reduced PrPSc production. One possibility is that monoacylated PrPC is converted to monoacylated PrPSc which in turn acts as an inefficient template for PrPC to PrPSc conversion.19 It is also possible that monoacylated PrPC competes with endogenous PrPC for specific partner proteins involved in endocytosis. The depletion of these partner proteins could consequently alter the trafficking of endogenous PrPC and hence PrPSc formation. In our paper we explored the idea that the binding of monoacylated PrPC to PrPSc modifies the lipid rafts that are involved in PrPSc formation. Both the composition and function of lipid rafts is dynamic and controlled by an induced fit model.20 Since monoacylated PrPC does not sequester cholesterol, the membrane surrounding a complex between PrPSc and monoacylated PrPC might be expected to contain less cholesterol than membranes formed following the interaction between PrPSc and PrPC (Fig. 3). Thus, the binding of monoacylated PrPC to PrPSc may reduce the cholesterol content of local membranes to a level below that required for the conversion of PrPC to PrPSc. This hypothesis is consistent with observations that formation of PrPSc was affected by the lipid composition of membranes21 and that lipids were essential co-factors in prion formation.22Open in a separate windowFigure 3Monoacylated PrPC affects the capture of cPLA2 in PrPSc-containing lipid rafts. (A) Cartoon showing the proposed membranes surrounding PrPSc and PrPC including the capture of cPLA2 in lipid rafts that are dense in cholesterol () and saturated phospholipids (). (B) Cartoon showing the proposed interactions between PrPSc and monoacylated PrPC which reduces the solubility of membranes to cholesterol, increases the concentration of unsaturated phospholipids () and prevents the capture of cPLA2 into PrPSc-containing lipid rafts.Our studies raise the question “why are lipid rafts important in PrPSc formation?” Lipid rafts are enriched with signaling molecules and can act as domains in which the GPI anchors attached to PrPC can interact with cell signaling pathways.23 Although PrPC has been reported to interact with many cell signaling pathways we concentrated upon its effects on the activation of cPLA2, based upon studies showing that the activation of cPLA2 correlates strongly with the amounts of cholesterol and PrPSc,24 and that the inhibition of cPLA2 reduces PrPSc formation.25 These observations underpin the hypothesis that it is the clustering of GPI anchors attached to PrP proteins that leads to the activation of cPLA2. This hypothesis was tested by incubating Prnp knockout neurons with PrPC or monoacylated PrPC and then adding the anti-PrP mAb 4F2. We found that the cross-linkage of PrPC by mAb 4F2 caused the activation of cPLA2, whereas the cross-linkage of monoacylated PrPC by mAb 4F2 had no significant affect. The activation of cPLA2 is associated with multiple phosphorylation events and the translocation of cPLA2 to specific membranes.26 In scrapie-infected GT1 (ScGT1) cells most of the cPLA2 was found within lipid rafts consistent with reports that the activation of cPLA2 is dependent upon cholesterol-sensitive lipid rafts.27 More specifically, immunoprecipitation studies showed that cPLA2 was targeted to PrPSc-containing lipid rafts.24 Collectively, these observations suggest that PrPC binds to PrPSc in cholesterol-dense lipid rafts, where it activates the cPLA2 that facilitates the conversion of PrPC to PrPSc (Fig. 3).We found that the presence of monoacylated PrPC reduced the activation of cPLA2 within prion-infected cells. As cPLA2 can be activated by multiple different stimuli we sought to determine whether the inhibitory effect of monoacylated PrPC was stimulus specific. We reported that monoacylated PrPC did not affect the activation of cPLA2 by a phospholipase A2-activating peptide indicating that monoacylated PrPC did not have a direct inhibitory effect upon cPLA2. Rather we found that the addition of monoacylated PrPC to prion-infected cells caused the dissociation of some cPLA2 from PrPSc-containing lipid rafts. The targeting of cPLA2 to membranes containing their endogenous substrates can regulate cell signaling, including for the formation of second messengers such as platelet-activating factor that facilitate PrPSc formation.25 We propose that the binding of monoacylated PrPC to PrPSc changed the composition of the underlying membrane so that it no longer captured and activated cPLA2 (Fig. 3).In conclusion our study showed that the addition of monoacylated PrPC modified cell membranes thus reducing the activation of cPLA2 and PrPSc formation in prion-infected cells. We propose that the 2 acyl chains attached to the GPI anchor is a critical factor that facilitates the conversion to PrPC to PrPSc within cell membranes and that the presence of monoacylated PrPC disrupts lipid raft micro-domains that are essential for efficient PrPSc formation. Moreover, these results raise the possibility that targeting the GPI anchor attached to PrPC may reveal novel therapeutics/treatments for prion diseases.  相似文献   

10.
Prion diseases are fatal neurodegenerative disorders caused by prion proteins (PrP). Infectious prions accumulate in the brain through a template-mediated conformational conversion of endogenous PrPC into alternately folded PrPSc. Immunoassays toward pre-clinical detection of infectious PrPSc have been confounded by low-level prion accumulation in non-neuronal tissue and the lack of PrPSc selective antibodies. We report a method to purify infectious PrPSc from biological tissues for use as an immunogen and sample enrichment for increased immunoassay sensitivity. Significant prion enrichment is accomplished by sucrose gradient centrifugation of infected tissue and isolation with detergent resistant membranes from lipid rafts (DRMs). At equivalent protein concentration a 50-fold increase in detectable PrPSc was observed in DRM fractions relative to crude brain by direct ELISA. Sequential purification steps result in increased specific infectivity (DRM >20-fold and purified DRM immunogen >40-fold) relative to 1% crude brain homogenate. Purification of PrPSc from DRM was accomplished using phosphotungstic acid protein precipitation after proteinase-K (PK) digestion followed by size exclusion chromatography to separate PK and residual protein fragments from larger prion aggregates. Immunization with purified PrPSc antigen was performed using wild-type (wt) and Prnp0/0 mice, both on Balb/cJ background. A robust immune response against PrPSc was observed in all inoculated Prnp0/0 mice resulting in antisera containing high-titer antibodies against prion protein. Antisera from these mice recognized both PrPC and PrPSc, while binding to other brain-derived protein was not observed. In contrast, the PrPSc inoculum was non-immunogenic in wt mice and antisera showed no reactivity with PrP or any other protein.Key words: prion, scrapie, Prnp0/0 mice, purification methodology, antibody, antisera, lipid-rafts, detergent resistant membranes, neuroscience, immunization, diagnostic  相似文献   

11.
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein amyloids in several regions of the brain. α-Synuclein fibrils are able to spread via cell-to-cell transfer, and once inside the cells, they can template the misfolding and aggregation of the endogenous α-synuclein. Multiple mechanisms have been shown to participate in the process of propagation: endocytosis, tunneling nanotubes and macropinocytosis. Recently, we published a research showing that the cellular form of the prion protein (PrPC) acts as a receptor for α-synuclein amyloid fibrils, facilitating their internalization through and endocytic pathway. This interaction occurs by a direct interaction between the fibrils and the N-terminal domain of PrPC. In cell lines expressing the pathological form of PrP (PrPSc), the binding between PrPC and α-synuclein fibrils prevents the formation and accumulation of PrPSc, since PrPC is no longer available as a substrate for the pathological conversion templated by PrPSc. On the contrary, PrPSc deposits are cleared over passages, probably due to the increased processing of PrPC into the neuroprotective fragments N1 and C1. Starting from these data, in this work we present new insights into the role of PrPC in the internalization of protein amyloids and the possible therapeutic applications of these findings.  相似文献   

12.
Transmissible spongiform encephalopathies, including variant-Creutzfeldt-Jakob disease (vCJD) in humans and bovine spongiform encephalopathies in cattle, are fatal neurodegenerative disorders characterized by protein misfolding of the host cellular prion protein (PrPC) to the infectious scrapie form (PrPSc). However, the mechanism that exogenous PrPSc infects cells and where pathologic conversion of PrPC to the PrPSc form occurs remains uncertain. Here we report that similar to the mechanism of HIV-1 TAT-mediated peptide transduction, processed mature, full length PrP contains a conserved N-terminal cationic domain that stimulates cellular uptake by lipid raft-dependent, macropinocytosis. Inhibition of macropinocytosis by three independent means prevented cellular uptake of recombinant PrP; however, it did not affect recombinant PrP cell surface association. In addition, fusion of the cationic N-terminal PrP domain to a Cre recombinase reporter protein was sufficient to promote both cellular uptake and escape from the macropinosomes into the cytoplasm. Inhibition of macropinocytosis was sufficient to prevent conversion of PrPC to the pathologic PrPSc form in N2a cells exposed to strain RML PrPSc infected brain homogenates, suggesting that a critical determinant of PrPC conversion occurs following macropinocytotic internalization and not through mere membrane association. Taken together, these observations provide a cellular mechanism that exogenous pathological PrPSc infects cells by lipid raft dependent, macropinocytosis.  相似文献   

13.
Conversion of normal prion protein (PrPC) to the pathogenic PrPSc conformer is central to prion diseases such as Creutzfeldt–Jakob disease and scrapie; however, the detailed mechanism of this conversion remains obscure. To investigate how the N-terminal polybasic region of PrP (NPR) influences the PrPC-to-PrPSc conversion, we analyzed two PrP mutants: ΔN6 (deletion of all six amino acids in NPR) and Met4-1 (replacement of four positively charged amino acids in NPR with methionine). We found that ΔN6 and Met4-1 differentially impacted the binding of recombinant PrP (recPrP) to the negatively charged phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, a nonprotein cofactor that facilitates PrP conversion. Both mutant recPrPs were able to form recombinant prion (recPrPSc) in vitro, but the convertibility was greatly reduced, with ΔN6 displaying the lowest convertibility. Prion infection assays in mammalian RK13 cells expressing WT or NPR-mutant PrPs confirmed these differences in convertibility, indicating that the NPR affects the conversion of both bacterially expressed recPrP and post-translationally modified PrP in eukaryotic cells. We also found that both WT and mutant recPrPSc conformers caused prion disease in WT mice with a 100% attack rate, but the incubation times and neuropathological changes caused by two recPrPSc mutants were significantly different from each other and from that of WT recPrPSc. Together, our results support that the NPR greatly influences PrPC-to-PrPSc conversion, but it is not essential for the generation of PrPSc. Moreover, the significant differences between ΔN6 and Met4-1 suggest that not only charge but also the identity of amino acids in NPR is important to PrP conversion.  相似文献   

14.
Prion proteins (PrPs) cause prion diseases, such as bovine spongiform encephalopathy. The conversion of a normal cellular form (PrPC) of PrP into an abnormal form (PrPSc) is thought to be associated with the pathogenesis. An RNA aptamer that tightly binds to and stabilizes PrPC is expected to block this conversion and to thereby prevent prion diseases. Here, we show that an RNA aptamer comprising only 12 residues, r(GGAGGAGGAGGA) (R12), reduces the PrPSc level in mouse neuronal cells persistently infected with the transmissible spongiform encephalopathy agent. Nuclear magnetic resonance analysis revealed that R12, folded into a unique quadruplex structure, forms a dimer and that each monomer simultaneously binds to two portions of the N-terminal half of PrPC, resulting in tight binding. Electrostatic and stacking interactions contribute to the affinity of each portion. Our results demonstrate the therapeutic potential of an RNA aptamer as to prion diseases.  相似文献   

15.
Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform of prion protein, PrPSc, which leads to marked accumulation of PrPSc in brains, is a key pathogenic event in prion diseases, a group of fatal neurodegenerative disorders caused by prions. However, the exact mechanism of PrPSc accumulation in prion-infected neurons remains unknown. We recently reported a novel cellular mechanism to support PrPSc accumulation in prion-infected neurons, in which PrPSc itself promotes its accumulation by evading the cellular inhibitory mechanism, which is newly identified in our recent study. We showed that the VPS10P sorting receptor sortilin negatively regulates PrPSc accumulation in prion-infected neurons, by interacting with PrPC and PrPSc and trafficking them to lysosomes for degradation. However, PrPSc stimulated lysosomal degradation of sortilin, disrupting the sortilin-mediated degradation of PrPC and PrPSc and eventually evoking further accumulation of PrPSc in prion-infected neurons. These findings suggest a positive feedback amplification mechanism for PrPSc accumulation in prion-infected neurons.  相似文献   

16.
The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC) into the disease-associated, transmissible form (PrPSc). PrPC is a sialoglycoprotein that contains two conserved N-glycosylation sites. Among the key parameters that control prion replication identified over the years are amino acid sequence of host PrPC and the strain-specific structure of PrPSc. The current work highlights the previously unappreciated role of sialylation of PrPC glycans in prion pathogenesis, including its role in controlling prion replication rate, infectivity, cross-species barrier and PrPSc glycoform ratio. The current study demonstrates that undersialylated PrPC is selected during prion amplification in Protein Misfolding Cyclic Amplification (PMCAb) at the expense of oversialylated PrPC. As a result, PMCAb-derived PrPSc was less sialylated than brain-derived PrPSc. A decrease in PrPSc sialylation correlated with a drop in infectivity of PMCAb-derived material. Nevertheless, enzymatic de-sialylation of PrPC using sialidase was found to increase the rate of PrPSc amplification in PMCAb from 10- to 10,000-fold in a strain-dependent manner. Moreover, de-sialylation of PrPC reduced or eliminated a species barrier of for prion amplification in PMCAb. These results suggest that the negative charge of sialic acid controls the energy barrier of homologous and heterologous prion replication. Surprisingly, the sialylation status of PrPC was also found to control PrPSc glycoform ratio. A decrease in PrPC sialylation levels resulted in a higher percentage of the diglycosylated glycoform in PrPSc. 2D analysis of charge distribution revealed that the sialylation status of brain-derived PrPC differed from that of spleen-derived PrPC. Knocking out lysosomal sialidase Neu1 did not change the sialylation status of brain-derived PrPC, suggesting that Neu1 is not responsible for desialylation of PrPC. The current work highlights previously unappreciated role of PrPC sialylation in prion diseases and opens multiple new research directions, including development of new therapeutic approaches.  相似文献   

17.
The key molecular event underlying prion diseases is the conversion of the monomeric and α-helical cellular form of the prion protein (PrPC) to the disease-associated state, which is aggregated and rich in β-sheet (PrPSc). The molecular details associated with the conversion of PrPC into PrPSc are not fully understood. The prion protein is attached to the cell membrane via a GPI lipid anchor and evidence suggests that the lipid environment plays an important role in prion conversion and propagation. We have previously shown that the interaction of the prion protein with anionic lipid membranes induces β-sheet structure and promotes prion aggregation, whereas zwitterionic membranes stabilize the α-helical form of the protein. Here, we report on the interaction of recombinant sheep prion protein with planar lipid membranes in real-time, using dual polarization interferometry (DPI). Using this technique, the simultaneous evaluation of multiple physical properties of PrP layers on membranes was achieved. The deposition of prion on membranes of POPC and POPC/POPS mixtures was studied. The properties of the resulting protein layers were found to depend on the lipid composition of the membranes. Denser and thicker protein deposits formed on lipid membranes containing POPS compared to those formed on POPC. DPI thus provides a further insight on the organization of PrP at the surface of lipid membranes.  相似文献   

18.
Prion diseases are infectious and fatal neurodegenerative diseases affecting humans and animals. Transmission is possible within and between species with zoonotic potential. Currently, no prophylaxis or treatment exists. Prions are composed of the misfolded isoform PrPSc of the cellular prion protein PrPC. Expression of PrPC is a prerequisite for prion infection, and conformational conversion of PrPC is induced upon its direct interaction with PrPSc. Inhibition of this interaction can abrogate prion propagation, and we have previously established peptide aptamers (PAs) binding to PrPC as new anti-prion compounds. Here, we mapped the interaction site of PA8 in PrP and modeled the complex in silico to design targeted mutations in PA8 which presumably enhance binding properties. Using these PA8 variants, we could improve PA-mediated inhibition of PrPSc replication and de novo infection of neuronal cells. Furthermore, we demonstrate that binding of PA8 and its variants increases PrPC α-cleavage and interferes with its internalization. This gives rise to high levels of the membrane-anchored PrP-C1 fragment, a transdominant negative inhibitor of prion replication. PA8 and its variants interact with PrPC at its central and most highly conserved domain, a region which is crucial for prion conversion and facilitates toxic signaling of Aβ oligomers characteristic for Alzheimer’s disease. Our strategy allows for the first time to induce α-cleavage, which occurs within this central domain, independent of targeting the responsible protease. Therefore, interaction of PAs with PrPC and enhancement of α-cleavage represent mechanisms that can be beneficial for the treatment of prion and other neurodegenerative diseases.  相似文献   

19.
PrPSc, a misfolded and aggregated form of the cellular prion protein PrPC, is the only defined constituent of the transmissible agent causing prion diseases. Expression of PrPC in the host organism is necessary for prion replication and for prion neurotoxicity. Understanding prion diseases necessitates detailed structural insights into PrPC and PrPSc. Towards this goal, we have developed a comprehensive collection of monoclonal antibodies denoted POM1 to POM19 and directed against many different epitopes of mouse PrPC. Three epitopes are located within the N-terminal octarepeat region, one is situated within the central unstructured region, and four epitopes are discontinuous within the globular C-proximal domain of PrPC. Some of these antibodies recognize epitopes that are resilient to protease digestion in PrPSc. Other antibodies immunoprecipitate PrPC, but not PrPSc. A third group was found to immunoprecipitate both PrP isoforms. Some of the latter antibodies could be blocked with epitope-mimicking peptides, and incubation with an excess of these peptides allowed for immunochromatography of PrPC and PrPSc. Amino-proximal antibodies were found to react with repetitive PrPC epitopes, thereby vastly increasing their avidity. We have also created functional single-chain miniantibodies from selected POMs, which retained the binding characteristics despite their low molecular mass. The POM collection, thus, represents a unique set of reagents allowing for studies with a variety of techniques, including western blotting, ELISA, immunoprecipitation, conformation-dependent immunoassays, and plasmon surface plasmon resonance-based assays.  相似文献   

20.
There is increasing interest in the role of the glycosylphosphatidylinositol (GPI) anchor attached to the cellular prion protein (PrPC). Since GPI anchors can alter protein targeting, trafficking and cell signaling, our recent study examined how the structure of the GPI anchor affected prion formation. PrPC containing a GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc in prion-infected neuronal cell lines and in scrapie-infected primary cortical neurons. In uninfected neurons desialylated PrPC was associated with greater concentrations of gangliosides and cholesterol than PrPC. In addition, the targeting of desialylated PrPC to lipid rafts showed greater resistance to cholesterol depletion than PrPC. The presence of desialylated PrPC caused the dissociation of cytoplasmic phospholipase A2 (cPLA2) from PrP-containing lipid rafts, reduced the activation of cPLA2 and inhibited PrPSc production. We conclude that the sialic acid moiety of the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号