首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrating information from species occurrence data, environmental variables and molecular markers can provide valuable insights about the processes of population persistence and differentiation. In this study, we present the most comprehensive overview of the evolutionary history of the North African salamander Salamandra algira (Caudata, Salamandridae) to date, including analyses of climatic and topographical variables, and sequences of two mitochondrial and two nuclear DNA fragments, with a special focus on Algerian populations, under‐represented in previous studies. Coalescent‐based phylogenetic analyses of mtDNA data recover four well‐supported population groups corresponding to described subspecies, with a western clade including populations in north‐western Morocco (with two subclades corresponding to the subspecies tingitana and splendens), and an eastern clade including populations from north‐eastern Morocco (subspecies spelaea) and Algeria (subspecies algira). Inferred split times between major clades date back to the Miocene, with additional splits within each major clade in the Plio‐Pleistocene. Present climatic (aridity) and topographical factors account for geographical discontinuities across population groups and help identify potential areas of secondary contact between clades corresponding to the subspecies tingitana and splendens in the Rif mountains in Morocco. Niche analysis indicates the absence of phylogenetic signal in the use of environmental space in this species.  相似文献   

2.
Examining historical and contemporary processes underlying current patterns of genetic variation is key to reconstruct the evolutionary history of species and implement conservation measures promoting their long-term persistence. Combining phylogeographic and landscape genetic approaches can provide valuable insights, especially in regions harboring high levels of biodiversity that are currently threatened by climate and land cover changes, like southern Iberia. We used genetic (mtDNA and microsatellites) and spatial data (climate and land cover) to infer the evolutionary history and contemporary genetic connectivity in a short-range endemic salamander subspecies, Salamandra salamandra longirostris, using a combination of ecological niche modelling, phylogeographic, and landscape genetic analyses. Ecological-based analyses support a role of the Guadalquivir River Basin as a major vicariant agent in this taxon. The lower genetic diversity and greater differentiation of peripheral populations, together with analyses of climatically stable areas throughout time, suggest the persistence of a population in the central part of the current range since the Last Inter Glacial [LIG; ~?120,000–140,000 years BP], and a micro refugium in the eastern end of the range. Habitat heterogeneity plays a major role in shaping patterns of genetic differentiation in S. s. longirostris, with forests representing key areas for its long-term persistence under scenarios of environmental change. Our study stresses the importance of maintaining population genetic connectivity in low-dispersal organisms under rapidly changing environments, and will inform management plans for the long-term survival of this evolutionarily distinct Mediterranean endemic.  相似文献   

3.
《Journal of Asia》2022,25(2):101898
The Common Brown butterfly, Heteronympha merope (Fabricius 1775), is a ubiquitous species from the family Nymphalidae, distributed across south-eastern Australia. Using online photographs of 33 digitized museum specimens provided by the Atlas of Living Australia, forewing length was found to be highly correlated with the total wing surface area (r = 0.962), indicating that this metric can be used as an accurate estimate of body size. No significant relationship was found between body size and environmental temperatures, latitude, or the year of collection (1902–1948). The size of females was higher between October and December compared to the rest of the year, while the size of males did not change. Collection of contemporary data on the body size of H. merope would allow the assessment of whether the body size of this species has changed over the past 70 years.  相似文献   

4.
There is strong correlative evidence that human-induced climate warming is contributing to changes in the timing of natural events. Firm attribution, however, requires cause-and-effect links between observed climate change and altered phenology, together with statistical confidence that observed regional climate change is anthropogenic. We provide evidence for phenological shifts in the butterfly Heteronympha merope in response to regional warming in the southeast Australian city of Melbourne. The mean emergence date for H. merope has shifted −1.5 days per decade over a 65-year period with a concurrent increase in local air temperatures of approximately 0.16°C per decade. We used a physiologically based model of climatic influences on development, together with statistical analyses of climate data and global climate model projections, to attribute the response of H. merope to anthropogenic warming. Such mechanistic analyses of phenological responses to climate improve our ability to forecast future climate change impacts on biodiversity.  相似文献   

5.
Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees (Pan troglodytes) from each of the three established subspecies (P. t. troglodytes, P. t. schweinfurthii and P. t. verus) and the proposed fourth subspecies (P. t. ellioti). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human–chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1–1.5, 1.1–0.76 and 0.25–0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.  相似文献   

6.
Genetic differences within and among naturally occurring populations of wild turkeys (Meleagris gallopavo) were characterized across five subspecies' historical ranges using amplified fragment length polymorphism (AFLP) analysis, microsatellite loci and mitochondrial control region sequencing. Current subspecific designations based on morphological traits were generally supported by these analyses, with the exception of the eastern (M. g. silvestris) and Florida (M. g. osceola) subspecies, which consistently formed a single unit. The Gould's subspecies was both the most genetically divergent and the least genetically diverse of the subspecies. These genetic patterns were consistent with current and historical patterns of habitat continuity. Merriam's populations showed a positive association between genetic and geographical distance, Rio Grande populations showed a weaker association and the eastern populations showed none, suggesting differing demographic forces at work in these subspecies. We recommend managing turkeys to maintain subspecies integrity, while recognizing the importance of maintaining regional population structure that may reflect important adaptive variation.  相似文献   

7.
The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as ‘endangered’ under the Environment Protection and Biodiversity Conservation Act 1999, and ‘vulnerable’ under the International Union for Conservation of Nature’s Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy–Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST  = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E. bispinosus.  相似文献   

8.

Background

The mechanisms that underlie the diversification of tropical animals remain poorly understood, but new approaches that combine geo-spatial modeling with spatially explicit genetic data are providing fresh insights on this topic. Data about the diversification of tropical mammals remain particularly sparse, and vanishingly few opportunities exist to study endangered large mammals that increasingly exist only in isolated pockets. The chimpanzees of Cameroon represent a unique opportunity to examine the mechanisms that promote genetic differentiation in tropical mammals because the region is home to two chimpanzee subspecies: Pan troglodytes ellioti and P. t. trogolodytes. Their ranges converge in central Cameroon, which is a geographically, climatically and environmentally complex region that presents an unparalleled opportunity to examine the roles of rivers and/or environmental variation in influencing the evolution of chimpanzee populations.

Results

We analyzed microsatellite genotypes and mtDNA HVRI sequencing data from wild chimpanzees sampled at a fine geographic scale across Cameroon and eastern Nigeria using a spatially explicit approach based upon Generalized Dissimilarity Modeling. Both the Sanaga River and environmental variation were found to contribute to driving separation of the subspecies. The importance of environmental variation differed among subspecies. Gene-environment associations were weak in P. t. troglodytes, whereas environmental variation was found to play a much larger role in shaping patterns of genetic differentiation in P. t. ellioti.

Conclusions

We found that both the Sanaga River and environmental variation likely play a role in shaping patterns of chimpanzee genetic diversity. Future studies using single nucleotide polymorphism (SNP) data are necessary to further understand how rivers and environmental variation contribute to shaping patterns of genetic variation in chimpanzees.

Electronic supplementary material

The online version of this article (doi:10.1186/s12862-014-0274-0) contains supplementary material, which is available to authorized users.  相似文献   

9.
Irrespective of its causes, strong population genetic structure indicates a lack of gene flow. Understanding the processes that underlie such structure, and the spatial patterns it causes, is valuable for conservation efforts such as restoration. On the other hand, when a species is invasive outside its native range, such information can aid management in the non-native range. Here we explored the genetic characteristics of the Australian tree Acacia dealbata in its native range. Two subspecies of A. dealbata have previously been described based on morphology and environmental requirements, but recent phylogeographic data raised questions regarding the validity of this taxonomic subdivision. The species has been widely planted within and outside its native Australian range and is also a highly successful invasive species in many parts of the world. We employed microsatellite markers to investigate the population genetic diversity and structure among 42 A. dealbata populations from across the species’ native range. We also tested whether environmental variables purportedly relevant for the putative separation of subspecies are linked with population genetic differentiation. We found no relationship between population genetic structure of A. dealbata in Australia and these environmental features. Rather, we identified two geographically distinct genetic clusters that corresponded with populations in the northeastern part of mainland Australia, and the southern mainland and Tasmanian range of the species. Our results do not support the taxonomic subdivision of the species into two distinct subspecies based on environmental features. We therefore assume that the observed morphological differences between the putative subspecies are plastic phenotypic responses. This study provides population genetic information that will be useful for the conservation of the species within Australia as well as to better understand the invasion dynamics of A. dealbata.  相似文献   

10.
Musk Ducks (Biziura lobata) are endemic to Australia and occur as two geographically isolated populations separated by the Nullarbor Plain, a vast arid region in southern Australia. We studied genetic variation in Musk Duck populations at coarse (eastern versus western Australia) and fine scales (four sites within eastern Australia). We found significant genetic structure between eastern and western Australia in the mtDNA control region (ΦST = 0.747), one nuclear intron (ΦST = 0.193) and eight microsatellite loci (FST = 0.035). In contrast, there was little genetic structure between Kangaroo Island and adjacent mainland regions within eastern Australia. One small population of Musk Ducks in Victoria (Lake Wendouree) differed from both Kangaroo Island and the remainder of mainland eastern Australia, possibly due to genetic drift exacerbated by inbreeding and small population size. The observed low pairwise distance between the eastern and western mtDNA lineages (0.36%) suggests that they diverged near the end of the Pleistocene, a period characterised by frequent shifts between wet and arid conditions in central Australia. Our genetic results corroborate the display call divergence and Mathews’ (Austral Avian Record 2:83–107, 1914) subspecies classification, and confirm that eastern and western populations of Musk Duck are currently isolated from each other.  相似文献   

11.
Polymorphic nuclear microsatellite loci were used to characterize genetic variation in contemporary and historic populations of the San Clemente Island loggerhead shrike (Lanius ludovicianus mearnsi), an endangered bird with a current population of 30 individuals that is endemic to to one of the California Channel Islands. We also compared the population of the shrike with two contemporary populations of the still abundant subspecies, L. l. gambeli, which live 120 km away on the adjacent mainland. The current population of L. l. mearnsi has 60 per cent of the genetic variation of the mainland shrike populations and is strongly differentiated from them. Comparison of living birds with 19 birds collected in 1915 shows that most of the variation within the island population was lost before the recent 90 per cent decline in population size, and the 20 per cent decrease in variation this century is probably attributable to genetic drift. Mitochondrial DNA control region sequence data from 80 year old specimens show that there may have been limited introgression to L. l. mearnsi, this century, from another island subspecies, L. l. anthonyi, found in the northern Channel Islands. Today, gene flow between L. l. mearnsi and mainland L. l. gambel is very low, even though a few mainland birds visit the island annually. The island subspecies population has evolved sufficient genetic independence to justify ongoing conservation efforts to counter demographic collapse and genetic erosion; the course of genetic erosion can now be monitored non-invasively, as demonstrated by this study, based on DNA amplified from feathers.  相似文献   

12.
13.
Traditional subspecies classifications may suggest phylogenetic relationships that are discordant with evolutionary history and mislead evolutionary inference. To more accurately describe evolutionary relationships and inform conservation efforts, we investigated the genetic relationships and demographic histories of Buteo lineatus subspecies in eastern and western North America using 21 nuclear microsatellite loci and 375-base pairs of mitochondrial control region sequence. Frequency based analyses of mitochondrial sequence data support significant population distinction between eastern (B. l. lineatus/alleni/texanus) and western (B. l. elegans) subspecies of B. lineatus. This distinction was further supported by frequency and Bayesian analyses of the microsatellite data. We found evidence of differing demographic histories between regions; among eastern sites, mitochondrial data suggested that rapid population expansion occurred following the end of the last glacial maximum, with B. l. texanus population expansion preceding that of B. l. lineatus/alleni. No evidence of post-glacial population expansion was detected among western samples (B. l. elegans). Rather, microsatellite data suggest that the western population has experienced a recent bottleneck, presumably associated with extensive anthropogenic habitat loss during the 19th and 20th centuries. Our data indicate that eastern and western populations of B. lineatus are genetically distinct lineages, have experienced very different demographic histories, and suggest management as separate conservation units may be warranted.  相似文献   

14.
Recent empirical and theoretical studies suggest that regions of restricted recombination play an important role in the formation of new species. To test this idea, we studied nucleotide variation in two parapatric subspecies of the European rabbit (Oryctolagus cuniculus). We surveyed five loci near centromeres, where recombination is expected to be suppressed, and five loci near telomeres, where recombination is expected to be higher. We analyzed this multilocus data set using a divergence-with-gene flow framework and we report three main findings. First, we estimated that these subspecies diverged ~1.8 MYA and maintained large effective population sizes (O. c. algirus Ne ≈ 1,600,000 and O. c. cuniculus Ne ≈ 780,000). Second, we rejected a strict allopatric model of divergence without gene flow; instead, high rates of gene flow were inferred in both directions. Third, we found different patterns between loci near centromeres and loci near telomeres. Loci near centromeres exhibited higher levels of linkage disequilibrium than loci near telomeres. In addition, while all loci near telomeres showed little differentiation between subspecies, three of five loci near centromeres showed strong differentiation. These results support a view of speciation in which regions of low recombination can facilitate species divergence in the presence of gene flow.  相似文献   

15.
The effects of Pleistocene glaciations and geographical barriers on the phylogeographic patterns of lowland plant species in Mediterranean-climate areas of Central Chile are poorly understood. We used Dioscorea humilis (Dioscoreaceae), a dioecious geophyte extending 530 km from the Valparaíso to the Bío-Bío Regions, as a case study to disentangle the spatio-temporal evolution of populations in conjunction with latitudinal environmental changes since the Last Inter-Glacial (LIG) to the present. We used nuclear microsatellite loci, chloroplast (cpDNA) sequences and environmental niche modelling (ENM) to construct current and past scenarios from bioclimatic and geographical variables and to infer the evolutionary history of the taxa. We found strong genetic differentiation at nuclear microsatellite loci between the two subspecies of D. humilis, probably predating the LIG. Bayesian analyses of population structure revealed strong genetic differentiation of the widespread D. humilis subsp. humilis into northern and southern population groups, separated by the Maipo river. ENM revealed that the ecological niche differentiation of both groups have been maintained up to present times although their respective geographical distributions apparently fluctuated in concert with the climatic oscillations of the Last Glacial Maximum (LGM) and the Holocene. Genetic data revealed signatures of eastern and western postglacial expansion of the northern populations from the central Chilean depression, whereas the southern ones experienced a rapid southward expansion after the LGM. This study describes the complex evolutionary histories of lowland Mediterranean Chilean plants mediated by the summed effects of spatial isolation caused by riverine geographical barriers and the climatic changes of the Quaternary.  相似文献   

16.
The geographic distribution of the populations of a species are influenced by the spatial structure of the ecosystems, the environmental factors and the presence of geographic barriers. The Neotropical otter, Lontra longicaudis, is widely distributed throughout the Americas, where a wide range of environmental conditions and geographical features could promote genetic and morphological variation on the three currently recognized subspecies. In this study, we combined phylogeographic, morphometric and environmental niche modelling analyses to examine whether: (1) genetic variation is associated with the presence of barriers to gene flow and/or hydrography; (2) genetic and morphologic variation are associated with environmental variation; and (3) the observed variation in L. longicaudis populations corresponds to the previously defined subspecies. We found strong phylogeographic structure between the northern (L. l. annectens) and the two-southern subspecies (L. l. longicaudis and L. l. enudris), and although shallower, we also detected genetic differentiation between the two South American subspecies. Such genetic differentiation corresponds to the hydrography and to the geographical barriers characteristic of the distributional area of the species. We found a correlation between the shape of the skull and mandible with the environmental variation through the distribution of the species, and we rejected the hypothesis of niche equivalency and similarity between the three identified genetic lineages, suggesting adaptations to different environmental conditions. Our results support that the variation in environmental conditions, in concert with geographical barriers to gene flow and hydrography, have led to population divergence of L. longicaudis along the Neotropics. These results have important taxonomic implications for the species and its conservation.  相似文献   

17.
Ringed seals (Pusa hispida) are broadly distributed in seasonally ice covered seas, and their survival and reproductive success is intricately linked to sea ice and snow. Climatic warming is diminishing Arctic snow and sea ice and threatens to endanger ringed seals in the foreseeable future. We investigated the population structure and connectedness within and among three subspecies: Arctic (P. hispida hispida), Baltic (P. hispida botnica), and Lake Saimaa (P. hispida saimensis) ringed seals to assess their capacity to respond to rapid environmental changes. We consider (a) the geographical scale of migration, (b) use of sea ice, and (c) the amount of gene flow between subspecies. Seasonal movements and use of sea ice were determined for 27 seals tracked via satellite telemetry. Additionally, population genetic analyses were conducted using 354 seals representative of each subspecies and 11 breeding sites. Genetic analyses included sequences from two mitochondrial regions and genotypes of 9 microsatellite loci. We found that ringed seals disperse on a pan-Arctic scale and both males and females may migrate long distances during the summer months when sea ice extent is minimal. Gene flow among Arctic breeding sites and between the Arctic and the Baltic Sea subspecies was high; these two subspecies are interconnected as are breeding sites within the Arctic subspecies.  相似文献   

18.
Identification of loci with adaptive importance is a key step to understand the speciation process in natural populations, because those loci are responsible for phenotypic variation that affects fitness in different environments. We conducted an AFLP genome scan in populations of ocellated lizards (Lacerta lepida) to search for candidate loci influenced by selection along an environmental gradient in the Iberian Peninsula. This gradient is strongly influenced by climatic variables, and two subspecies can be recognized at the opposite extremes: L. lepida iberica in the northwest and L. lepida nevadensis in the southeast. Both subspecies show substantial morphological differences that may be involved in their local adaptation to the climatic extremes. To investigate how the use of a particular outlier detection method can influence the results, a frequentist method, DFDIST, and a Bayesian method, BayeScan, were used to search for outliers influenced by selection. Additionally, the spatial analysis method was used to test for associations of AFLP marker band frequencies with 54 climatic variables by logistic regression. Results obtained with each method highlight differences in their sensitivity. DFDIST and BayeScan detected a similar proportion of outliers (3–4%), but only a few loci were simultaneously detected by both methods. Several loci detected as outliers were also associated with temperature, insolation or precipitation according to spatial analysis method. These results are in accordance with reported data in the literature about morphological and life‐history variation of L. lepida subspecies along the environmental gradient.  相似文献   

19.
Genetic differentiation among nine populations of the endemic lizard Lacerta dugesii Milne-Edwards 1829 (Lacertidae) from four groups of islands constituting the Archipelago of Madeira, was investigated by protein electrophoresis at 23 enzyme loci. Among twenty polymorphic loci, the total genetic diversity was due primarily to intra-population variation. The allele and genotypic frequencies among populations showed some heterogeneity, allowing the species to present a structuring pattern compatible with their geographical clustering. Some evidence suggests that selection acting on some loci in different ecological conditions may be responsible for the clustering of the populations studied. There was no apparent isolation effect expected under an "island" model of population divergence, and no correlation was found between genetic and geographic distances among populations. Morphological variation of the proposed three L. dugesii subspecies is not congruent with the allozyme analysis. This most probably suggests a rapid colonization of the islands followed by a strong effect of selection operating over the morphological characters used to define the subspecies.  相似文献   

20.
Scaphinotus petersi Roeschke, 1907 (Carabidae) is a ground beetle endemic to Sky Islands in south‐eastern Arizona. Previous taxonomic studies described several subspecies with morphological differences inhabiting geographically isolated mountain ranges. We combined molecular sequence data and morphometric data, especially head and pronotum shape analyses, to examine the variation and divergence in subspecies and isolated montane populations. In this study, we employ a combination of distance morphometrics as well as geometric morphometrics to quantify the level of morphological variation, and to test the hypothesis that geographically distinct populations of S. petersi are phenotypically distinct. Results suggest that these isolated populations have diverged morphologically and genetically. Phylogenetic analyses identified two monophyletic lineages within the species that correspond generally to pronotum shape. We observed significant morphological variation among most montane populations in of S. petersi, with the pronotum shape as the clearest delimiting trait. © 2015 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号