首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caspase-8 can trigger cell death following prodomain-mediated recruitment to the ‘death-inducing signaling complex.’ The prodomain consists of two death effector domain (DED) motifs that undergo homotypic interactions within the cell. Aside from mediating recruitment of procaspase-8, the prodomains have also been implicated in regulating cell survival, proliferation, death, senescence, differentiation, and substrate attachment. Here, we perform the initial characterization of a novel isoform of caspase-8, designated caspase-8 isoform 6 (Casp-8.6), which encodes both prodomain DEDs followed by a unique C-terminal tail. Casp-8.6 is detected in cells of the hematopoietic compartment as well as several other tissues. When Casp-8.6 expression is reconstituted in caspase-8-deficient cells, Casp-8.6 does not significantly impact cellular proliferation, contrasting with our previous results using a domain-defined ‘DED-only’ construct that lacks the C-terminal tail. Like the DED-only construct, Casp-8.6 also robustly forms ‘death effector’ filaments, but in contrast to the DED construct, it does not exhibit a dependence upon intact microtubules to scaffold filament formation. Both types of death effector filaments promote apoptosis when expressed in the presence of full length caspase-8 (isoform 1). Together, the results implicate Casp-8.6 as a new physiological modulator of apoptosis.  相似文献   

2.
Yang JK  Wang L  Zheng L  Wan F  Ahmed M  Lenardo MJ  Wu H 《Molecular cell》2005,20(6):939-949
The death-inducing signaling complex (DISC) comprising Fas, Fas-associated death domain (FADD), and caspase-8/10 is assembled via homotypic associations between death domains (DDs) of Fas and FADD and between death effector domains (DEDs) of FADD and caspase-8/10. Caspase-8/10 and FLICE/caspase-8 inhibitory proteins (FLIPs) that inhibit caspase activation at the DISC level contain tandem DEDs. Here, we report the crystal structure of a viral FLIP, MC159, at 1.2 Angstroms resolution. It reveals a noncanonical fold of DED1, a dumbbell-shaped structure with rigidly associated DEDs and a different mode of interaction in the DD superfamily. Whereas the conserved hydrophobic patch of DED1 interacts with DED2, the corresponding region of DED2 mediates caspase-8 recruitment and contributes to DISC assembly. In contrast, MC159 cooperatively assembles with Fas and FADD via an extensive surface that encompasses the conserved charge triad. This interaction apparently competes with FADD self-association and disrupts higher-order oligomerization required for caspase activation in the DISC.  相似文献   

3.
Death effector domains (DEDs) are protein–protein interaction domains initially identified in proteins such as FADD, FLIP and caspase-8 involved in regulating apoptosis. Subsequently, these proteins have been shown to have important roles in regulating other forms of cell death, including necroptosis, and in regulating other important cellular processes, including autophagy and inflammation. Moreover, these proteins also have prominent roles in innate and adaptive immunity and during embryonic development. In this article, we review the various roles of DED-containing proteins and discuss recent developments in our understanding of DED complex formation and regulation. We also briefly discuss opportunities to therapeutically target DED complex formation in diseases such as cancer.  相似文献   

4.
Caspase-8 is the most proximal caspase in the caspase cascade and possesses a prodomain consisting of two homologous death effector domains (DEDs). We have discovered that caspase-8 and its homologs can physically interact with tumor necrosis factor receptor-associated factor family members and activate the c-Jun N-terminal kinase (JNK, or stress-activated protein kinase) pathway. This ability resides in the DED-containing prodomain of these proteins and is independent of their role as cell death proteases. A point mutant in the first DED of caspase-8 can block JNK activation induced by several death domain receptors. Inhibition of JNK activation blocks apoptosis mediated by caspase-10, Mach-related inducer of toxicity/cFLIP, and Fas/CD95, thereby suggesting a cooperative role of this pathway in the mediation of caspase-induced apoptosis.  相似文献   

5.
Yao Z  Duan S  Hou D  Heese K  Wu M 《The EMBO journal》2007,26(4):1068-1080
Activation of the apical caspase-8 is crucial to the extrinsic apoptotic pathway. Although the death effector domain (DED) of caspase-8 has been reported to be involved in death-inducing signaling complex formation, the detailed mechanism of how DED functions in regulating apoptosis remains largely unknown. Here, we demonstrate that the prodomain of the caspase-8/Mch5 can be further cleaved between two tandemly repeated DEDs (DEDa-DEDb) at the amino-acid residue Asp129 by caspase-8 itself. The DEDa fragment generated from the endogenous caspase-8 was detected in isolated nucleoli upon treatment with TRAIL (tumor necrosis factor-related apoptosis-inducing ligand). Cleaved DEDa appears to translocate into the nucleus by association with extracellular signal-regulated protein kinases-1/2 (ERK1/2). Elimination of ERK1/2 expression by RNA interference resulted in a significant attenuation of nuclear entry of DEDa and reduced caspase-8-dependent apoptosis. In the nucleus, DEDa interacts with TOPORS, a p53 and topoisomerase I binding protein, and possibly displaces p53 from TOPORS, allowing p53 to stimulate caspase-8 gene expression. In summary, we postulate a positive feedback loop involving DEDa, which enables the continual replenishment of procaspase-8 during apoptosis.  相似文献   

6.
Death effector domains (DEDs) are protein-protein interaction domains found in the death inducing signaling complex (DISC). Performing a structure-based alignment of all DED sequences we identified a region of high diversity in alpha-helix 3 and propose a classification of DEDs into class I DEDs typically containing a stretch of basic residues in the alpha-helix 3 region whereas DEDs of class II do not. Functional assays using mutants of Fas-associated death domain revealed that this basic region influences binding and recruitment of caspase-8 and cellular FLICE inhibitor protein to the DISC.  相似文献   

7.
8.
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.  相似文献   

9.
Wang H  Wang P  Sun X  Luo Y  Wang X  Ma D  Wu J 《Biochimica et biophysica acta》2007,1770(11):1528-1537
Caspase-10 (also known as Mch4 and FLICE2) is an initiator caspase in the death receptor (DR)-dependent apoptotic pathway. So far six splice variants (caspase-10a-f) have been identified. Here we describe a novel isoform of the caspase-10 family named caspase-10g that is widely expressed in normal human tissues and various cell lines. Caspase-10g consists of 247 amino acids and does not contain the large or small subunit. A caspase-10g-specific exon is present between exon 5 and exon 6, which results in a protein product truncated shortly after the death-effector domain (DED)-containing prodomain. We further show that overexpression of caspase-10g dramatically enhances NF-kappaB activity in a dose- and time-dependent manner. Moreover, caspase-10g, unlike the protease-active caspase-10a, only promotes slight apoptosis when overexpressed in mammalian cells and it has no effect on caspase-10a-mediated apoptosis. Taken together, these results suggest that caspase-10g, as a novel prodomain-only isoform of caspase-10, may play a regulatory role preferentially in the NF-kappaB pathways.  相似文献   

10.
We have previously reported that B cell receptors, depending on the degree to which they are cross-linked, can promote apoptosis in various human B cell types. In this study, we show that B cell receptors can trigger two apoptotic pathways according to cross-linking and that these pathways control mitochondrial activation in human Burkitt's lymphoma cells. Whereas soluble anti-mu Ab triggers caspase-independent mitochondrial activation, cross-linked anti-mu Ab induces an apoptotic response associated with a caspase-dependent loss of mitochondrial transmembrane potential. This B cell receptor-mediated caspase-dependent mitochondrial activation is associated with caspase-8 activation. We show here that caspase-8 inhibitors strongly decrease cross-linking-dependent B cell receptor-mediated apoptosis in Burkitt's lymphoma BL41 cells. These inhibitors act upstream from the mitochondria as they prevented the loss of mitochondrial membrane potential observed in B cell receptor-treated BL41 cells. Caspase-8 activation in these cells was also evident from the detection of cleaved fragments of caspase-8 and the cleavage of specific substrates, including Bid. Our data show that cross-linked B cell receptors induced an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and the activation of caspase-9 and caspase-3. Cells expressing a dominant negative mutant of Fas-associated death domain protein were sensitive to cross-linked B cell receptor-induced caspase-8 activation and apoptosis; therefore, this caspase-8 activation was independent of the death effector domain of Fas-associated death domain protein.  相似文献   

11.
Molluscum contagiosum virus (MCV), a member of the human poxvirus family, encodes the MC159 protein that inhibits Fas-, tumor necrosis factor (TNF)-, and TNF-related apoptosis-inducing ligant (TRAIL)-induced apoptosis. We used site-directed mutagenesis to change charged or hydrophobic amino acid residues to alanines to identify regions of MC159 that are critical for protection from apoptosis and for protein-protein interactions. Surprisingly, while MC159 is thought to block apoptosis by binding to Fas-associated death domain (FADD) or caspase-8, several mutants that lost apoptosis blocking activity still bound to both FADD and caspase-8. Mutations in the predicted hydrophobic patch 1 and alpha2 regions of both death effector domains (DEDs) within MC159 resulted in loss of the ability to bind to FADD or caspase-8 and to block apoptosis. Amino acid substitutions in the RXDL motif located in the alpha6 region of either DED resulted in loss of protection from apoptosis induced by Fas, TNF, and TRAIL and abolished the ability of MC159 to block death effector filament formation. Thus, charged or hydrophobic amino acids in three regions of the MC159 DEDs (hydrophobic patch 1, alpha2, and alpha6) are critical for the protein's ability to interact with cellular proteins and to block apoptosis.  相似文献   

12.
The caspase family represents aspartate-specific cysteine proteases that play key roles in apoptosis and immune signaling. In this study, we cloned the first death effector domain (DED)-containing molluscan caspase-8 gene from disk abalone (Haliotis discus discus), which is named as hdCaspase-8. The full-length hdCaspase was 2855 bp, with a 1908 bp open reading frame encoding 636 amino acids. The hdCaspase-8 had 72 kDa predicted molecular mass with an estimated isoelectric point (PI) of 6.0. The hdCaspase-8 amino acid sequence contained the characteristic feature of an N-terminal two DED, a C-terminal catalytic domain and the caspase family cysteine active site 513KPKLFFLQACQG524. Phylogenetic analysis results showed that hdCaspase-8 is more similar to the invertebrate Tubifex tubifex (sludge worm) caspase-8.Real-time RT-PCR results showed that hdCaspase-8 constitutively and ubiquitously expressed in all tested tissue of unchallenged disk abalone. The basal expression level of hdCaspase-8 in gill tissue was higher than all other tested tissues. The hdCaspase-8 mRNA expression in gill and hemocytes was significantly up-regulated by exposure to bacteria (Vibrio alginolyticus, Vibrio parahemolyticus and Listeria monocytogenes) and VHSV (viral hemorrhagic septicemia virus), as compared to control animals. These results suggest that hdCaspase-8 may be involved in immune response reactions in disk abalone.  相似文献   

13.
Adaptor protein FADD forms the death inducing signaling complex (DISC) by recruiting the initiating caspases-8 and -10 through homotypic death effector domain (DED) interactions. Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of death ligand-induced apoptosis downstream of death receptors, and FADD competes with procaspase-8/10 for recruitment for DISC. However, the mechanism of action of FADD and c-FLIP proteins remain poorly understood at the molecular level. In this study, we provide evidence indicating that the death effector domain (DED) of FADD interacts directly with the death effector domain of human c-FLIP. In addition, we use homology modeling to develop a molecular docking model of FADD and c-FLIP proteins. We also find that four structure-based mutants (E80A, L84A, K169A and Y171A) of c-FLIP DEDs disturb the interaction with FADD DED, and that these mutations lower the stability of the c-FLIP DED. [BMB Reports 2014; 47(9): 488-493]  相似文献   

14.
Canonical inflammasomes are multiprotein complexes that can activate both caspase-1 and caspase-8. Caspase-1 drives rapid lysis of cells by pyroptosis and maturation of interleukin (IL)-1β and IL-18. In caspase-1-deficient cells, inflammasome formation still leads to caspase-3 activation and slower apoptotic death, dependent on caspase-8 as an apical caspase. A role for caspase-8 directly upstream of caspase-1 has also been suggested, but here we show that caspase-8-deficient macrophages have no defect in AIM2 inflammasome-mediated caspase-1 activation, pyroptosis, and IL-1β cleavage. In investigating the inflammasome-induced apoptotic pathway, we previously demonstrated that activated caspase-8 is essential for caspase-3 cleavage and apoptosis in caspase-1-deficient cells. However, here we found that AIM2 inflammasome-initiated caspase-3 cleavage was maintained in Ripk3?/? Casp8?/? macrophages. Gene knockdown showed that caspase-1 was required for the caspase-3 cleavage. Thus inflammasomes activate a network of caspases that can promote both pyroptotic and apoptotic cell death. In cells where rapid pyroptosis is blocked, delayed inflammasome-dependent cell death could still occur due to both caspase-1- and caspase-8-dependent apoptosis. Initiation of redundant cell death pathways is likely to be a strategy for coping with pathogen interference in death processes.  相似文献   

15.
Death receptor signaling is initiated by the assembly of the death-inducing signaling complex, which culminates in the activation of the initiator caspase, either caspase-8 or caspase-10. A family of viral and cellular proteins, known as FLIP, plays an essential role in the regulation of death receptor signaling. Viral FLIP (v-FLIP) and short cellular FLIP (c-FLIPS) inhibit apoptosis by interfering with death receptor signaling. The structure and mechanisms of v-FLIP and c-FLIPS remain largely unknown. Here we report a high resolution crystal structure of MC159, a v-FLIP derived from the molluscum contagiosum virus, which is a member of the human poxvirus family. Unexpectedly, the two tandem death effector domains (DEDs) of MC159 rigidly associate with each other through a hydrophobic interface. Structure-based sequence analysis suggests that this interface is conserved in the tandem DEDs from other v-FLIP, c-FLIPS, and caspase-8 and -10. Strikingly, the overall packing arrangement between the two DEDs of MC159 resembles that between the caspase recruitment domains of Apaf-1 and caspase-9. In addition, each DED of MC159 contains a highly conserved binding motif on the surface, to which loss-of-function mutations in MC159 map. These observations, in conjunction with published evidence, reveal significant insights into the function of v-FLIP and suggest a mechanism by which v-FLIP and c-FLIPS inhibit death receptor signaling.  相似文献   

16.
Caspase-8 is a key apical sensory protein that governs cell responses to environmental cues, alternatively promoting apoptosis, proliferation, and cell migration. The proteins responsible for integration of these pathways, however, have remained elusive. Here, we reveal that Rab5 regulates caspase-8–dependent signaling from integrins. Integrin ligation leads to Rab5 activation, association with integrins, and activation of Rac, in a caspase-8–dependent manner. Rab5 activation promotes colocalization and coprecipitation of integrins with caspase-8, concomitant with Rab5 recruitment to integrin-rich regions such as focal adhesions and membrane ruffles. Moreover, caspase-8 expression promotes Rab5-mediated internalization and the recycling of β1 integrins, increasing cell migration independently of caspase catalytic activity. Conversely, Rab5 knockdown prevented caspase-8–mediated integrin signaling for Rac activation, cell migration, and apoptotic signaling, respectively. Similarly, Rab5 was critical for caspase-8–driven cell migration in vivo, because knockdown of Rab5 compromised the ability of caspase-8 to promote metastasis under nonapoptotic conditions. These studies identify Rab5 as a key integrator of caspase-8–mediated signal transduction downstream of integrins, regulating cell survival and migration in vivo and in vitro.  相似文献   

17.
The structure of FADD and its mode of interaction with procaspase-8   总被引:6,自引:0,他引:6  
The structure of FADD has been solved in solution, revealing that the death effector domain (DED) and death domain (DD) are aligned with one another in an orthogonal, tail-to-tail fashion. Mutagenesis of FADD and functional reconstitution with its binding partners define the interaction with the intracellular domain of CD95 and the prodomain of procaspase-8 and reveal a self-association surface necessary to form a productive complex with an activated "death receptor." The identification of a procaspase-specific binding surface on the FADD DED suggests a preferential interaction with one, but not both, of the DEDs of procaspase-8 in a perpendicular arrangement. FADD self-association is mediated by a "hydrophobic patch" in the vicinity of F25 in the DED. The structure of FADD and its functional characterization, therefore, illustrate the architecture of key components in the death-inducing signaling complex.  相似文献   

18.
Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs) mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC) data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) protein in the complex with a mitogen-activated protein (MAP) kinase, extracellular regulated kinase 2 (ERK2), which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.  相似文献   

19.
The death domain (DD) superfamily comprising the death domain (DD) subfamily, the death effector domain (DED) subfamily, the caspase recruitment domain (CARD) subfamily and the pyrin domains (PYD) subfamily is one of the largest classes of protein interaction modules and plays a pivotal role in the apoptosis, inflammation, and immune cell signaling pathways. Despite the biological importance of the death domain superfamily, structural and in vitro biochemical studies have been limited because these domains are prone to aggregate under physiological conditions. Here, we describe a generalized method, termed semi-refolding, that is particularly applicable for purification of the functional death domain superfamily. The recombinant proteins Caspase-1 CARD, AIM2 PYD, NALP3 PYD, and RIP1 DD from inclusion bodies were successfully purified using this method.  相似文献   

20.
RAIDD, a caspase recruitment domain (CARD) containing molecule, interacts with procaspase-2 in a CARD-dependent manner. This interaction has been suggested to mediate the recruitment of caspase-2 to the tumour necrosis factor receptor 1 (TNFR1). In this paper we have studied the subcellular localization of RAIDD and its interaction with caspase-2. We demonstrate that endogenous RAIDD is mostly localized in the cytoplasm and to some extent in the nucleus. RAIDD localization is not affected by TNF-treatment of HeLa cells, but in cells ectopically expressing caspase-2, a fraction of RAIDD is recruited to the nucleus. In transfected cells, coexpression of RAIDD and caspase-2 leads to CARD-dependent colocalization of the two proteins to discrete subcellular structures. We further show that overexpression of the RAIDD-CARD results in the formation of filamentous structures due to CARD-mediated oligomerization. These structures were similar to death effector filaments (DEFs) formed by FADD and FLICE death effector domains (DEDs), and partially colocalized with DEFs. Our results suggest that similar to the DED, the RAIDD-CARD has the ability to form higher order complexes, believed to be important in apoptotic execution. We also present evidence that RAIDD-CARD oligomerization may be regulated by intramolecular folding of the RAIDD molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号