首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Measures of population differentiation, such as FST, are traditionally derived from the partition of diversity within and between populations. However, the emergence of population clusters from multilocus analysis is a function of genetic structure (departures from panmixia) rather than of diversity. If the populations are close to panmixia, slight differences between the mean pairwise distance within and between populations (low FST) can manifest as strong separation between the populations, thus population clusters are often evident even when the vast majority of diversity is partitioned within populations rather than between them. For any given FST value, clusters can be tighter (more panmictic) or looser (more stratified), and in this respect higher FST does not always imply stronger differentiation. In this study we propose a measure for the partition of structure, denoted EST, which is more consistent with results from clustering schemes. Crucially, our measure is based on a statistic of the data that is a good measure of internal structure, mimicking the information extracted by unsupervised clustering or dimensionality reduction schemes. To assess the utility of our metric, we ranked various human (HGDP) population pairs based on FST and EST and found substantial differences in ranking order. EST ranking seems more consistent with population clustering and classification and possibly with geographic distance between populations. Thus, EST may at times outperform FST in identifying evolutionary significant differentiation.  相似文献   

2.
The impact of directional selection on specific trait types in plant species, and how a species’ life history mediates this response to selection remains understudied. Discovering such interactions is however crucial for understanding the interplay between ecological and genetic processes underlying local adaptation in plants, and to evaluate a species’ evolutionary potential with respect to changing environments. Furthermore, it remains unclear whether the degree of adaptive differentiation generally increases with the geographical distance between plant populations. Here, we present a weighted mixed model based meta-analysis aimed at unraveling the potential interactions between plant trait types, life history characteristics and QST–FST comparisons, and assessing the effect of geographical scale on population differentiation. Based on 51 studies we found that QST values exceeded their corresponding FST values in 71.74 % out of 401 cases. Furthermore, different trait types were found to be differently susceptible to natural selection and the magnitude of QST–FST comparisons was mediated by a plant species’ life span. These findings may be closely related to the genetic architectures of trait types and life histories, with the proportion of large-effect genes likely shaping the response to natural selection. QST–FST values also increased with increasing distance between populations, pinpointing the combined effects of environmental differentiation and isolation by distance on the magnitude of population divergence. Finally, our model showed an inverse relationship between FST and QST–FST values, presumably resulting from isolation by distance, the exchange of advantageous alleles, or genetic correlations among traits.  相似文献   

3.
Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074–0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST  = 0.041–0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence.  相似文献   

4.
Repeated pesticide contaminations of lentic freshwater systems located within agricultural landscapes may affect population evolution in non-target organisms, especially in species with a fully aquatic life cycle and low dispersal ability. The issue of evolutionary impact of pollutants is therefore conceptually important for ecotoxicologists. The impact of historical exposure to pesticides on genetic divergence was investigated in the freshwater gastropod Lymnaea stagnalis, using a set of 14 populations from contrasted environments in terms of pesticide and other anthropogenic pressures. The hypothesis of population adaptive divergence was tested on 11 life-history traits, using Q ST -F ST comparisons. Despite strong neutral differentiation (mean F ST = 0.291), five adult traits or parameters were found to be under divergent selection. Conversely, two early expressed traits showed a pattern consistent with uniform selection or trait canalization, and four adult traits appeared to evolve neutrally. Divergent selection patterns were mostly consistent with a habitat effect, opposing pond to ditch and channel populations. Comparatively, pesticide and other human pressures had little correspondence with evolutionary patterns, despite hatching rate impairment associated with global anthropogenic pressure. Globally, analyses revealed high genetic variation both at neutral markers and fitness-related traits in a species used as model in ecotoxicology, providing empirical support for the need to account for genetic and evolutionary components of population response in ecological risk assessment.  相似文献   

5.
Allele frequency differences across populations can provide valuable information both for studying population structure and for identifying loci that have been targets of natural selection. Here, we examine the relationship between recombination rate and population differentiation in humans by analyzing two uniformly-ascertained, whole-genome data sets. We find that population differentiation as assessed by inter-continental F ST shows negative correlation with recombination rate, with F ST reduced by 10% in the tenth of the genome with the highest recombination rate compared with the tenth of the genome with the lowest recombination rate (P≪10−12). This pattern cannot be explained by the mutagenic properties of recombination and instead must reflect the impact of selection in the last 100,000 years since human continental populations split. The correlation between recombination rate and F ST has a qualitatively different relationship for F ST between African and non-African populations and for F ST between European and East Asian populations, suggesting varying levels or types of selection in different epochs of human history.  相似文献   

6.
Domestication is an intriguing evolutionary process. Many domestic populations are subjected to strong human-mediated selection, and when some individuals return to the wild, they are again subjected to selective forces associated with new environments. Generally, these feral populations evolve into something different from their wild predecessors and their members typically possess a combination of both wild and human selected traits. Feralisation can manifest in different forms on a spectrum from a wild to a domestic phenotype. This depends on how the rewilded domesticated populations can readapt to natural environments based on how much potential and flexibility the ancestral genome retains after its domestication signature. Whether feralisation leads to the evolution of new traits that do not exist in the wild or to convergence with wild forms, however, remains unclear. To address this question, we performed population genomic, olfactory, dietary, and gut microbiota analyses on different populations of Sus scrofa (wild boar, hybrid, feral and several domestic pig breeds). Porcine single nucleotide polymorphisms (SNPs) analysis shows that the feral population represents a cluster distinctly separate from all others. Its members display signatures of past artificial selection, as demonstrated by values of FST in specific regions of the genome and bottleneck signature, such as the number and length of runs of homozygosity. Generalised FST values, reacquired olfactory abilities, diet, and gut microbiota variation show current responses to natural selection. Our results suggest that feral pigs are an independent evolutionary unit which can persist so long as levels of human intervention remain unchanged.  相似文献   

7.

Background and Aims

Natural selection and genetic drift are important evolutionary forces in determining genetic and phenotypic differentiation in plant populations. The extent to which these two distinct evolutionary forces affect locally adaptive quantitative traits has been well studied in common plant and animal species. However, we know less about how quantitative traits respond to selection pressures and drift in endangered species that have small population sizes and fragmented distributions. To address this question, this study assessed the relative strengths of selection and genetic drift in shaping population differentiation of phenotypic traits in Psilopeganum sinense, a naturally rare and recently endangered plant species.

Methods

Population differentiation at five quantitative traits (QST) obtained from a common garden experiment was compared with differentiation at putatively neutral microsatellite markers (FST) in seven populations of P. sinense. QST estimates were derived using a Bayesian hierarchical variance component method.

Key Results

Trait-specific QST values were equal to or lower than FST. Neutral genetic diversity was not correlated with quantitative genetic variation within the populations of P. sinense.

Conclusions

Despite the prevalent empirical evidence for QST > FST, the results instead suggest a definitive role of stabilizing selection and drift leading to phenotypic differentiation among small populations. Three traits exhibited a significantly lower QST relative to FST, suggesting that populations of P. sinense might have experienced stabilizing selection for the same optimal phenotypes despite large geographical distances between populations and habitat fragmentation. For the other two traits, QST estimates were of the same magnitude as FST, indicating that divergence in these traits could have been achieved by genetic drift alone. The lack of correlation between molecular marker and quantitative genetic variation suggests that sophisticated considerations are required for the inference of conservation measures of P. sinense from neutral genetic markers.  相似文献   

8.
A long‐standing debate in evolutionary biology concerns the relative importance of different evolutionary forces in explaining phenotypic diversification at large geographic scales. For example, natural selection is typically assumed to underlie divergence along environmental gradients. However, neutral evolutionary processes can produce similar patterns. We collected molecular genetic data from 14 European populations of Plantago lanceolata to test the contributions of natural selection versus neutral evolution to population divergence in temperature‐sensitive phenotypic plasticity of floral reflectance. In Planceolata, reflectance plasticity is positively correlated with latitude/altitude. We used population pairwise comparisons between neutral genetic differentiation (FST and Jost's D) and phenotypic differentiation (PST) to assess the contributions of geographic distance and environmental parameters of the reproductive season in driving population divergence. Data are consistent with selection having shaped large‐scale geographic patterns in thermal plasticity. The aggregate pattern of PST versus FST was consistent with divergent selection. FST explained thermal plasticity differences only when geographic distance was not included in the model. Differences in the extent of cool reproductive season temperatures, and not overall temperature variation, explained plasticity differences independent of distance. Results are consistent with the hypothesis that thermal plasticity is adaptive where growing seasons are shorter and cooler, that is, at high latitude/altitude.  相似文献   

9.
Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright’s F ST that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high-F ST may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically F ST analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global F ST distribution closely follows an exponential distribution. Third, although the overall F ST distribution is similarly shaped (inverse J), F ST distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean-F ST of these groups is linear in allele frequency. These results suggest that investigating the extremes of the F ST distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection.  相似文献   

10.
Traditional methods for characterizing genetic differentiation among populations rely on a priori grouping of individuals. Bayesian clustering methods avoid this limitation by using linkage and Hardy–Weinberg disequilibrium to decompose a sample of individuals into genetically distinct groups. There are several software programs available for Bayesian clustering analyses, all of which describe a decrease in the ability to detect distinct clusters as levels of genetic differentiation among populations decrease. However, no study has yet compared the performance of such methods at low levels of population differentiation, which may be common in species where populations have experienced recent separation or high levels of gene flow. We used simulated data to evaluate the performance of three Bayesian clustering software programs, PARTITION, STRUCTURE, and BAPS, at levels of population differentiation below F ST=0.1. PARTITION was unable to correctly identify the number of subpopulations until levels of F ST reached around 0.09. Both STRUCTURE and BAPS performed very well at low levels of population differentiation, and were able to correctly identify the number of subpopulations at F ST around 0.03. The average proportion of an individual’s genome assigned to its true population of origin increased with increasing F ST for both programs, reaching over 92% at an F ST of 0.05. The average number of misassignments (assignments to the incorrect subpopulation) continued to decrease as F ST increased, and when F ST was 0.05, fewer than 3% of individuals were misassigned using either program. Both STRUCTURE and BAPS worked extremely well for inferring the number of clusters when clusters were not well-differentiated (F ST=0.02–0.03), but our results suggest that F ST must be at least 0.05 to reach an assignment accuracy of greater than 97%.  相似文献   

11.
In species acting as hosts of infectious agents, the extent of gene flow between populations is of particular interest because the expansion of different infectious diseases is usually related to the dispersal of the host. We have estimated levels of gene flow among populations of the sigmodontine rodent Oligoryzomys flavescens, in which high titers of antibodies have been detected for a Hantavirus in Argentina that produces a severe pulmonary syndrome. Enzyme polymorphism was studied by means of starch gel electrophoresis in 10 populations from the area where human cases of Hantavirus have occurred. Genetic differentiation between populations was calculated from FST values with the equation Nm = [(1/FST−1]/4. To assess the relative importance of current gene flow and historical associations between populations, the relationship of population pairwise log Nm and log geographic distance was examined. Low FST (mean = 0.038) and high Nm (15.27) values suggest high levels of gene flow among populations. The lack of an isolation by distance pattern would indicate that this species has recently colonized the area. The northernmost population, located on the margin of a great river, shows very high levels of gene flow with the downstream populations despite the large geographic distances. Passive transport of animals down the river by floating plants would promote unidirectional gene flow. This fact and the highest mean heterozygosity of that northernmost population suggest it is a center of dispersal within the species' range. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (FST=0.126–0.138), and from DP (FST=0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, FST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status.  相似文献   

13.
Although loss of genetic variation is frequently assumed to be associated with loss of adaptive potential, only few studies have examined adaptation in populations with little genetic variation. On the Swedish west coast, the northern fringe populations of the natterjack toad Bufo calamita inhabit an atypical habitat consisting of offshore rock islands. There are strong among‐population differences in the amount of neutral genetic variation, making this system suitable for studies on mechanisms of trait divergence along a gradient of within‐population genetic variation. In this study, we examined the mechanisms of population divergence using QST–FST comparisons and correlations between quantitative and neutral genetic variation. Our results suggest drift or weak stabilizing selection across the six populations included in this study, as indicated by low QSTFST values, lack of significant population × temperature interactions and lack of significant differences among the islands in breeding pond size. The six populations included in this study differed in both neutral and quantitative genetic variation. Also, the correlations between neutral and quantitative genetic variation tended to be positive, however, the relatively small number of populations prevents any strong conclusions based on these correlations. Contrary to the majority of QST–FST comparisons, our results suggest drift or weak stabilizing selection across the examined populations. Furthermore, the low heritability of fitness‐related traits may limit evolutionary responses in some of the populations.  相似文献   

14.
Migratory birds generally have higher dispersal propensity than resident species and are thus expected to show less genetic differentiation. On the other hand, specific migration patterns may promote genetic structure, such as in situations where migratory divides impede random mixing of individuals. Here we investigated population genetic structure and gene flow patterns in a polytypic passerine, the reed warbler Acrocephalus scirpaceus which shows a migratory divide in central Europe. Using ten polymorphic microsatellite loci and extensive sampling we found low but significant overall genetic differentiation (FST=0.013, G’ST=0.078, D=0.063). Hierarchical F‐statistics and barrier analyses showed low but significant genetic differentiation of Iberian populations, and also slight genetic differences across the migratory divide and between subspecies (A. s. scirpaceus and A. s. fuscus). Three individual‐based Bayesian methods, however, inferred a single genetic unit. Our study thus found low levels of genetic differentiation among reed warbler populations but this genetic differentiation was not pronounced enough to detect a clear population structure using the microsatellite data and no prior information on geographic location of the sampled individuals. This result indicates high levels of gene flow and suggests a possibly recent divergence of European populations after a rapid range expansion. Further studies are necessary to assess divergence times and to reveal the evolutionary history of the reed warbler populations.  相似文献   

15.
Divergent selection at ecologically important traits is thought to be a major factor driving phenotypic differentiation between populations. To elucidate the role of different evolutionary processes shaping the variation in gill raker number of European whitefish (Coregonus lavaretus sensu lato) in the Baltic Sea basin, we assessed the relationships between genetic and phenotypic variation among and within three whitefish ecotypes (sea spawners, river spawners and lake spawners). To generate expected neutral distribution of FST and to evaluate whether highly variable microsatellite loci resulted in deflated FST estimates compared to less variable markers, we performed population genetic simulations under finite island and hierarchical island models. The genetic divergence observed among (FCT = 0.010) and within (FST = 0.014–0.041) ecotypes was rather low. The divergence in gill raker number, however, was substantially higher between sea and river spawners compared to observed microsatellite data and simulated neutral baseline (PCT > FCT). This suggests that the differences in gill raker number between sea and river spawners are likely driven by divergent natural selection. We also found strong support for divergent selection on gill raker number among different populations of sea spawners (PST > FST), most likely caused by highly variable habitat use and diverse diet. The putative role of divergent selection within lake spawners initially inferred from empirical microsatellite data was not supported by simulated FST distributions. This work provides a first formal test of divergent selection on gill raker number in Baltic whitefish, and demonstrates the usefulness of population genetic simulations to generate informative neutral baselines for PSTFST analyses helping to disentangle the effects of stochastic evolutionary processes from natural selection.  相似文献   

16.
A combination of founder effects and local adaptation – the Monopolization hypothesis – has been proposed to reconcile the strong population differentiation of zooplankton dwelling in ponds and lakes and their high dispersal abilities. The role genetic drift plays in genetic differentiation of zooplankton is well documented, but the impact of natural selection has received less attention. Here, we compare differentiation in neutral genetic markers (FST) and in quantitative traits (QST) in six natural populations of the rotifer Brachionus plicatilis to assess the importance of natural selection in explaining genetic differentiation of life‐history traits. Five life‐history traits were measured in four temperature × salinity combinations in common‐garden experiments. Population differentiation for neutral genetic markers – 11 microsatellite loci – was very high (FST = 0.482). Differentiation in life‐history traits was higher in traits related to sexual reproduction than in those related to asexual reproduction. QST values for diapausing egg production (a trait related to sexual reproduction) were higher than their corresponding FST in some pairs of populations. Our results indicate the importance of divergent natural selection in these populations and suggest local adaptation to the unpredictability of B. plicatilis habitats.  相似文献   

17.
The comparison of the degree of differentiation in neutral marker loci and genes coding quantitative traits with standardized and equivalent measures of genetic differentiation (FST and QST, respectively) can provide insights into two important but seldom explored questions in evolutionary genetics: (i) what is the relative importance of random genetic drift and directional natural selection as causes of population differentiation in quantitative traits, and (ii) does the degree of divergence in neutral marker loci predict the degree of divergence in genes coding quantitative traits? Examination of data from 18 independent studies of plants and animals using both standard statistical and meta‐analytical methods revealed a number of interesting points. First, the degree of differentiation in quantitative traits (QST) typically exceeds that observed in neutral marker genes (FST), suggesting a prominent role for natural selection in accounting for patterns of quantitative trait differentiation among contemporary populations. Second, the FSTQST difference is more pronounced for allozyme markers and morphological traits, than for other kinds of molecular markers and life‐history traits. Third, very few studies reveal situations were QST < FST, suggesting that selection pressures, and hence optimal phenotypes, in different populations of the same species are unlikely to be often similar. Fourth, there is a strong correlation between QST and FST indices across the different studies for allozyme (r=0.81), microsatellite (r=0.87) and combined (r=0.75) marker data, suggesting that the degree of genetic differentiation in neutral marker loci is closely predictive of the degree of differentiation in loci coding quantitative traits. However, these interpretations are subject to a number of assumptions about the data and methods used to derive the estimates of population differentiation in the two sets of traits.  相似文献   

18.
Santure AW  Wang J 《Genetics》2009,181(1):259-276
QST measures the differentiation of quantitative traits between populations. It is often compared to FST, which measures population differentiation at neutral marker loci due to drift, migration, and mutation. When QST is different from FST, it is usually taken as evidence that selection has either restrained or accelerated the differentiation of the quantitative trait relative to neutral markers. However, a number of other factors such as inbreeding, dominance, and epistasis may also affect the QSTFST contrast. In this study, we examine the effects of dominance, selection, and inbreeding on QSTFST. We compare QST with FST at selected and neutral loci for populations at equilibrium between selection, drift, mutation, and migration using both analytic and simulation approaches. Interestingly, when divergent selection is acting on a locus, inbreeding and dominance generally inflate QST relative to FST when they are both measured at the quantitative locus at equilibrium. As a consequence, dominance is unlikely to hide the signature of divergent selection on the QSTFST contrast. However, although in theory dominance and inbreeding affect the expectation for QSTFST, of most concern is the very large variance in both QST and FST, suggesting that we should be cautious in attributing small differences between QST and FST to selection.  相似文献   

19.
QST is a differentiation parameter based on the decomposition of the genetic variance of a trait. In the case of additive inheritance and absence of selection, it is analogous to the genic differentiation measured on individual loci, FST. Thus, QST?FST comparison is used to infer selection: selective divergence when QST > FST, or convergence when QST < FST. The definition of Q‐statistics was extended to two‐level hierarchical population structures with Hardy–Weinberg equilibrium. Here, we generalize the Q‐statistics framework to any hierarchical population structure. First, we developed the analytical definition of hierarchical Q‐statistics for populations not at Hardy–Weinberg equilibrium. We show that the Q‐statistics values obtained with the Hardy–Weinberg definition are lower than their corresponding F‐statistics when FIS > 0 (higher when FIS < 0). Then, we used an island model simulation approach to investigate the impact of inbreeding and dominance on the QST?FST framework in a hierarchical population structure. We show that, while differentiation at the lower hierarchical level (QSR) is a monotonic function of migration, differentiation at the upper level (QRT) is not. In the case of additive inheritance, we show that inbreeding inflates the variance of QRT, which can increase the frequency of QRT > FRT cases. We also show that dominance drastically reduces Q‐statistics below F‐statistics for any level of the hierarchy. Therefore, high values of Q‐statistics are good indicators of selection, but low values are not in the case of dominance.  相似文献   

20.
Background selection is a process whereby recurrent deleterious mutations cause a decrease in the effective population size and genetic diversity at linked loci. Several authors have suggested that variation in the intensity of background selection could cause variation in FST across the genome, which could confound signals of local adaptation in genome scans. We performed realistic simulations of DNA sequences, using recombination maps from humans and sticklebacks, to investigate how variation in the intensity of background selection affects FST and other statistics of population differentiation in sexual, outcrossing species. We show that, in populations connected by gene flow, Weir and Cockerham's (1984; Evolution, 38 , 1358) estimator of FST is largely insensitive to locus‐to‐locus variation in the intensity of background selection. Unlike FST, however, dXY is negatively correlated with background selection. Moreover, background selection does not greatly affect the false‐positive rate in FST outlier studies in populations connected by gene flow. Overall, our study indicates that background selection will not greatly interfere with finding the variants responsible for local adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号