首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In the endoplasmic reticulum (ER), a number of thioredoxin (Trx) superfamily proteins are present to enable correct disulfide bond formation of secretory and membrane proteins via Trx-like domains. Here, we identified a novel transmembrane Trx-like protein 4 (TMX4), in the ER of mammalian cells. TMX4, a type I transmembrane protein, was localized to the ER and possessed a Trx-like domain that faced the ER lumen. A maleimide alkylation assay showed that a catalytic CXXC motif in the TMX4 Trx-like domain underwent changes in its redox state depending on cellular redox conditions, and, in the normal state, most of the endogenous TMX4 existed in the oxidized form. Using a purified recombinant protein containing the Trx-like domain of TMX4 (TMX4-Trx), we confirmed that this domain had reductase activity in vitro. The redox potential of this domain (−171.5 mV; 30 °C at pH 7.0) indicated that TMX4 could work as a reductase in the environment of the ER. TMX4 had no effect on the acceleration of ER-associated degradation. Because TMX4 interacted with calnexin and ERp57 by co-immunoprecipitation assay, the role of TMX4 may be to enable protein folding in cooperation with these proteins consisting of folding complex in the ER.  相似文献   

2.
3.
For their efficient assembly in the endoplasmic reticulum (ER), major histocompatibility complex (MHC) class I molecules require the specific assembly factors transporter associated with antigen processing (TAP) and tapasin, as well as generic ER folding factors, including the oxidoreductases ERp57 and protein disulfide isomerase (PDI), and the chaperone calreticulin. TAP transports peptides from the cytosol into the ER. Tapasin promotes the assembly of MHC class I molecules with peptides. The formation of disulfide‐linked conjugates of tapasin with ERp57 is suggested to be crucial for tapasin function. Important functional roles are also suggested for the tapasin transmembrane and cytoplasmic domains, sites of tapasin interaction with TAP. We show that interactions of tapasin with both TAP and ERp57 are correlated with strong MHC class I recruitment and assembly enhancement. The presence of the transmembrane/cytosolic regions of tapasin is critical for efficient tapasin–MHC class I binding in interferon‐γ‐treated cells, and contributes to an ERp57‐independent mode of MHC class I assembly enhancement. A second ERp57‐dependent mode of tapasin function correlates with enhanced MHC class I binding to tapasin and calreticulin. We also show that PDI binds to TAP in a tapasin‐independent manner, but forms disulfide‐linked conjugates with soluble tapasin. Thus, full‐length tapasin is important for enhancing recruitment of MHC class I molecules and increasing specificity of tapasin–ERp57 conjugation. Furthermore, tapasin or the TAP/tapasin complex has an intrinsic ability to recruit MHC class I molecules and promote assembly, but also uses generic folding factors to enhance MHC class I recruitment and assembly.  相似文献   

4.
The mitochondria-associated membrane (MAM) is a domain of the endoplasmic reticulum (ER) that mediates the exchange of ions, lipids and metabolites between the ER and mitochondria. ER chaperones and oxidoreductases are critical components of the MAM. However, the localization motifs and mechanisms for most MAM proteins have remained elusive. Using two highly related ER oxidoreductases as a model system, we now show that palmitoylation enriches ER-localized proteins on the MAM. We demonstrate that palmitoylation of cysteine residue(s) adjacent to the membrane-spanning domain promotes MAM enrichment of the transmembrane thioredoxin family protein TMX. In addition to TMX, our results also show that calnexin shuttles between the rough ER and the MAM depending on its palmitoylation status. Mutation of the TMX and calnexin palmitoylation sites and chemical interference with palmitoylation disrupt their MAM enrichment. Since ER-localized heme oxygenase-1, but not cytosolic GRP75 require palmitoylation to reside on the MAM, our findings identify palmitoylation as key for MAM enrichment of ER membrane proteins.  相似文献   

5.
The human cytomegalovirus (HCMV) protein US2 hijacks the endoplasmic reticulum (ER)-associated degradation machinery to dispose of MHC class I heavy chain (HC) at the ER. This process requires retrotranslocation of newly synthesized HC molecules from the ER membrane into the cytosol, but the mechanism underlying the dislocation reaction has been elusive. Here we establish an in vitro permeabilized cell assay that recapitulates the retrotranslocation of MHC HC in US2-expressing cells. Using this assay, we demonstrate that the dislocation process requires ATP and ubiquitin, as expected. The retrotranslocation also involves the p97 ATPase. However, the mechanism by which p97 dislocates MHC class I HC in US2 cells is distinct from that in US11 cells: the dislocation reaction in US2 cells is independent of the p97 cofactor Ufd1-Npl4. Our results suggest that different retrotranslocation mechanisms can employ distinct p97 ATPase complexes to dislocate substrates.  相似文献   

6.
Various proteins sharing thioredoxin (Trx)-like active site sequences (Cys-Xxx-Xxx-Cys) have been found and classified in the Trx superfamily. Among them, transmembrane Trx-related protein (TMX) was recently identified as a novel protein possessing an atypical active site sequence, Cys-Pro-Ala-Cys. In the present study, we describe the properties of this membranous Trx-related molecule. Endogenous TMX was detected as a protein of approximately 30 kDa with a cleavable signal peptide. TMX was enriched in membrane fractions and exhibited a similar subcellular distribution with calnexin localized in the endoplasmic reticulum (ER). The examination of membrane topology of TMX suggested that the N-terminal region containing the Trx-like domain was present in the ER lumen, where protein disulfide isomerase (PDI) was found to assist protein folding. Recombinant TMX showed PDI-like activity to refold scrambled RNase. These results indicate the possibility that TMX can modify certain molecules with its oxidoreductase activity and be involved in the redox regulation in the ER.  相似文献   

7.
In contrast to the fairly well-characterized mechanism of assembly of MHC class I-peptide complexes, the disassembly mechanism by which peptide-loaded MHC class I molecules are released from the peptide-loading complex and exit the endoplasmic reticulum (ER) is poorly understood. Optimal peptide binding by MHC class I molecules is assumed to be sufficient for triggering exit of peptide-filled MHC class I molecules from the ER. We now show that protein disulfide isomerase (PDI) controls MHC class I disassembly by regulating dissociation of the tapasin-ERp57 disulfide conjugate. PDI acts as a peptide-dependent molecular switch; in the peptide-bound state, it binds to tapasin and ERp57 and induces dissociation of the tapasin-ERp57 conjugate. In the peptide-free state, PDI is incompetent to bind to tapasin or ERp57 and fails to dissociate the tapasin-ERp57 conjugates, resulting in ER retention of MHC class I molecules. Thus, our results indicate that even after optimal peptide loading, MHC class I disassembly does not occur by default but, rather, is a regulated process involving PDI-mediated interactions within the peptide-loading complex.  相似文献   

8.
The formation of a disulfide bond is a critical step in the folding of numerous secretory and membrane proteins and catalyzed in vivo. A variety of mechanisms and protein structures have evolved to catalyze oxidative protein folding. Those enzymes that directly interact with a folding protein to accelerate its oxidative folding are mostly thiol‐disulfide oxidoreductases that belong to the thioredoxin superfamily. The enzymes of this class often use a CXXC active‐site motif embedded in their thioredoxin‐like fold to promote formation, isomerization, and reduction of a disulfide bond in their target proteins. Over the past decade or so, an increasing number of substrates of the thiol‐disulfide oxidoreductases that are present in the ER of mammalian cells have been discovered, revealing that the enzymes play unexpectedly diverse physiological functions. However, functions of some of these enzymes still remain unclear due to the lack of information on their substrates. Here, we review the methods used by researchers to identify the substrates of these enzymes and provide data that show the importance of using trichloroacetic acid in sample preparation for the substrate identification, hoping to aid future studies. We particularly focus on successful studies that have uncovered physiological substrates and functions of the enzymes in the periplasm of Gram‐negative bacteria and the endoplasmic reticulum of mammalian cells. Similar approaches should be applicable to enzymes in other cellular compartments or in other organisms.  相似文献   

9.
Park B  Lee S  Kim E  Cho K  Riddell SR  Cho S  Ahn K 《Cell》2006,127(2):369-382
Activated CD8(+) T cells discriminate infected and tumor cells from normal self by recognizing MHC class I-bound peptides on the surface of antigen-presenting cells. The mechanism by which MHC class I molecules select optimal peptides against a background of prevailing suboptimal peptides and in a considerably proteolytic ER environment remained unknown. Here, we identify protein disulfide isomerase (PDI), an enzyme critical to the formation of correct disulfide bonds in proteins, as a component of the peptide-loading complex. We show that PDI stabilizes a peptide-receptive site by regulating the oxidation state of the disulfide bond in the MHC peptide-binding groove, a function that is essential for selecting optimal peptides. Furthermore, we demonstrate that human cytomegalovirus US3 protein inhibits CD8(+) T cell recognition by mediating PDI degradation, verifying the functional relevance of PDI-catalyzed peptide editing in controlling intracellular pathogens. These results establish a link between thiol-based redox regulation and antigen processing.  相似文献   

10.
Protein disulfide isomerase (PDI) is the archetypal enzyme involved in the formation and reshuffling of disulfide bonds in the endoplasmic reticulum (ER). PDI achieves its redox function through two highly conserved thioredoxin domains, and PDI can also operate as an ER chaperone. The substrate specificities and the exact functions of most other PDI family proteins remain important unsolved questions in biology. Here, we characterize a new and striking member of the PDI family, which we have named protein disulfide isomerase-like protein of the testis (PDILT). PDILT is the first eukaryotic SXXC protein to be characterized in the ER. Our experiments have unveiled a novel, glycosylated PDI-like protein whose tissue-specific expression and unusual motifs have implications for the evolution, catalytic function, and substrate selection of thioredoxin family proteins. We show that PDILT is an ER resident glycoprotein that liaises with partner proteins in disulfide-dependent complexes within the testis. PDILT interacts with the oxidoreductase Ero1alpha, demonstrating that the N-terminal cysteine of the CXXC sequence is not required for binding of PDI family proteins to ER oxidoreductases. The expression of PDILT, in addition to PDI in the testis, suggests that PDILT performs a specialized chaperone function in testicular cells. PDILT is an unusual PDI relative that highlights the adaptability of chaperone and redox function in enzymes of the endoplasmic reticulum.  相似文献   

11.
12.
In this review we discuss the influence of chaperones on the general phenomena of folding as well as on the specific folding of an individual protein, MHC class I. MHC class I maturation is a highly sophisticated process in which the folding machinery of the endoplasmic reticulum (ER) is heavily involved. Understanding the MHC class I maturation per se is important since peptides loaded onto MHC class I molecules are the base for antigen presentation generating immune responses against virus, intracellular bacteria as well as tumours. This review discusses the early stages of MHC class I maturation regarding BiP and calnexin association, and differences in MHC class I heavy chain (HC) interaction with calnexin and calreticulin are highlighted. Late stage MHC class I maturation with focus on the dedicated chaperone tapasin is also discussed.  相似文献   

13.
The assembly of major histocompatibility complex (MHC) class I molecules with peptides in the endoplasmic reticulum (ER) is a critical step in the presentation of viral antigens to CD8+ T cells. This process is subject to quality control restrictions that prevent free class I heavy chains (HCs) and peptide-free HC-beta(2)-microglobulin (beta(2)m) dimers from exiting the ER. The lectin-like chaperone calreticulin associates with HC-beta(2)m heterodimers prior to peptide binding, but its precise role in regulating the subsequent events of peptide association and ER to Golgi transport remains undefined. In vitro analysis of the assembly process has been limited by the specificity of calreticulin for monoglucosylated N-linked glycans, which are transient biosynthetic intermediates. To address this problem, we developed a novel expression system using Saccharomyces cerevisiae glycosylation mutants to produce class I HC bearing N-linked oligosaccharides with the specific structure Glc(1)Man(9)GlcNAc(2). The monoglucosylated glycan proved to be both necessary and sufficient for in vitro binding of calreticulin to MHC class I molecules. Calreticulin bound as efficiently to peptide-loaded MHC class I complexes as it did to folding intermediates created in vitro, namely free class I HC and empty HC-beta(2)m heterodimers. Thus, calreticulin is unable to discriminate between native and non-native MHC class I conformations and therefore unlikely to play a role in the recognition and release of peptide-loaded complexes from the ER. Furthermore, the recombinant expression system developed in this study can be used to produce a broad range of calreticulin substrates to elucidate its general mechanism of activity in vitro.  相似文献   

14.
秦童  黄震 《植物学报》2019,54(1):119-132
硫氧还蛋白(Trx)属于巯基-二硫键氧化还原酶家族, 通过作用于底物蛋白侧链2个半胱氨酸残基之间的二硫键(还原、异构和转移)来调控胞内蛋白的结构和功能。叶绿体Trx系统包括Trx及Trx类似蛋白、铁氧还蛋白(Fd)依赖的硫氧还蛋白还原酶(FTR)和还原型烟酰腺嘌呤二核苷磷酸(NADPH)依赖的硫氧还蛋白还原酶C (NTRC)。除了基质蛋白酶类活性变化及叶绿体蛋白的转运受Trx系统调控之外, 在叶绿体中还存在1条跨类囊体膜的还原势传递途径, 把基质Trx的还原势经跨膜转运蛋白介导, 最终传递给类囊体腔蛋白。FTR和NTRC共同作用维持叶绿体的氧化还原平衡。该文对叶绿体硫氧还蛋白系统的调节机制进行了综述, 同时讨论了叶绿体硫氧还蛋白系统对维持植物光合效率的重要意义。  相似文献   

15.
Major histocompatibility complex (MHC) class I molecules assemble with peptides in the ER lumen and are transported via Golgi to the plasma membrane for recognition by T cells. Inhibiting MHC assembly, transport, and surface expression are common viral strategies of evading immune recognition. Cowpox virus, a clinically relevant orthopoxvirus, downregulates MHC class I expression on infected cells. However, the viral protein(s) and mechanisms responsible are unknown. We identify CPXV203 as a cowpox virus protein that associates with fully assembled MHC class I molecules and blocks their transport through the Golgi. A C-terminal KTEL motif in CPXV203 closely resembles the canonical ER retention motif KDEL and is required for CPXV203 function, indicating that a physiologic pathway is exploited to retain MHC class I in the ER. This viral mechanism for MHC class I downregulation may explain virulence differences between clinical isolates of orthopoxviruses.  相似文献   

16.
Human cytomegalovirus (HCMV) interferes with major histocompatibility complex (MHC) class I antigen presentation by a sequential multistep process to escape T cell surveillance. During the immediate early phase of infection, the glycoprotein US3 prevents intracellular transport of MHC class I molecules. Interestingly, US3 displays a significantly shorter half-life than US3-retained MHC class I molecules. Here we show that US3 associates only transiently with MHC class I molecules, exits the ER, and is inefficiently retrieved from the Golgi. US3 was degraded in a post-Golgi compartment, most likely lysosomes, because: i) Brefeldin A treatment prolonged the half-life of US3; and ii) US3 co-localized with the lysosomal marker protein LAMP in chloroquine-treated cells. In contrast, MHC class I molecules remained stable in the ER. Upon inhibition of protein synthesis MHC class I molecules were released suggesting that a continuous supply of newly synthesized US3 molecules is required for inhibition of transport. Thus, US3 does not seem to retain MHC class I molecules by a retrieval mechanism. Instead, our observations are consistent with US3 preventing MHC class I trafficking by blocking forward transport.  相似文献   

17.
The human cytomegalovirus-encoded glycoprotein US2 catalyzes proteasomal degradation of Class I major histocompatibility complex (MHC) heavy chains (HCs) through dislocation of the latter from the endoplasmic reticulum (ER) to the cytosol. During this process, the Class I MHC HCs are deglycosylated by an N-glycanase-type activity. siRNA molecules designed to inhibit the expression of the light chain, beta(2)-microglobulin, block the dislocation of Class I MHC molecules, which implies that US2-dependent dislocation utilizes correctly folded Class I MHC molecules as a substrate. Here we demonstrate it is peptide: N-glycanase (PNGase or PNG1) that deglycosylates dislocated Class I MHC HCs. Reduction of PNGase activity by siRNA expression in US2-expressing cells inhibits deglycosylation of Class I MHC HC molecules. In PNGase siRNA-treated cells, glycosylated HCs appear in the cytosol, providing the first evidence for the presence of an intact N-linked type I membrane glycoprotein in the cytosol. N-glycanase activity is therefore not required for dislocation of glycosylated Class I MHC molecules from the ER.  相似文献   

18.
19.
We previously showed that the major histocompatibility complex (MHC) class I chaperone tapasin can be detected as a mixed disulfide with the thiol-oxidoreductase ERp57. Here we show that tapasin is a unique and preferred substrate, a substantial majority of which is disulfide-linked to ERp57 within the cell. Tapasin upregulation by interferon-gamma induces sequestration of the vast majority of ERp57 into the MHC class I peptide-loading complex. The rate of tapasin-ERp57 conjugate formation is unaffected by the absence of beta2-microglubulin (beta2m), and is independent of calnexin or calreticulin interactions with monoglucosylated N-linked glycans. The heterodimer forms spontaneously in vitro upon mixing recombinant ERp57 and tapasin. Noncovalent interactions between the native proteins inhibit the reductase activity of the thioredoxin CXXC motif within the N-terminal a domain of ERp57 to maintain its interaction with tapasin. Disruption of these interactions by denaturation allows reduction to proceed. Thus, tapasin association specifically inhibits the escape pathway required for disulfide-bond isomerization within conventional protein substrates, suggesting a specific structural role for ERp57 within the MHC class I peptide-loading complex.  相似文献   

20.
Major histocompatibility complex (MHC) class I molecules are ligands for T-cell receptors of CD8+ T cells and inhibitory receptors of natural killer cells. Assembly of the heavy chain, light chain, and peptide components of MHC class I molecules occurs in the endoplasmic reticulum (ER). Specific assembly factors and generic ER chaperones, collectively called the MHC class I peptide loading complex (PLC), are required for MHC class I assembly. Calreticulin has an important role within the PLC and induces MHC class I cell surface expression, but the interactions and mechanisms involved are incompletely understood. We show that interactions with the thiol oxidoreductase ERp57 and substrate glycans are important for the recruitment of calreticulin into the PLC and for its functional activities in MHC class I assembly. The glycan and ERp57 binding sites of calreticulin contribute directly or indirectly to complexes between calreticulin and the MHC class I assembly factor tapasin and are important for maintaining steady-state levels of both tapasin and MHC class I heavy chains. A number of destabilizing conditions and mutations induce generic polypeptide binding sites on calreticulin and contribute to calreticulin-mediated suppression of misfolded protein aggregation in vitro. We show that generic polypeptide binding sites per se are insufficient for stable recruitment of calreticulin to PLC substrates in cells. However, such binding sites could contribute to substrate stabilization in a step that follows the glycan and ERp57-dependent recruitment of calreticulin to the PLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号