首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Verticillium wilt (VW) and Fusarium wilt (FW), caused by the soil-borne fungi Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, respectively, are two most destructive diseases in cotton production worldwide. Root-knot nematodes (Meloidogyne incognita, RKN) and reniform nematodes (Rotylenchulus reniformis, RN) cause the highest yield loss in the U.S. Planting disease resistant cultivars is the most cost effective control method. Numerous studies have reported mapping of quantitative trait loci (QTLs) for disease resistance in cotton; however, very few reliable QTLs were identified for use in genomic research and breeding.

Results

This study first performed a 4-year replicated test of a backcross inbred line (BIL) population for VW resistance, and 10 resistance QTLs were mapped based on a 2895 cM linkage map with 392 SSR markers. The 10 VW QTLs were then placed to a consensus linkage map with other 182 VW QTLs, 75 RKN QTLs, 27 FW QTLs, and 7 RN QTLs reported from 32 publications. A meta-analysis of QTLs identified 28 QTL clusters including 13, 8 and 3 QTL hotspots for resistance to VW, RKN and FW, respectively. The number of QTLs and QTL clusters on chromosomes especially in the A-subgenome was significantly correlated with the number of nucleotide-binding site (NBS) genes, and the distribution of QTLs between homeologous A- and D- subgenome chromosomes was also significantly correlated.

Conclusions

Ten VW resistance QTL identified in a 4-year replicated study have added useful information to the understanding of the genetic basis of VW resistance in cotton. Twenty-eight disease resistance QTL clusters and 24 hotspots identified from a total of 306 QTLs and linked SSR markers provide important information for marker-assisted selection and high resolution mapping of resistance QTLs and genes. The non-overlapping of most resistance QTL hotspots for different diseases indicates that their resistances are controlled by different genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1682-2) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Body weight (BW) is an important trait for meat production in sheep. Although over the past few years, numerous quantitative trait loci (QTL) have been detected for production traits in cattle, few QTL studies have been reported for sheep, with even fewer on meat production traits. Our objective was to perform a genome-wide association study (GWAS) with the medium-density Illumina Ovine SNP50 BeadChip to identify genomic regions and corresponding haplotypes associated with BW in Australian Merino sheep.

Methods

A total of 1781 Australian Merino sheep were genotyped using the medium-density Illumina Ovine SNP50 BeadChip. Among the 53 862 single nucleotide polymorphisms (SNPs) on this array, 48 640 were used to perform a GWAS using a linear mixed model approach. Genotypes were phased with hsphase; to estimate SNP haplotype effects, linkage disequilibrium blocks were identified in the detected QTL region.

Results

Thirty-nine SNPs were associated with BW at a Bonferroni-corrected genome-wide significance threshold of 1 %. One region on sheep (Ovis aries) chromosome 6 (OAR6) between 36.15 and 38.56 Mb, included 13 significant SNPs that were associated with BW; the most significant SNP was OAR6_41936490.1 (P = 2.37 × 10−16) at 37.69 Mb with an allele substitution effect of 2.12 kg, which corresponds to 0.248 phenotypic standard deviations for BW. The region that surrounds this association signal on OAR6 contains three genes: leucine aminopeptidase 3 (LAP3), which is involved in the processing of the oxytocin precursor; NCAPG non-SMC condensin I complex, subunit G (NCAPG), which is associated with foetal growth and carcass size in cattle; and ligand dependent nuclear receptor corepressor-like (LCORL), which is associated with height in humans and cattle.

Conclusions

The GWAS analysis detected 39 SNPs associated with BW in sheep and a major QTL region was identified on OAR6. In several other mammalian species, regions that are syntenic with this region have been found to be associated with body size traits, which may reflect that the underlying biological mechanisms share a common ancestry. These findings should facilitate the discovery of causative variants for BW and contribute to marker-assisted selection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0142-4) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

Breeding livestock for improved resistance to disease is an increasingly important selection goal. However, the risk of pathogens adapting to livestock bred for improved disease resistance is difficult to quantify. Here, we explore the possibility of gastrointestinal worms adapting to sheep bred for low faecal worm egg count using computer simulation. Our model assumes sheep and worm genotypes interact at a single locus, such that the effect of an A allele in sheep is dependent on worm genotype, and the B allele in worms is favourable for parasitizing the A allele sheep but may increase mortality on pasture. We describe the requirements for adaptation and test if worm adaptation (1) is slowed by non-genetic features of worm infections and (2) can occur with little observable change in faecal worm egg count.

Results

Adaptation in worms was found to be primarily influenced by overall worm fitness, viz. the balance between the advantage of the B allele during the parasitic stage in sheep and its disadvantage on pasture. Genetic variation at the interacting locus in worms could be from de novo or segregating mutations, but de novo mutations are rare and segregating mutations are likely constrained to have (near) neutral effects on worm fitness. Most other aspects of the worm infection we modelled did not affect the outcomes. However, the host-controlled mechanism to reduce faecal worm egg count by lowering worm fecundity reduced the selection pressure on worms to adapt compared to other mechanisms, such as increasing worm mortality. Temporal changes in worm egg count were unreliable for detecting adaptation, despite the steady environment assumed in the simulations.

Conclusions

Adaptation of worms to sheep selected for low faecal worm egg count requires an allele segregating in worms that is favourable in animals with improved resistance but less favourable in other animals. Obtaining alleles with this specific property seems unlikely. With support from experimental data, we conclude that selection for low faecal worm egg count should be stable over a short time frame (e.g. 20 years). We are further exploring model outcomes with multiple loci and comparing outcomes to other control strategies.  相似文献   

4.

Background

The phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host.

Results

The genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria.

Conclusions

Reduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-696) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

Columnaris causes severe mortalities among many different wild and cultured freshwater fish species, but understanding of host resistance is lacking. Catfish, the primary aquaculture species in the United States, serves as a great model for the analysis of host resistance against columnaris disease. Channel catfish in general is highly resistant to the disease while blue catfish is highly susceptible. F2 generation of hybrids can be produced where phenotypes and genotypes are segregating, providing a useful system for QTL analysis. To identify genes associated with columnaris resistance, we performed a genome-wide association study (GWAS) using the catfish 250 K SNP array with 340 backcross progenies derived from crossing female channel catfish (Ictalurus punctatus) with male F1 hybrid catfish (female channel catfish I. punctatus × male blue catfish I. furcatus).

Results

A genomic region on linkage group 7 was found to be significantly associated with columnaris resistance. Within this region, five have known functions in immunity, including pik3r3b, cyld-like, adcyap1r1, adcyap1r1-like, and mast2. In addition, 3 additional suggestively associated QTL regions were identified on linkage groups 7, 12, and 14. The resistant genotypes on the QTLs of linkage groups 7 and 12 were found to be homozygous with both alleles being derived from channel catfish. The paralogs of the candidate genes in the suggestively associated QTL of linkage group 12 were found on the QTLs of linkage group 7. Many candidate genes on the four associated regions are involved in PI3K pathway that is known to be required by many bacteria for efficient entry into the host.

Conclusion

The GWAS revealed four QTLs associated with columnaris resistance in catfish. Strikingly, the candidate genes may be arranged as functional hubs; the candidate genes within the associated QTLs on linkage groups 7 and 12 are not only co-localized, but also functionally related, with many of them being involved in the PI3K signal transduction pathway, suggesting its importance for columnaris resistance.  相似文献   

6.

Introduction

The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Temephos is an organophosphate insecticide used globally to suppress Ae. aegypti larval populations but resistance has evolved in many locations.

Methodology/Principal Findings

Quantitative Trait Loci (QTL) controlling temephos survival in Ae. aegypti larvae were mapped in a pair of F3 advanced intercross lines arising from temephos resistant parents from Solidaridad, México and temephos susceptible parents from Iquitos, Peru. Two sets of 200 F3 larvae were exposed to a discriminating dose of temephos and then dead larvae were collected and preserved for DNA isolation every two hours up to 16 hours. Larvae surviving longer than 16 hours were considered resistant. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 23 single copy genes and 26 microsatellite loci of known physical positions in the Ae. aegypti genome. In both reciprocal crosses, Multiple Interval Mapping identified eleven QTL associated with time until death. In the Solidaridad×Iquitos (SLD×Iq) cross twelve were associated with survival but in the reciprocal IqxSLD cross, only six QTL were survival associated. Polymorphisms at acetylcholine esterase (AchE) loci 1 and 2 were not associated with either resistance phenotype suggesting that target site insensitivity is not an organophosphate resistance mechanism in this region of México.

Conclusions/Significance

Temephos resistance is under the control of many metabolic genes of small effect and dispersed throughout the Ae. aegypti genome.  相似文献   

7.

Introduction

Variance component QTL methodology was used to analyse three candidate regions on chicken chromosomes 1, 4 and 5 for dominant and parent-of-origin QTL effects. Data were available for bodyweight and conformation score measured at 40 days from a two-generation commercial broiler dam line. One hundred dams were nested in 46 sires with phenotypes and genotypes on 2708 offspring. Linear models were constructed to simultaneously estimate fixed, polygenic and QTL effects. Different genetic models were compared using likelihood ratio test statistics derived from the comparison of full with reduced or null models. Empirical thresholds were derived by permutation analysis.

Results

Dominant QTL were found for bodyweight on chicken chromosome 4 and for bodyweight and conformation score on chicken chromosome 5. Suggestive evidence for a maternally expressed QTL for bodyweight and conformation score was found on chromosome 1 in a region corresponding to orthologous imprinted regions in the human and mouse.

Conclusion

Initial results suggest that variance component analysis can be applied within commercial populations for the direct detection of segregating dominant and parent of origin effects.  相似文献   

8.

Background

This is the first study based on a genome-wide association approach that investigates the links between ovine footrot scores and molecular polymorphisms in Texel sheep using the ovine 50 K SNP array (42 883 SNPs (single nucleotide polymorphisms) after quality control). Our aim was to identify molecular predictors of footrot resistance.

Methods

This study used data from animals selected from a footrot-phenotyped Texel sheep population of 2229 sheep with an average of 1.60 scoring records per animal. From these, a subset of 336 animals with extreme trait values for footrot was selected for genotyping based on their phenotypic records. De-regressed estimated breeding values (EBV) for footrot were used as pseudo-phenotypes in the genome-wide association analysis.

Results

Seven SNPs were significant on a chromosome-wise level but the association analysis did not reveal any genome-wise significant SNPs associated with footrot. Based on the current state of knowledge of the ovine genome, it is difficult to clearly link the function of the genes that contain these significant SNPs with a potential role in resistance/susceptibility to footrot. Linkage disequilibrium (LD) was analysed as one of the factors that influence the power of detecting QTL (quantitative trait loci). A mean LD of 0.20 (r2 at a distance of 50 kb between two SNPs) in the population analysed was estimated. LD declined from 0.15 to 0.07 and to 0.04 at distances between two SNPs of 100, 1000 and 2000 kb, respectively.

Conclusions

Based on a relatively small number of genotyped animals, this study is a first step to search for genomic regions that are involved in resistance to footrot using the ovine 50 K SNP array. Seven SNPs were found to be significant on a chromosome-wise level. No major genome-wise significant QTL were identified.  相似文献   

9.

Background

Selection schemes aiming at introgressing genetic material from a donor into a recipient line may be performed by backcross-breeding programs combined with selection to preserve the favourable characteristics of the donor population. This stochastic simulation study investigated whether genomic selection can be effective in preserving a major quantitative trait locus (QTL) allele from a donor line during the backcrossing phase.

Methods

In a simulation study, two fish populations were generated: a recipient line selected for a production trait and a donor line characterized by an enhanced level of disease resistance. Both traits were polygenic, but one major QTL affecting disease resistance was segregating only within the donor line. Backcrossing was combined with three types of selection (for total merit index) among the crossbred individuals: classical selection, genomic selection using genome-wide dense marker maps, and gene-assisted genomic selection. It was assumed that production could be observed directly on the selection candidates, while disease resistance had to be inferred from tested sibs of the selection candidates.

Results

Classical selection was inefficient in preserving the target QTL through the backcrossing phase. In contrast, genomic selection (without specific knowledge of the target QTL) was usually effective in preserving the target QTL, and had higher genetic response to selection, especially for disease resistance. Compared with pure genomic selection, gene-assisted selection had an advantage with respect to disease resistance (28–40% increase in genetic gain) and acted as an extra precaution against loss of the target QTL. However, for total merit index the advantage of gene-assisted genomic selection over genomic selection was lower (4–5% increase in genetic gain).

Conclusion

Substantial differences between introgression programs using classical and genomic selection were observed, and the former was generally inferior with respect to both genetic gain and the ability to preserve the target QTL. Combining genomic selection with gene-assisted selection for the target QTL acted as an extra precaution against loss of the target QTL and gave additional genetic gain for disease resistance. However, the effect on total merit index was limited.  相似文献   

10.

Background

We conducted a genome-wide linkage analysis to identify quantitative trait loci (QTL) that influence meat quality-related traits in a large F2 intercross between Landrace and Korean native pigs. Thirteen meat quality-related traits of the m. longissimus lumborum et thoracis were measured in more than 830 F2 progeny. All these animals were genotyped with 173 microsatellite markers located throughout the pig genome, and the GridQTL program based on the least squares regression model was used to perform the QTL analysis.

Results

We identified 23 genome-wide significant QTL in eight chromosome regions (SSC1, 2, 6, 7, 9, 12, 13, and 16) (SSC for Sus Scrofa) and detected 51 suggestive QTL in the 17 chromosome regions. QTL that affect 10 meat quality traits were detected on SSC12 and were highly significant at the genome-wide level. In particular, the QTL with the largest effect affected crude fat percentage and explained 22.5% of the phenotypic variance (F-ratio = 278.0 under the additive model, nominal P = 5.5 × 10−55). Interestingly, the QTL on SSC12 that influenced meat quality traits showed an obvious trend for co-localization.

Conclusions

Our results confirm several previously reported QTL. In addition, we identified novel QTL for meat quality traits, which together with the associated positional candidate genes improve the knowledge on the genetic structure that underlies genetic variation for meat quality traits in pigs.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0080-6) contains supplementary material, which is available to authorized users.  相似文献   

11.
Emes RD  Yang Z 《PloS one》2008,3(5):e2295

Background

Whole genome studies have highlighted duplicated genes as important substrates for adaptive evolution. We have investigated adaptive evolution in this class of genes in the human parasite Trypanosoma brucei, as indicated by the ratio of non-synonymous (amino-acid changing) to synonymous (amino acid retaining) nucleotide substitution rates.

Methodology/Principal Findings

We have identified duplicated genes that are most rapidly evolving in this important human parasite. This is the first attempt to investigate adaptive evolution in this species at the codon level. We identify 109 genes within 23 clusters of paralogous gene expansions to be subject to positive selection.

Conclusions/Significance

Genes identified include surface antigens in both the mammalian and insect host life cycle stage suggesting that competitive interaction is not solely with the adaptive immune system of the mammalian host. Also surface transporters related to drug resistance and genes related to developmental progression are detected. We discuss how adaptive evolution of these genes may highlight lineage specific processes essential for parasite survival. We also discuss the implications of adaptive evolution of these targets for parasite biology and control.  相似文献   

12.
13.

Background

Feral sheep are considered to be a source of genetic variation that has been lost from their domestic counterparts through selection.

Methods

This study investigates variation in the genes KRTAP1-1, KRT33, ADRB3 and DQA2 in Merino-like feral sheep populations from New Zealand and its offshore islands. These genes have previously been shown to influence wool, lamb survival and animal health.

Results

All the genes were polymorphic, but no new allele was identified in the feral populations. In some of these populations, allele frequencies differed from those observed in commercial Merino sheep and other breeds found in New Zealand. Heterozygosity levels were comparable to those observed in other studies on feral sheep. Our results suggest that some of the feral populations may have been either inbred or outbred over the duration of their apparent isolation.

Conclusion

The variation described here allows us to draw some conclusions about the likely genetic origin of the populations and selective pressures that may have acted upon them, but they do not appear to be a source of new genetic material, at least for these four genes.  相似文献   

14.
15.

Background

Mouse chromosome 2 is linked to growth and body fat phenotypes in many mouse crosses. With the goal to identify the underlying genes regulating growth and body fat on mouse chromosome 2, we developed five overlapping subcongenic strains that contained CAST/EiJ donor regions in a C57BL/6Jhg/hg background (hg is a spontaneous deletion of 500 Kb on mouse chromosome 10). To fine map QTL on distal mouse chromosome 2 a total of 1,712 F2 mice from the five subcongenic strains, plus 278 F2 mice from the HG2D founder congenic strain were phenotyped and analyzed. Interval mapping (IM) and composite IM (CIM) were performed on body weight and body fat traits on a combination of SNP and microsatellite markers, which generated a high-density genotyping panel.

Results

Phenotypic analysis and interval mapping of total fat mass identified two QTL on distal mouse chromosome 2. One QTL between 150 and 161 Mb, Fatq2a, and the second between 173.3 and 175.6 Mb, Fatq2b. The two QTL reside in different congenic strains with significant total fat differences between homozygous cast/cast and b6/b6 littermates. Both of these QTL were previously identified only as a single QTL affecting body fat, Fatq2. Furthermore, through a novel approach referred here as replicated CIM, Fatq2b was mapped to the Gnas imprinted locus.

Conclusions

The integration of subcongenic strains, high-density genotyping, and CIM succesfully partitioned two previously linked QTL 20 Mb apart, and the strongest QTL, Fatq2b, was fine mapped to a ~2.3 Mb region interval encompassing the Gnas imprinted locus.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-014-1191-8) contains supplementary material, which is available to authorized users.  相似文献   

16.
Dai F  Qiu L  Ye L  Wu D  Zhou M  Zhang G 《PloS one》2011,6(4):e18829

Background

Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity.

Methodology/Principal Findings

Quantitative trait loci (QTL) analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP) gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy.

Conclusions/Significance

It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains.  相似文献   

17.

Background

Plasmodium falciparum resistance to artemisinins, the first line treatment for malaria worldwide, has been reported in western Cambodia. Resistance is characterized by significantly delayed clearance of parasites following artemisinin treatment. Artemisinin resistance has not previously been reported in Myanmar, which has the highest falciparum malaria burden among Southeast Asian countries.

Methods

A non-randomized, single-arm, open-label clinical trial of artesunate monotherapy (4 mg/kg daily for seven days) was conducted in adults with acute blood-smear positive P. falciparum malaria in Kawthaung, southern Myanmar. Parasite density was measured every 12 hours until two consecutive negative smears were obtained. Participants were followed weekly at the study clinic for three additional weeks. Co-primary endpoints included parasite clearance time (the time required for complete clearance of initial parasitemia), parasite clearance half-life (the time required for parasitemia to decrease by 50% based on the linear portion of the parasite clearance slope), and detectable parasitemia 72 hours after commencement of artesunate treatment. Drug pharmacokinetics were measured to rule out delayed clearance due to suboptimal drug levels.

Results

The median (range) parasite clearance half-life and time were 4.8 (2.1–9.7) and 60 (24–96) hours, respectively. The frequency distributions of parasite clearance half-life and time were bimodal, with very slow parasite clearance characteristic of the slowest-clearing Cambodian parasites (half-life longer than 6.2 hours) in approximately 1/3 of infections. Fourteen of 52 participants (26.9%) had a measurable parasitemia 72 hours after initiating artesunate treatment. Parasite clearance was not associated with drug pharmacokinetics.

Conclusions

A subset of P. falciparum infections in southern Myanmar displayed markedly delayed clearance following artemisinin treatment, suggesting either emergence of artemisinin resistance in southern Myanmar or spread to this location from its site of origin in western Cambodia. Resistance containment efforts are underway in Myanmar.

Trial Registration

Australian New Zealand Clinical Trials Registry ACTRN12610000896077  相似文献   

18.

Background

The nature of dynamic traits with their phenotypic plasticity suggests that they are under the control of a dynamic genetic regulation. We employed a precision phenotyping platform to non-invasively assess biomass yield in a large mapping population of triticale at three developmental stages.

Results

Using multiple-line cross QTL mapping we identified QTL for each of these developmental stages which explained a considerable proportion of the genotypic variance. Some QTL were identified at each developmental stage and thus contribute to biomass yield throughout the studied developmental phases. Interestingly, we also observed QTL that were only identified for one or two of the developmental stages illustrating a temporal contribution of these QTL to the trait. In addition, epistatic QTL were detected and the epistatic interaction landscape was shown to dynamically change with developmental progression.

Conclusions

In summary, our results reveal the temporal dynamics of the genetic architecture underlying biomass accumulation in triticale and emphasize the need for a temporal assessment of dynamic traits.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-458) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

Sudden death syndrome (SDS) is a serious threat to soybean production that can be managed with host plant resistance. To dissect the genetic architecture of quantitative resistance to the disease in soybean, two independent association panels of elite soybean cultivars, consisting of 392 and 300 unique accessions, respectively, were evaluated for SDS resistance in multiple environments and years. The two association panels were genotyped with 52,041 and 5,361 single nucleotide polymorphisms (SNPs), respectively. Genome-wide association mapping was carried out using a mixed linear model that accounted for population structure and cryptic relatedness.

Result

A total of 20 loci underlying SDS resistance were identified in the two independent studies, including 7 loci localized in previously mapped QTL intervals and 13 novel loci. One strong peak of association on chromosome 18, associated with all disease assessment criteria across the two panels, spanned a physical region of 1.2 Mb around a previously cloned SDS resistance gene (GmRLK18-1) in locus Rfs2. An additional variant independently associated with SDS resistance was also found in this genomic region. Other peaks were within, or close to, sequences annotated as homologous to genes previously shown to be involved in plant disease resistance. The identified loci explained an average of 54.5% of the phenotypic variance measured by different disease assessment criteria.

Conclusions

This study identified multiple novel loci and refined the map locations of known loci related to SDS resistance. These insights into the genetic basis of SDS resistance can now be used to further enhance durable resistance to SDS in soybean. Additionally, the associations identified here provide a basis for further efforts to pinpoint causal variants and to clarify how the implicated genes affect SDS resistance in soybean.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-809) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

In sheep dairy production, total lactation performance, and length of lactation of lactation are of economic significance. A more persistent lactation has been associated with improved udder health. An extended lactation is defined by a longer period of milkability. This study is the first investigation to examine the presence of quantitative trait loci (QTL) for extended lactation and lactation persistency in sheep.

Methods

An (Awassi × Merino) × Merino single-sire backcross family with 172 ewes was used to map QTL for lactation persistency and extended lactation traits on a framework map of 189 loci across all autosomes. The Wood model was fitted to data from multiple lactations to estimate parameters of ovine lactation curves, and these estimates were used to derive measures of lactation persistency and extended lactation traits of milk, protein, fat, lactose, useful yield, and somatic cell score. These derived traits were subjected to QTL analyses using maximum likelihood estimation and regression analysis.

Results

Overall, one highly significant (LOD > 3.0), four significant (2.0 < LOD < 3.0) and five suggestive (1.7 < LOD < 2.0) QTL were detected across all traits in common by both mapping methods. One additional suggestive QTL was identified using maximum likelihood estimation, and four suggestive (0.01 < P < 0.05) and two significant (P < 0.01) QTL using the regression approach only. All detected QTL had effect sizes in the range of 0.48 to 0.64 SD, corresponding to QTL heritabilities of 3.1 to 8.9%. The comparison of the detected QTL with results in cattle showed conserved linkage regions. Most of the QTL identified for lactation persistency and extended lactation did not coincide. This suggests that persistency and extended lactation for the same as well as different milk yield and component traits are not controlled by the same genes.

Conclusion

This study identified ten novel QTL for lactation persistency and extended lactation in sheep, but results suggest that lactation persistency and extended lactation do not have a major gene in common. These results provide a basis for further validation in extended families and other breeds as well as targeting regions for genome-wide association mapping using high-density SNP arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号