首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxisomes are highly dynamic and multifunctional organelles essential to development. Plant peroxisomes accommodate a multitude of metabolic reactions, many of which are related to the β-oxidation of fatty acids or fatty acid-related metabolites. Recently, several dozens of novel peroxisomal proteins have been identified from Arabidopsis (Arabidopsis thaliana) through in silico and experimental proteomic analyses followed by in vivo protein targeting validations. To determine the functions of these proteins, we interrogated their transfer DNA insertion mutants with a series of physiological, cytological, and biochemical assays to reveal peroxisomal deficiencies. Sugar dependence and 2,4-dichlorophenoxybutyric acid and 12-oxo-phytodienoic acid response assays uncovered statistically significant phenotypes in β-oxidation-related processes in mutants for 20 of 27 genes tested. Additional investigations uncovered a subset of these mutants with abnormal seed germination, accumulation of oil bodies, and delayed degradation of long-chain fatty acids during early seedling development. Mutants for seven genes exhibited deficiencies in multiple assays, strongly suggesting the involvement of their gene products in peroxisomal β-oxidation and initial seedling growth. Proteins identified included isoforms of enzymes related to β-oxidation, such as acyl-CoA thioesterase2, acyl-activating enzyme isoform1, and acyl-activating enzyme isoform5, and proteins with functions previously unknown to be associated with β-oxidation, such as Indigoidine synthase A, Senescence-associated protein/B12D-related protein1, Betaine aldehyde dehydrogenase, and Unknown protein5. This multipronged phenotypic screen allowed us to reveal β-oxidation proteins that have not been discovered by single assay-based mutant screens and enabled the functional dissection of different isoforms of multigene families involved in β-oxidation.Peroxisomes are small (approximately 0.1–1.0 µm) single-membrane eukaryotic organelles that are essential for the development of animals and plants by mediating a multitude of conserved and lineage-specific metabolic functions (Beevers, 1979; van den Bosch et al., 1992; Kaur et al., 2009; Hu et al., 2012; Schrader et al., 2012). Plant peroxisomes house metabolic processes, including β-oxidation of fatty acids; hormone biosynthesis; photorespiration; the glyoxylate cycle; detoxification of reactive oxygen, nitrogen, and sulfur species; and metabolism of branched amino acids, urate, and polyamines (PAs; Beevers, 1979; Kaur et al., 2009; Hu et al., 2012). Peroxisomes also generate signaling molecules with regulatory roles in plant development (Weber, 2002; Corpas et al., 2013; Sandalio et al., 2013).β-oxidation of fatty acids and related metabolites is a major function of peroxisomes throughout the lifecycle of a plant from seed germination to senescence. Mobilization of seed oil reserves during seed germination and postgerminative growth requires peroxisomal β-oxidation and the glyoxylate cycle. In this process, fatty acids are transported into the peroxisome, where they are activated into fatty acyl-CoAs and later, shortened by two carbons in each cycle of β-oxidation. The product, acetyl-CoA, is converted to four-carbon molecules by the glyoxylate cycle, and its products further undergo gluconeogenesis to provide energy for postgerminative development (Theodoulou and Eastmond, 2012). Using core β-oxidation enzymes as well as pathway-specific enzymes, 12-oxo-phytodienoic acid (OPDA), the jasmonic acid (JA) precursor that enters the peroxisome after being synthesized in the chloroplast, is converted to JA (Acosta and Farmer, 2010), and indole 3-butyric acid (IBA) is converted to the principal form of auxin, indole 3-acetic acid (IAA; Strader and Bartel, 2011). Other than the core β-oxidation pathway, which metabolizes straight-chain saturated fatty acids, auxiliary β-oxidation pathways also occur in the peroxisome to metabolize unsaturated fatty acids, in which case accessory enzymes are required (Goepfert and Poirier, 2007; Graham, 2008).To assess the full composition of this versatile organelle in plants, both in silico analysis and experimental proteomics have been used to identify peroxisomal proteins. Bioinformatic analysis of the Arabidopsis (Arabidopsis thaliana) genome using Peroxisomal Target Signal type1 (PTS1) and PTS2 sequences predicted a total of over 400 proteins to be potentially peroxisomal (Lingner et al., 2011). Experimental proteomics of Arabidopsis, spinach (Spinacia oleracea), and soybean (Glycine max) peroxisomes using different tissue/cell types and development stages together identified several dozens of peroxisomal proteins that had not been found previously to associate with peroxisomes after in vivo targeting verification (Fukao et al., 2002, 2003; Arai et al., 2008a, 2008b; Eubel et al., 2008; Reumann et al., 2009; Babujee et al., 2010; Quan et al., 2013). After the identification of peroxisomal proteins from etiolated Arabidopsis seedlings through proteomics and in vivo protein-targeting analysis, we used reverse genetics to analyze the mutants of five newly identified proteins and revealed the role of a Cys protease, RESPONSE TO DROUGHT21A-LIKE1, in seed germination, β-oxidation, and stress response (Quan et al., 2013; Cassin-Ross and Hu, 2014). However, many other recently identified peroxisomal proteins have not been characterized with respect to their functions in peroxisomal physiology and plant development.In this study, we interrogated the mutants of 27 recently identified peroxisomal genes with systematic phenotypic assays to analyze the function of the proteins in peroxisomal metabolism. Mutants for 20 of the tested genes showed statistically significant phenotypes in at least one of the assays. Additional analysis revealed that mutants for 7 of 20 genes displayed deficiencies in multiple assays, suggesting strongly that these seven proteins are involved in β-oxidation-related processes. This multifaceted screen enabled us to identify β-oxidation proteins that may not have been discovered otherwise by genetic screens based on single assays.  相似文献   

2.
Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment.Peroxisomes, originally known as microbodies, are small and single-membrane eukaryotic organelles that compartmentalize various oxidative metabolic functions. Most peroxisomal matrix proteins carry a C-terminal tripeptide named PEROXISOME TARGETING SIGNAL TYPE1 (PTS1), and fewer contain an N-terminal nonapeptide, PTS2 (Lanyon-Hogg et al., 2010). PTS1 is further divided into major and minor PTS1s. Major PTS1 tripeptides, such as SKL> and SRL> (> represents the stop codon), are by themselves sufficient to direct a protein to the peroxisome (Reumann, 2004), whereas minor PTS1s are usually found in low-abundance proteins and require additional upstream elements for peroxisomal targeting (Kaur et al., 2009). Peroxisomes are highly variable morphologically and metabolically, as their size, shape, abundance, and enzymatic content can differ depending on the species, tissue and cell type, and prevailing environmental conditions (Beevers, 1979; van den Bosch et al., 1992; Kaur et al., 2009; Hu et al., 2012; Schrader et al., 2012).Plant peroxisomes participate in a wide range of metabolic processes, such as lipid metabolism, photorespiration, detoxification, biosynthesis of jasmonic acid, and metabolism of indole-3-butyric acid (IBA), nitrogen, sulfite, and polyamine (Kaur et al., 2009; Hu et al., 2012). Specific names had been given to certain types of peroxisomes due to their unique metabolic properties. For example, the term glyoxysome was coined when a new type of organelle that contained enzymes of the glyoxylate cycle was identified from the endosperm of castor bean (Ricinus communis; Breidenbach et al., 1968). It was later realized that glyoxysomes are in fact a type of peroxisome, and Beevers (1979) subsequently classified plant peroxisomes into three subtypes based on their primary biochemical functions. Glyoxysomes are located in storage organs such as fatty seedling tissues and play a major role in converting fatty acids to sugar; leaf peroxisomes are involved in photorespiration; and nonspecialized peroxisomes exist in other plant tissues and perform unknown functions.The primary function of leaf peroxisomes is the recycling of phosphoglycolate during photorespiration, a process coordinated by chloroplasts, peroxisomes, mitochondria, and the cytosol. In this pathway, phosphoglycolate produced by the oxygenase activity of Rubisco is ultimately converted to glycerate, which reenters the chloroplastic Calvin-Benson cycle (Foyer et al., 2009; Peterhansel et al., 2010). The peroxisome-localized enzymes glycolate oxidase (GOX), catalase, aminotransferase (serine:glyoxylate aminotransferase [SGT] and glutamate-glyoxylate aminotransferase [GGT]), HYDROXYPYRUVATE REDUCTASE1 (HPR1), and peroxisomal malate dehydrogenase (PMDH) are involved in the process (Reumann and Weber, 2006). On the other hand, lipid mobilization through fatty acid β-oxidation and the glyoxylate cycle is the main function for peroxisomes in seeds and germinating seedlings. In this process, fatty acids are first activated into fatty acyl-CoA esters by the acyl-activating enzyme (AAE)/acyl-CoA synthetase before entering the β-oxidation cycle, during which an acetyl-CoA is cleaved in each cycle by the successive action of acyl-CoA oxidase (ACX), multifunctional protein (MFP), and 3-keto-acyl-CoA thiolase (KAT). Acetyl-CoA, an end product of β-oxidation, is further converted to four-carbon carbohydrates by the glyoxylate cycle, in which isocitrate lyase (ICL) and malate synthase (MLS) are two key enzymes that function exclusively in this pathway. Products of the glyoxylate cycle exit the peroxisome, enter gluconeogenesis, and are further converted to hexose and Suc to fuel the postgerminative development of seedlings (Penfield et al., 2006).Immunocytochemical studies of germinating seeds from pumpkin (Cucurbita pepo), watermelon (Citrullis vulgaris), and cucumber (Cucumis sativus) demonstrated that seed peroxisomes (glyoxysomes) are directly transformed into leaf peroxisomes during greening of the cotyledons without de novo biogenesis of leaf peroxisomes (Titus and Becker, 1985; Nishimura et al., 1986; Sautter, 1986). This conversion was illustrated by the import of photorespiratory enzymes and their concomitant presence with glyoxylate cycle enzymes within the same organelle. Furthermore, the increase in abundance of photorespiratory enzymes coincided with the marked decrease, and subsequently the absence, of glyoxylate cycle enzymes (ICL and/or MLS) at the culmination of this process (Titus and Becker, 1985; Nishimura et al., 1986; Sautter, 1986). It was suggested that the specific names for plant peroxisomal variants should be eliminated because protein composition between leaf peroxisomes and glyoxysomes may differ by only two proteins (i.e. ICL and MLS) out of the over 100 total proteins in the peroxisome (Pracharoenwattana and Smith, 2008). This prediction needed to be tested. In addition, mutants lacking core peroxisome biogenesis factors or major β-oxidation enzymes are nonviable, suggesting that peroxisomes are essential to embryogenesis and seed germination (Hu et al., 2012). However, how peroxisomes contribute to seed germination and seedling establishment is not completely understood. In the past, studies have been successfully undertaken to catalog the proteome of mitochondria and plastids isolated from different plant tissues, which uncovered unique facets of organelle metabolism in various tissues (van Wijk and Baginsky, 2011; Havelund et al., 2013; Lee et al., 2013). As such, it was necessary to establish a protein atlas for peroxisomes in dark-grown seedlings.Proteomic analyses of leaf peroxisomes and peroxisomes from suspension-cultured, leaf-derived cells followed by protein subcellular localization studies confirmed a total of over 30 new peroxisomal proteins, uncovering additional metabolic functions for leaf peroxisomes (Fukao et al., 2002; Reumann et al., 2007, 2009; Eubel et al., 2008; Babujee et al., 2010; Kataya and Reumann, 2010; Quan et al., 2010). For Arabidopsis (Arabidopsis thaliana), around 100 peroxisomal proteins were shown to be present in leaves or leaf-derived cells. Compared with the over 80 bona fide peroxisomal proteins detected by leaf peroxisomal proteomics (Reumann et al., 2007, 2009), the number of proteins identified from peroxisomal proteomic studies on etiolated seedlings was significantly smaller, with less than 10 known peroxisomal proteins from Arabidopsis (Fukao et al., 2003) and approximately 31 from soybean (Glycine max; Arai et al., 2008a, 2008b). Thus, a more in-depth analysis of the proteome of peroxisomes from these tissues was highly needed.Here, we performed proteomic analysis of peroxisomes isolated from etiolated Arabidopsis seedlings and detected peroxisomal proteins that encompass most of the known plant peroxisomal metabolic pathways. Fluorescence microscopy verified the peroxisomal localization of a number of proteins newly identified in this study or detected from previous proteomics that had not been verified by independent means. Reverse genetic analysis demonstrated the role for a Cys protease in germination, β-oxidation, and growth.  相似文献   

3.
The Arabidopsis ABC transporter Comatose (CTS; AtABCD1) is required for uptake into the peroxisome of a wide range of substrates for β-oxidation, but it is uncertain whether CTS itself is the transporter or if the transported substrates are free acids or CoA esters. To establish a system for its biochemical analysis, CTS was expressed in Saccharomyces cerevisiae. The plant protein was correctly targeted to yeast peroxisomes, was assembled into the membrane with its nucleotide binding domains in the cytosol, and exhibited basal ATPase activity that was sensitive to aluminum fluoride and abrogated by mutation of a conserved Walker A motif lysine residue. The yeast pxa1 pxa2Δ mutant lacks the homologous peroxisomal ABC transporter and is unable to grow on oleic acid. Consistent with its exhibiting a function in yeast akin to that in the plant, CTS rescued the oleate growth phenotype of the pxa1 pxa2Δ mutant, and restored β-oxidation of fatty acids with a range of chain lengths and varying degrees of desaturation. When expressed in yeast peroxisomal membranes, the basal ATPase activity of CTS could be stimulated by fatty acyl-CoAs but not by fatty acids. The implications of these findings for the function and substrate specificity of CTS are discussed.  相似文献   

4.
COMPARATIVE GENE IDENTIFICATION-58 (CGI-58) is a key regulator of lipid metabolism and signaling in mammals, but its underlying mechanisms are unclear. Disruption of CGI-58 in either mammals or plants results in a significant increase in triacylglycerol (TAG), suggesting that CGI-58 activity is evolutionarily conserved. However, plants lack proteins that are important for CGI-58 activity in mammals. Here, we demonstrate that CGI-58 functions by interacting with the PEROXISOMAL ABC-TRANSPORTER1 (PXA1), a protein that transports a variety of substrates into peroxisomes for their subsequent metabolism by β-oxidation, including fatty acids and lipophilic hormone precursors of the jasmonate and auxin biosynthetic pathways. We also show that mutant cgi-58 plants display changes in jasmonate biosynthesis, auxin signaling, and lipid metabolism consistent with reduced PXA1 activity in planta and that, based on the double mutant cgi-58 pxa1, PXA1 is epistatic to CGI-58 in all of these processes. However, CGI-58 was not required for the PXA1-dependent breakdown of TAG in germinated seeds. Collectively, the results reveal that CGI-58 positively regulates many aspects of PXA1 activity in plants and that these two proteins function to coregulate lipid metabolism and signaling, particularly in nonseed vegetative tissues. Similarities and differences of CGI-58 activity in plants versus animals are discussed.  相似文献   

5.
The Corynebacterium alkanolyticum xylEFGD gene cluster comprises the xylD gene that encodes an intracellular β-xylosidase next to the xylEFG operon encoding a substrate-binding protein and two membrane permease proteins of a xyloside ABC transporter. Cloning of the cluster revealed a recombinant β-xylosidase of moderately high activity (turnover for p-nitrophenyl-β-d-xylopyranoside of 111 ± 4 s−1), weak α-l-arabinofuranosidase activity (turnover for p-nitrophenyl-α-l-arabinofuranoside of 5 ± 1 s−1), and high tolerance to product inhibition (Ki for xylose of 67.6 ± 2.6 mM). Heterologous expression of the entire cluster under the control of the strong constitutive tac promoter in the Corynebacterium glutamicum xylose-fermenting strain X1 enabled the resultant strain X1EFGD to rapidly utilize not only xylooligosaccharides but also arabino-xylooligosaccharides. The ability to utilize arabino-xylooligosaccharides depended on cgR_2369, a gene encoding a multitask ATP-binding protein. Heterologous expression of the contiguous xylD gene in strain X1 led to strain X1D with 10-fold greater β-xylosidase activity than strain X1EFGD, albeit with a total loss of arabino-xylooligosaccharide utilization ability and only half the ability to utilize xylooligosaccharides. The findings suggest some inherent ability of C. glutamicum to take up xylooligosaccharides, an ability that is enhanced by in the presence of a functional xylEFG-encoded xyloside ABC transporter. The finding that xylEFG imparts nonnative ability to take up arabino-xylooligosaccharides should be useful in constructing industrial strains with efficient fermentation of arabinoxylan, a major component of lignocellulosic biomass hydrolysates.  相似文献   

6.
Effects of dietary β-sitosterol (S) and β-sitostanol (HS) on the metabolism and fate of labeled cholesterol intravenously injected were compared in rats fed diets high in cholesterol. Kinetic behavior of the decay curve for serum cholesterol in the HS supplemented (C + HS) group approximated to that in the cholesterol-free (control) group. The largest dilution of the label was observed in rats of the cholesterol (C) group and the least in the C + HS group, the C + S group being intermediate. The specific activity of hepatic cholesterol was in the decreasing order of the C + HS, C + S and C groups, while the situation was reversed when expressed in terms of net incorporation. Thus, cholesterol pool seemed to be much smaller in the C + HS group than in the C + S group.

In a long term feeding experiment with diets free of cholesterol, HS exhibited significantly greater hypocholesterolemic activity than S did.

These data, together with those reported previously, indicated that inhibitory effect on the absorption of both endogenous and exogenous cholesterol was much more greater in HS than in S.  相似文献   

7.
Inflammation is a fundamental defensive response to harmful stimuli. However, it can cause damage if it does not subside. To avoid such damage, organisms have developed a mechanism called resolution of inflammation. Here we applied an untargeted metabolomics approach to a sterile and self-resolving animal model of acute inflammation, namely zymosan-induced peritonitis in mice, to examine the effect of inflammation and resolution on the metabolomic profiles. Significant and time-dependent changes in metabolite profiles after zymosan administration were observed in both peritoneal wash fluid (PWF) and plasma. These metabolomic changes correlated well with inflammatory chemokine or cytokine production. In PWF, most of metabolites that could detected increased in zymosan-treated mice, which is suggestive of inflammation, oxidative stress and increased energy demands. In plasma, most metabolites in the central metabolic pathway (glycolysis and TCA cycle) were significantly downregulated after zymosan administration. The concentration of the ketone body 3-hydroxybutyric acid (3-HB) in plasma and PWF increased in zymosan-injected animals indicating upregulation of fatty acid β-oxidation. Increased 3-HB level was observed in the cells that infiltrated into the peritoneal cavity and these infiltrated cells might contribute, at least in part, to the production of 3-HB in the peritoneal cavity.  相似文献   

8.
Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) has been located at the heart of the control of metabolism and development in plants. The active SnRK1 form is usually a heterotrimeric complex. Subcellular localization and specific target of the SnRK1 kinase are regulated by specific beta subunits. In Arabidopsis, there are at least seven genes encoding beta subunits, of which the regulatory functions are not yet clear. Here, we tried to study the function of one beta subunit, AKINβ1. It showed that AKINβ1 expression was dramatically induced by ammonia nitrate but not potassium nitrate, and the investigation of AKINβ1 transgenic Arabidopsis and T-DNA insertion lines showed that AKINβ1 negatively regulated the activity of nitrate ruductase and was positively involved in sugar repression in early seedling development. Meanwhile AKINβ1 expression was reduced upon sugar treatment (including mannitol) and did not affect the activity of sucrose phos-phate synthase. The results indicate that AKINβ1 is involved in the regulation of nitrogen metabolism and sugar signaling.  相似文献   

9.
X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (adrenoleukodystrophy protein, ALDP). Biochemically, X-ALD is characterized by an accumulation of very long-chain fatty acids and partially impaired peroxisomal β-oxidation. In this study, we used primary human fibroblasts from X-ALD and Zellweger syndrome patients to investigate the peroxisomal β-oxidation defect. Our results show that the degradation of C26:0-CoA esters is as severely impaired as degradation of unesterified very long-chain fatty acids in X-ALD and is abolished in Zellweger syndrome. Interestingly, the β-oxidation rates for both C26:0-CoA and C22:0-CoA were similarly affected, although C22:0 does not accumulate in patient fibroblasts. Furthermore, we show that the β-oxidation defect in X-ALD is directly caused by ABCD1 dysfunction as blocking ABCD1 function with a specific antibody reduced β-oxidation to levels observed in X-ALD fibroblasts. By quantification of mRNA and protein levels of the peroxisomal ABC transporters and by blocking with specific antibodies, we found that residual β-oxidation activity toward C26:0-CoA in X-ALD fibroblasts is mediated by ABCD3, although the efficacy of ABCD3 appeared to be much lower than that of ABCD1. Finally, using isolated peroxisomes, we show that β-oxidation of C26:0-CoA is independent of additional CoA but requires a cytosolic factor of >10-kDa molecular mass that is resistant to N-ethylmaleimide and heat inactivation. In conclusion, our findings in human cells suggest that, in contrast to yeast cells, very long-chain acyl-CoA esters are transported into peroxisomes by ABCD1 independently of additional synthetase activity.  相似文献   

10.
11.
12.
13.
Carotenes and their oxygenated derivatives, the xanthophylls, are structural determinants in both photosystems (PS) I and II. They bind and stabilize photosynthetic complexes, increase the light-harvesting capacity of chlorophyll-binding proteins, and have a major role in chloroplast photoprotection. Localization of carotenoid species within each PS is highly conserved: Core complexes bind carotenes, whereas peripheral light-harvesting systems bind xanthophylls. The specific functional role of each xanthophyll species has been recently described by genetic dissection, however the in vivo role of carotenes has not been similarly defined. Here, we have analyzed the function of carotenes in photosynthesis and photoprotection, distinct from that of xanthophylls, by characterizing the suppressor of zeaxanthin-less (szl) mutant of Arabidopsis (Arabidopsis thaliana) which, due to the decreased activity of the lycopene-β-cyclase, shows a lower carotene content than wild-type plants. When grown at room temperature, mutant plants showed a lower content in PSI light-harvesting complex I complex than the wild type, and a reduced capacity for chlorophyll fluorescence quenching, the rapidly reversible component of nonphotochemical quenching. When exposed to high light at chilling temperature, szl1 plants showed stronger photoxidation than wild-type plants. Both PSI and PSII from szl1 were similarly depleted in carotenes and yet PSI activity was more sensitive to light stress than PSII as shown by the stronger photoinhibition of PSI and increased rate of singlet oxygen release from isolated PSI light-harvesting complex I complexes of szl1 compared with the wild type. We conclude that carotene depletion in the core complexes impairs photoprotection of both PS under high light at chilling temperature, with PSI being far more affected than PSII.  相似文献   

14.
Progression to type 1 diabetes is characterized by complex interactions of environmental, metabolic and immune system factors, involving both degenerative pathways leading to loss of pancreatic β-cells as well as protective pathways. The interplay between the degenerative and protective pathways may hold the key to disease outcomes, but no models have so far captured the two together. Here we propose a mathematical framework, an ordinary differential equation (ODE) model, which integrates metabolism and the immune system in early stages of disease process. We hypothesize that depending on the degree of regulation, autoimmunity may also play a protective role in the initial response to stressors. We assume that β-cell destruction follows two paths of loss: degenerative and autoimmune-induced loss. The two paths are mutually competing, leading to termination of the degenerative loss and further to elimination of the stress signal and the autoimmune response, and ultimately stopping the β-cell loss. The model describes well our observations from clinical and non-clinical studies and allows exploration of how the rate of β-cell loss depends on the amplitude and duration of autoimmune response.  相似文献   

15.
Topoisomerases are enzymes with crucial functions in DNA metabolism. They are ubiquitously present in prokaryotes and eukaryotes and modify the steady-state level of DNA supercoiling. Biochemical analyses indicate that Topoisomerase 3α (TOP3α) functions together with a RecQ DNA helicase and a third partner, RMI1/BLAP75, in the resolution step of homologous recombination in a process called Holliday Junction dissolution in eukaryotes. Apart from that, little is known about the role of TOP3α in higher eukaryotes, as knockout mutants show early lethality or strong developmental defects. Using a hypomorphic insertion mutant of Arabidopsis thaliana (top3α-2), which is viable but completely sterile, we were able to define three different functions of the protein in mitosis and meiosis. The top3α-2 line exhibits fragmented chromosomes during mitosis and sensitivity to camptothecin, suggesting an important role in chromosome segregation partly overlapping with that of type IB topoisomerases. Furthermore, AtTOP3α, together with AtRECQ4A and AtRMI1, is involved in the suppression of crossover recombination in somatic cells as well as DNA repair in both mammals and A. thaliana. Surprisingly, AtTOP3α is also essential for meiosis. The phenotype of chromosome fragmentation, bridges, and telophase I arrest can be suppressed by AtSPO11 and AtRAD51 mutations, indicating that the protein is required for the resolution of recombination intermediates. As Atrmi1 mutants have a similar meiotic phenotype to Attop3α mutants, both proteins seem to be involved in a mechanism safeguarding the entangling of homologous chromosomes during meiosis. The requirement of AtTOP3α and AtRMI1 in a late step of meiotic recombination strongly hints at the possibility that the dissolution of double Holliday Junctions via a hemicatenane intermediate is indeed an indispensable step of meiotic recombination.  相似文献   

16.
Winter K  Demmig B 《Plant physiology》1987,85(4):1000-1007
Fluorescence was measured in leaves of the CAM plant Kalanchoë daigremontiana using a pulse modulation technique at room temperature. During a 12-h light period at 500 micromole photons per square meter per second (400-700 nanometers) in air containing 350 microbar CO2, the component of fluorescence quenching related to the reduction state of Q, the primary electron transport acceptor of PSII, remained fairly constant and showed that only 20% of Q were in the reduced form. The reduction state was slightly increased at the onset and at the end of the light period. By contrast, the nonphotochemical component of fluorescence quenching which is a measure of the fraction of nonradiative deexcitation underwent marked diurnal changes. Nonradiative energy conversion was low during the phase of most active malic acid decarboxylation in the middle of the light period when uptake of atmospheric CO2 was negligible, and when internal CO2 partial pressures were higher than in air; this allowed for high rates of CO2 reduction in the chloroplasts. Nonradiative energy conversion was high during the early and the late light period when atmospheric CO2 was taken up and internal CO2 partial pressures were below air level. Manipulation of the internal CO2 partial pressure during the late light period by increasing or decreasing the external CO2 partial pressure to 1710 and 105 microbar, respectively, led to changes in the magnitude of energy dependent fluorescence quenching which were consistent with the relationship between nonradiative energy dissipation and internal CO2 partial pressure observed during the diurnal cycle. Again, the reduction state of Q was hardly affected by these treatments. Thus, changes in electron transport rate during the diurnal CAM cycle at a given photon flux density lead primarily to alterations in the rate of nonradiative energy dissipation, with the reduction state of Q being maintained at a relatively low and constant level. Conditions are described under which nonphotochemical dissipation of excitation energy reaches a maximum value and the reduction state of Q is increased.  相似文献   

17.
We examined age-related changes in the expression of transforming growth factor-β(1) (TGF-β(1)) and transforming growth factor-β(2) in mouse testes. The mice were assigned to three age groups: 35, 50, and 75 days old. Paraffin embedded testis sections were processed for the standard streptavidin biotin peroxidase complex immunohistochemistry method. TGF-β(1) expression increased in aging round spermatids over the time studied. There was no expression in 35-day-old Leydig cells, whereas strong expression of TGF-β(1) was observed in 50-day-old Leydig cells. Expression decreased in 75-day-old Leydig cells. TGF-β(2) expression was weak in 35- and 50-day-old mouse spermatids, but expression was greater in 75-day-old elongated spermatids. In Leydig cells, TGF-β(2) expression was strong in both 35- and 50-day-old mice, whereas the expression of TGF-β(2) was less in 75-day-old Leydig cells. Our results suggest that TGF-β(1) and TGF-β(2) may play significant roles in testicular functions and germ cell development in mice.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号