首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

This study explored whether the high-resolution representations created by visual working memory (VWM) are constructed in a coarse-to-fine or all-or-none manner. The coarse-to-fine hypothesis suggests that coarse information precedes detailed information in entering VWM and that its resolution increases along with the processing time of the memory array, whereas the all-or-none hypothesis claims that either both enter into VWM simultaneously, or neither does.

Methodology/Principal Findings

We tested the two hypotheses by asking participants to remember two or four complex objects. An ERP component, contralateral delay activity (CDA), was used as the neural marker. CDA is higher for four objects than for two objects when coarse information is primarily extracted; yet, this CDA difference vanishes when detailed information is encoded. Experiment 1 manipulated the comparison difficulty of the task under a 500-ms exposure time to determine a condition in which the detailed information was maintained. No CDA difference was found between two and four objects, even in an easy-comparison condition. Thus, Experiment 2 manipulated the memory array’s exposure time under the easy-comparison condition and found a significant CDA difference at 100 ms while replicating Experiment 1′s results at 500 ms. In Experiment 3, the 500-ms memory array was blurred to block the detailed information; this manipulation reestablished a significant CDA difference.

Conclusions/Significance

These findings suggest that the creation of high-resolution representations in VWM is a coarse-to-fine process.  相似文献   

2.
Li L  Zhang JX  Jiang T 《PloS one》2011,6(7):e22357

Background

Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention.

Methodology/Principal Findings

In this study, we recorded electroencephalography (EEG) from 14 normal young adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to the left visual field (LVF) memory condition. The difference in mean amplitude between the ipsilateral and contralateral event-related potential (ERP) at parietal-occipital electrodes in retention interval period was obtained with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase synchronization in the theta- (4–8 Hz), alpha- (8–12 Hz), beta- (12–32 Hz), and gamma- (32–40 Hz) frequency bands. The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands phase synchrony were most predominant in retention period for right visual field (RVF) WM than for LVF WM. Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative correlation with behavior accuracy.

Conclusions/Significance

We suggest that the differences in theta- and alpha- bands between LVF and RVF conditions in functional connectivity and topological properties during retention period may result in the decline of behavioral performance in RVF task.  相似文献   

3.
Zhou J  Yin J  Chen T  Ding X  Gao Z  Shen M 《PloS one》2011,6(9):e23873

Background

The limited capacity of visual working memory (VWM) requires us to select the task relevant information and filter out the irrelevant information efficiently. Previous studies showed that the individual differences in VWM capacity dramatically influenced the way we filtered out the distracters displayed in distinct spatial-locations: low-capacity individuals were poorer at filtering them out than the high-capacity ones. However, when the target and distracting information pertain to the same object (i.e., multiple-featured object), whether the VWM capacity modulates the feature-based filtering remains unknown.

Methodology/Principal Findings

We explored this issue mainly based on one of our recent studies, in which we asked the participants to remember three colors of colored-shapes or colored-landolt-Cs while using two types of task irrelevant information. We found that the irrelevant high-discriminable information could not be filtered out during the extraction of VWM but the irrelevant fine-grained information could be. We added 8 extra participants to the original 16 participants and then split the overall 24 participants into low- and high-VWM capacity groups. We found that regardless of the VWM capacity, the irrelevant high-discriminable information was selected into VWM, whereas the irrelevant fine-grained information was filtered out. The latter finding was further corroborated in a second experiment in which the participants were required to remember one colored-landolt-C and a more strict control was exerted over the VWM capacity.

Conclusions/Significance

We conclude that VWM capacity did not modulate the feature-based filtering in VWM.  相似文献   

4.
Hartshorne JK 《PloS one》2008,3(7):e2716

Background

Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated.

Methodology/Principal Findings

Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%.

Conclusions/Significance

This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.  相似文献   

5.
Gao Z  Li J  Yin J  Shen M 《PloS one》2010,5(12):e14273

Background

The processing mechanisms of visual working memory (VWM) have been extensively explored in the recent decade. However, how the perceptual information is extracted into VWM remains largely unclear. The current study investigated this issue by testing whether the perceptual information was extracted into VWM via an integrated-object manner so that all the irrelevant information would be extracted (object hypothesis), or via a feature-based manner so that only the target-relevant information would be extracted (feature hypothesis), or via an analogous processing manner as that in visual perception (analogy hypothesis).

Methodology/Principal Findings

High-discriminable information which is processed at the parallel stage of visual perception and fine-grained information which is processed via focal attention were selected as the representatives of perceptual information. The analogy hypothesis predicted that whereas high-discriminable information is extracted into VWM automatically, fine-grained information will be extracted only if it is task-relevant. By manipulating the information type of the irrelevant dimension in a change-detection task, we found that the performance was affected and the ERP component N270 was enhanced if a change between the probe and the memorized stimulus consisted of irrelevant high-discriminable information, but not if it consisted of irrelevant fine-grained information.

Conclusions/Significance

We conclude that dissociated extraction mechanisms exist in VWM for information resolved via dissociated processes in visual perception (at least for the information tested in the current study), supporting the analogy hypothesis.  相似文献   

6.

Background

The capacity of visual working memory (WM) is substantially limited and only a fraction of what we see is maintained as a temporary trace. The process of binding visual features has been proposed as an adaptive means of minimising information demands on WM. However the neural mechanisms underlying this process, and its modulation by task and load effects, are not well understood.

Objective

To investigate the neural correlates of feature binding and its modulation by WM load during the sequential phases of encoding, maintenance and retrieval.

Methods and Findings

18 young healthy participants performed a visuospatial WM task with independent factors of load and feature conjunction (object identity and position) in an event-related functional MRI study. During stimulus encoding, load-invariant conjunction-related activity was observed in left prefrontal cortex and left hippocampus. During maintenance, greater activity for task demands of feature conjunction versus single features, and for increased load was observed in left-sided regions of the superior occipital cortex, precuneus and superior frontal cortex. Where these effects were expressed in overlapping cortical regions, their combined effect was additive. During retrieval, however, an interaction of load and feature conjunction was observed. This modulation of feature conjunction activity under increased load was expressed through greater deactivation in medial structures identified as part of the default mode network.

Conclusions and Significance

The relationship between memory load and feature binding qualitatively differed through each phase of the WM task. Of particular interest was the interaction of these factors observed within regions of the default mode network during retrieval which we interpret as suggesting that at low loads, binding processes may be ‘automatic’ but at higher loads it becomes a resource-intensive process leading to disengagement of activity in this network. These findings provide new insights into how feature binding operates within the capacity-limited WM system.  相似文献   

7.

Background

How do people sustain a visual representation of the environment? Currently, many researchers argue that a single visual working memory system sustains non-spatial object information such as colors and shapes. However, previous studies tested visual working memory for two-dimensional objects only. In consequence, the nature of visual working memory for three-dimensional (3D) object representation remains unknown.

Methodology/Principal Findings

Here, I show that when sustaining information about 3D objects, visual working memory clearly divides into two separate, specialized memory systems, rather than one system, as was previously thought. One memory system gradually accumulates sensory information, forming an increasingly precise view-dependent representation of the scene over the course of several seconds. A second memory system sustains view-invariant representations of 3D objects. The view-dependent memory system has a storage capacity of 3–4 representations and the view-invariant memory system has a storage capacity of 1–2 representations. These systems can operate independently from one another and do not compete for working memory storage resources.

Conclusions/Significance

These results provide evidence that visual working memory sustains object information in two separate, specialized memory systems. One memory system sustains view-dependent representations of the scene, akin to the view-specific representations that guide place recognition during navigation in humans, rodents and insects. The second memory system sustains view-invariant representations of 3D objects, akin to the object-based representations that underlie object cognition.  相似文献   

8.

Objective

Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball.

Methods

Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude.

Results

Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy.

Conclusions

Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection.

Significance

Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population.  相似文献   

9.

Background

Visual neglect is an attentional deficit typically resulting from parietal cortex lesion and sometimes frontal lesion. Patients fail to attend to objects and events in the visual hemifield contralateral to their lesion during visual search.

Methodology/Principal Finding

The aim of this work was to examine the effects of parietal and frontal lesion in an existing computational model of visual attention and search and simulate visual search behaviour under lesion conditions. We find that unilateral parietal lesion in this model leads to symptoms of visual neglect in simulated search scan paths, including an inhibition of return (IOR) deficit, while frontal lesion leads to milder neglect and to more severe deficits in IOR and perseveration in the scan path. During simulations of search under unilateral parietal lesion, the model''s extrastriate ventral stream area exhibits lower activity for stimuli in the neglected hemifield compared to that for stimuli in the normally perceived hemifield. This could represent a computational correlate of differences observed in neuroimaging for unconscious versus conscious perception following parietal lesion.

Conclusions/Significance

Our results lead to the prediction, supported by effective connectivity evidence, that connections between the dorsal and ventral visual streams may be an important factor in the explanation of perceptual deficits in parietal lesion patients and of conscious perception in general.  相似文献   

10.

Background

Recent neuroimaging studies have revealed that putatively unimodal regions of visual cortex can be activated during auditory tasks in sighted as well as in blind subjects. However, the task determinants and functional significance of auditory occipital activations (AOAs) remains unclear.

Methodology/Principal Findings

We examined AOAs in an intermodal selective attention task to distinguish whether they were stimulus-bound or recruited by higher-level cognitive operations associated with auditory attention. Cortical surface mapping showed that auditory occipital activations were localized to retinotopic visual cortex subserving the far peripheral visual field. AOAs depended strictly on the sustained engagement of auditory attention and were enhanced in more difficult listening conditions. In contrast, unattended sounds produced no AOAs regardless of their intensity, spatial location, or frequency.

Conclusions/Significance

Auditory attention, but not passive exposure to sounds, routinely activated peripheral regions of visual cortex when subjects attended to sound sources outside the visual field. Functional connections between auditory cortex and visual cortex subserving the peripheral visual field appear to underlie the generation of AOAs, which may reflect the priming of visual regions to process soon-to-appear objects associated with unseen sound sources.  相似文献   

11.

Background

Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed.

Methodology/Principal Findings

We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d'') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30–60 Hz) and alpha (8–14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing.

Conclusions/Significance

We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.  相似文献   

12.

Background

Very often, encouraging or discouraging expressions are used in competitive contexts, such as sports practice, aiming at provoking an emotional reaction on the listener and, consequently, an effect on subsequent cognition and/or performance. However, the actual efficiency of these expressions has not been tested scientifically.

Methodology/Principal Findings

To fill this gap, we studied the effects of encouraging, discouraging, and neutral expressions on event-related brain electrical activity during a visual selective attention task in which targets were determined by location, shape, and color. Although the expressions preceded the attentional task, both encouraging and discouraging messages elicited a similar long-lasting brain emotional response present during the visuospatial task. In addition, encouraging expressions were able to alter the customary working pattern of the visual attention system for shape selection in the attended location, increasing the P1 and the SP modulations while simultaneously fading away the SN.

Conclusions/Significance

This was interpreted as an enhancement of the attentional processes for shape in the attended location after an encouraging expression. It can be stated, therefore, that encouraging expressions, as those used in sport practice, as well as in many other contexts and situations, do seem to be efficient in exerting emotional reactions and measurable effects on cognition.  相似文献   

13.

Background

Selective visual attention is the process by which the visual system enhances behaviorally relevant stimuli and filters out others. Visual attention is thought to operate through a cortical mechanism known as biased competition. Representations of stimuli within cortical visual areas compete such that they mutually suppress each others'' neural response. Competition increases with stimulus proximity and can be biased in favor of one stimulus (over another) as a function of stimulus significance, salience, or expectancy. Though there is considerable evidence of biased competition within the human visual system, the dynamics of the process remain unknown.

Methodology/Principal Findings

Here, we used scalp-recorded electroencephalography (EEG) to examine neural correlates of biased competition in the human visual system. In two experiments, subjects performed a task requiring them to either simultaneously identify two targets (Experiment 1) or discriminate one target while ignoring a decoy (Experiment 2). Competition was manipulated by altering the spatial separation between target(s) and/or decoy. Both experimental tasks should induce competition between stimuli. However, only the task of Experiment 2 should invoke a strong bias in favor of the target (over the decoy). The amplitude of two lateralized components of the event-related potential, the N2pc and Ptc, mirrored these predictions. N2pc amplitude increased with increasing stimulus separation in Experiments 1 and 2. However, Ptc amplitude varied only in Experiment 2, becoming more positive with decreased spatial separation.

Conclusions/Significance

These results suggest that N2pc and Ptc components may index distinct processes of biased competition—N2pc reflecting visual competitive interactions and Ptc reflecting a bias in processing necessary to individuate task-relevant stimuli.  相似文献   

14.

Background

Repetitive transcranial magnetic stimulation (rTMS) at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a “virtual lesion” in stimulated brain regions, with correspondingly diminished behavioral performance.

Methodology/Principal Findings

Here we investigated the effects of rTMS to visual cortex on subjects'' ability to perform visual psychophysical tasks. Contrary to expectations of a visual deficit, we find that rTMS often improves the discrimination of visual features. For coarse orientation tasks, discrimination of a static stimulus improved consistently following theta-burst stimulation of the occipital lobe. Using a reaction-time task, we found that these improvements occurred throughout the visual field and lasted beyond one hour post-rTMS. Low-frequency (1 Hz) stimulation yielded similar improvements. In contrast, we did not find consistent effects of rTMS on performance in a fine orientation discrimination task.

Conclusions/Significance

Overall our results suggest that rTMS generally improves or has no effect on visual acuity, with the nature of the effect depending on the type of stimulation and the task. We interpret our results in the context of an ideal-observer model of visual perception.  相似文献   

15.
Franklin DW  So U  Burdet E  Kawato M 《PloS one》2007,2(12):e1336

Background

When learning to perform a novel sensorimotor task, humans integrate multi-modal sensory feedback such as vision and proprioception in order to make the appropriate adjustments to successfully complete the task. Sensory feedback is used both during movement to control and correct the current movement, and to update the feed-forward motor command for subsequent movements. Previous work has shown that adaptation to stable dynamics is possible without visual feedback. However, it is not clear to what degree visual information during movement contributes to this learning or whether it is essential to the development of an internal model or impedance controller.

Methodology/Principle Findings

We examined the effects of the removal of visual feedback during movement on the learning of both stable and unstable dynamics in comparison with the case when both vision and proprioception are available. Subjects were able to learn to make smooth movements in both types of novel dynamics after learning with or without visual feedback. By examining the endpoint stiffness and force after learning it could be shown that subjects adapted to both types of dynamics in the same way whether they were provided with visual feedback of their trajectory or not. The main effects of visual feedback were to increase the success rate of movements, slightly straighten the path, and significantly reduce variability near the end of the movement.

Conclusions/Significance

These findings suggest that visual feedback of the hand during movement is not necessary for the adaptation to either stable or unstable novel dynamics. Instead vision appears to be used to fine-tune corrections of hand trajectory at the end of reaching movements.  相似文献   

16.

Background

In predictive spatial cueing studies, reaction times (RT) are shorter for targets appearing at cued locations (valid trials) than at other locations (invalid trials). An increase in the amplitude of early P1 and/or N1 event-related potential (ERP) components is also present for items appearing at cued locations, reflecting early attentional sensory gain control mechanisms. However, it is still unknown at which stage in the processing stream these early amplitude effects are translated into latency effects.

Methodology/Principal Findings

Here, we measured the latency of two ERP components, the N2pc and the sustained posterior contralateral negativity (SPCN), to evaluate whether visual selection (as indexed by the N2pc) and visual-short term memory processes (as indexed by the SPCN) are delayed in invalid trials compared to valid trials. The P1 was larger contralateral to the cued side, indicating that attention was deployed to the cued location prior to the target onset. Despite these early amplitude effects, the N2pc onset latency was unaffected by cue validity, indicating an express, quasi-instantaneous re-engagement of attention in invalid trials. In contrast, latency effects were observed for the SPCN, and these were correlated to the RT effect.

Conclusions/Significance

Results show that latency differences that could explain the RT cueing effects must occur after visual selection processes giving rise to the N2pc, but at or before transfer in visual short-term memory, as reflected by the SPCN, at least in discrimination tasks in which the target is presented concurrently with at least one distractor. Given that the SPCN was previously associated to conscious report, these results further show that entry into consciousness is delayed following invalid cues.  相似文献   

17.

Background

It is well known that lead exposure induces neurotoxic effects, which can result in a variety of neurocognitive dysfunction. Especially, occupational lead exposures in adults are associated with decreases in cognitive performance including working memory. Despite recent advances in human neuroimaging techniques, the neural correlates of lead-exposed cognitive impairment remain unclear. Therefore, this study was aimed to compare the neural activations in relation to working memory function between the lead-exposed subjects and healthy controls.

Methodology/Principal Findings

Thirty-one lead-exposed subjects and 34 healthy subjects performed an n-back memory task during MRI scan. We performed fMRI using the 1-back and 2-back memory tasks differing in cognitive demand. Functional MRI data were analyzed using within- and between-group analysis. We found that the lead-exposed subjects showed poorer working memory performance during high memory loading task than the healthy subjects. In addition, between-group analyses revealed that the lead-exposed subjects showed reduced activation in the dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, pre supplementary motor areas, and inferior parietal cortex.

Conclusions/Significance

Our findings suggest that functional abnormalities in the frontoparietal working memory network might contribute to impairments in maintenance and manipulation of working memory in the lead-exposed subjects.  相似文献   

18.

Background

Tracking moving objects in space is important for the maintenance of spatiotemporal continuity in everyday visual tasks. In the laboratory, this ability is tested using the Multiple Object Tracking (MOT) task, where participants track a subset of moving objects with attention over an extended period of time. The ability to track multiple objects with attention is severely limited. Recent research has shown that this ability may improve with extensive practice (e.g., from action videogame playing). However, whether tracking also improves in a short training session with repeated trajectories has rarely been investigated. In this study we examine the role of visual learning in multiple-object tracking and characterize how varieties of attention interact with visual learning.

Methodology/Principal Findings

Participants first conducted attentive tracking on trials with repeated motion trajectories for a short session. In a transfer phase we used the same motion trajectories but changed the role of tracking targets and nontargets. We found that compared with novel trials, tracking was enhanced only when the target subset was the same as that used during training. Learning did not transfer when the previously trained targets and nontargets switched roles or mixed up. However, learning was not specific to the trained temporal order as it transferred to trials where the motion was played backwards.

Conclusions/Significance

These findings suggest that a demanding task of tracking multiple objects can benefit from learning of repeated motion trajectories. Such learning potentially facilitates tracking in natural vision, although learning is largely confined to the trajectories of attended objects. Furthermore, we showed that learning in attentive tracking relies on relational coding of all target trajectories. Surprisingly, learning was not specific to the trained temporal context, probably because observers have learned motion paths of each trajectory independently of the exact temporal order.  相似文献   

19.

Background

Based on the relationship between working memory and error detection, we investigated the capacity of adult dyslexic readers'' working memory to change as a result of training, and the impact of training on the error detection mechanism.

Methodology

27 dyslexics and 34 controls, all university students, participated in the study. ERP methodology and behavioral measures were employed prior to, immediately after, and 6 months after training. The CogniFit Personal Coach Program, which consists of 24 sessions of direct training of working memory skills, was used.

Findings

Both groups of readers gained from the training program but the dyslexic readers gained significantly more. In the dyslexic group, digit span increased from 9.84±3.15 to 10.79±3.03. Working memory training significantly increased the number of words per minute read correctly by 14.73%. Adult brain activity changed as a result of training, evidenced by an increase in both working memory capacity and the amplitude of the Error-related Negativity (ERN) component (24.71%). When ERN amplitudes increased, the percentage of errors on the Sternberg tests decreased.

Conclusions

We suggest that by expanding the working memory capacity, larger units of information are retained in the system, enabling more effective error detection. The crucial functioning of the central-executive as a sub-component of the working memory is also discussed.  相似文献   

20.
JW Choi  D Ko  GT Lee  KY Jung  KH Kim 《PloS one》2012,7(7):e42312

Background

Restless legs syndrome (RLS) is a sensorimotor neurological disorder characterized by an irresistible urge to move the legs. It has been reported that RLS patients show cognitive deficits, presumably due to hyperactivity causing loss of attention, or malfunctions in the frontal region resulting from sleep deprivation. However, the mechanism underlying cognitive deficits in RLS patients is mostly unknown. As an effort to clarifying this, we investigated the differences in neural activity and phase synchrony between healthy controls and RLS patients during cognitive task performances.

Methodology/Principal Findings

Seventeen female drug-naive RLS patients were enrolled in the study, and an age-matched group of thirteen healthy female volunteers served as controls. Multichannel event-related potentials (ERPs) were recorded from RLS patients and normal controls while performing a visual oddball task. In addition to conventional analyses of ERP waveforms and spectra, interregional gamma-band phase synchrony (GBPS) was investigated to observe the differences in interregional neural synchronies between normal and RLS patient groups. Strong GBPS was observed primarily between anterior and posterior regions along the midline for both groups. Along with significant reduction and delay of P300 ERP and induced gamma-band activity (GBA), the GBPS was considerably decreased in RLS patients compared to normal subjects, especially at frontal region.

Conclusions

Overall, our results support that cognitive dysfunction in RLS patients is associated with reduced interregional neural synchrony as well as alterations in local neural activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号