首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inhibition of Mitosis in Human Triploid Cells   总被引:1,自引:0,他引:1  
TRIPLOIDY—the possession of three instead of two sets of chromosomes per cell-is a substantial cause of death in man. At least 1% of conceptions produce triploid zygotes, most of which are aborted by the end of the third month of pregnancy1. Only a few triploid infants are reported to have survived birth but the reason is not known. Death in utero also seems to be the fate of triploid rats, mice and rabbits2, but in amphibia3, Drosophila4 and many plants5,6, triploid individuals are not only viable but do not differ markedly from normal diploids.  相似文献   

3.
生物体内,由于性别的差异,两性细胞中的X染色体数目不同。为了平衡具有不同X染色体数目的细胞中X连锁基因的表达量,生物体在进化过程中引入了剂量补偿机制(dosagecompensation)。在线虫中,两性体的染色体浓缩和分离与一组蛋白复合体有关,这组...  相似文献   

4.
Sex chromosomes are advantageous to mammals, allowing them to adopt a genetic rather than environmental sex determination system. However, sex chromosome evolution also carries a burden, because it results in an imbalance in gene dosage between females (XX) and males (XY). This imbalance is resolved by X dosage compensation, which comprises both X chromosome inactivation and X chromosome upregulation. X dosage compensation has been well characterized in the soma, but not in the germ line. Germ cells face a special challenge, because genome wide reprogramming erases epigenetic marks responsible for maintaining the X dosage compensated state. Here we explain how evolution has influenced the gene content and germ line specialization of the mammalian sex chromosomes. We discuss new research uncovering unusual X dosage compensation states in germ cells, which we postulate influence sexual dimorphisms in germ line development and cause infertility in individuals with sex chromosome aneuploidy.  相似文献   

5.
6.
7.
It has been proposed that dosage compensation in Drosophila males occurs by binding of two core proteins, MSL-1 and MSL-2, to a set of 35–40 X chromosome “entry sites” that serve to nucleate mature complexes, termed compensasomes, which then spread to neighboring sequences to double expression of most X-linked genes. Here we show that any piece of the X chromosome with which compensasomes are associated in wild-type displays a normal pattern of compensasome binding when inserted into an autosome, independently of the presence of an entry site. Furthermore, in chromosomal rearrangements in which a piece of X chromosome is inserted into an autosome, or a piece of autosome is translocated to the X chromosome, we do not observe spreading of compensasomes to regions of autosomes that have been juxtaposed to X chromosomal material. Taken together these results suggest that spreading is not involved in dosage compensation and that nothing distinguishes an entry site from the other X chromosome sites occupied by compensasomes beyond their relative affinities for compensasomes. We propose a new model in which the distribution of compensasomes along the X chromosome is achieved according to the hierarchical affinities of individual binding sites.  相似文献   

8.
Chromosome Behavior in Fertile Triploid Aster Hybrids   总被引:1,自引:1,他引:0       下载免费PDF全文
Avers CJ 《Genetics》1954,39(1):117-126
  相似文献   

9.
10.
朱俊真 《遗传学报》1992,19(2):101-106
应用人X染色体α卫星DNA探针进行X染色体正常或异常个体的外周血淋巴细胞染色体和间期核的原位杂交,在R显带的中期分裂相上,绝大部分杂交颂粒位于X染色体着丝粒区(p11→q11);在间期核内则显现与X染色体数相一致的银颗粒簇,其中相当部分位于核边缘区。实验结果表明,用原位杂交来检测X染色体数目,比记数Barr小体的方法可靠。本文还就α卫星DNA探针在间期细胞遗传学方面广泛的应用做了讨论。  相似文献   

11.
12.
13.
14.
Aldehyde oxidase activity has been measured in flies with the structural gene for this enzyme translocated to the X chromosome. These measurements are presented as experimental evidence that, in Drosophila melanogaster, an autosomal gene relocated to the X chromosome is not dosage compensated.  相似文献   

15.
16.
17.
Based on a particular formation of the chromocenter and trivalents in triploid Drosophila females, as well as on asynapsis in pericentromeric regions (which is a result of trivalent competition), an explanation for the increased frequency of crossing over and nonrandom segregation of the X chromosomes and autosomes in the first meiotic division is suggested. It is proposed that a delay in pairing of the pericentromeric heterochromatic chromosome regions combined into a single chromocenter leads to the following: (1) formation of the heteroduplex structures (X structures) takes more time and, consequently, their number and the frequency of crossing over in the paired chromosome regions increases; (2) in nonhomologous chromosomes, the chromocentral connections, which normally degrade in prometaphase, are retained to fulfill a function of coorientation during the first meiotic division.  相似文献   

18.
人X染色体含有一个黑色素瘤抗原基因亚家族   总被引:5,自引:0,他引:5  
肿瘤相关基因的研究是肿瘤基因形成学说的核心内容。肿瘤相关基因家族的研究则是其中的重点和难点,从4-6月孕龄人胎肝cDNA文库中克隆到一个黑色素瘤抗原基因亚家族,称为MAGE-D亚家族,其成员包括3个直系同源体(人MAGE-D1、大鼠SNERG-1和小鼠DLXIN-1)和2个旁系同源体(人MAGE-D和人KIAA1114)。该家族的3个人类成员均定位于染色体Xp11.21-p11.23,同时具有独特的基因组结构。分子进化树分析表明,该家族与已知MAGE-A、-B和-C3个亚家族之间具有明显的进化上分歧。该亚家族的发现为研究肿瘤相关基因新功能提供了重要线索。  相似文献   

19.
J. Loidl 《Genetics》1995,139(4):1511-1520
Meiotic chromosome pairing in isogenic triploid and tetraploid strains of yeast and the consequences of polyploidy on meiotic chromosome segregation are studied. Synaptonemal complex formation at pachytene was found to be different in the triploid and in the tetraploid. In the triploid, triple-synapsis, that is, the connection of three homologues at a given site, is common. It can even extend all the way along the chromosomes. In the tetraploid, homologous chromosomes mostly come in pairs of synapsed bivalents. Multiple synapsis, that is, synapsis of more than two homologues in one and the same region, was virtually absent in the tetraploid. About five quadrivalents per cell occurred due to the switching of pairing partners. From the frequency of pairing partner switches it can be deduced that in most chromosomes synapsis is initiated primarily at one end, occasionally at both ends and rarely at an additional intercalary position. In contrast to a considerably reduced spore viability (~40%) in the triploid, spore viability is only mildly affected in the tetraploid. The good spore viability is presumably due to the low frequency of quadrivalents and to the highly regular 2:2 segregation of the few quadrivalents that do occur. Occasionally, however, quadrivalents appear to be subject to 3:1 nondisjunction that leads to spore death in the second generation.  相似文献   

20.
R. K. Herman  C. K. Kari 《Genetics》1989,121(4):723-737
Twelve new X chromosome duplications were identified and characterized. Eight are translocated to autosomal sites near four different telomeres, and four are free. Ten include unc-1(+), which in wild type is near the left end of the X chromosome, and two of these, mnDp72(X;IV) and mnDp73(X;f), extend rightward past dpy-3. Both mnDp72 and mnDp73 recombined with the one X chromosome in males in the unc-1-dpy-3 interval at a frequency 15- to 30-fold higher than was observed for X-X recombination in hermaphrodites in the same interval. Recombinant duplications and recombinant X chromosomes were both recovered. Recombination with the X chromosome in the unc-1-dpy-3 interval was also detected for five other unc-1(+) duplications, even though their right breakpoints lie within the interval. In hermaphrodites, mnDp72 and mnDp73 promoted meiotic X nondisjunction and recombined with an X chromosome in the unc-1-dpy-3 interval at frequencies comparable to that found for X-X recombination; mnDp72(X;IV) also promoted trisomy for chromosome IV. A mutation in him-8 IV was identified that severely reduced recombination between the two X chromosomes in hermaphrodites and between mnDp73 and the X chromosome in males. Recombination between the X chromosome and duplications of either the right end of the X or a region near but not including the left end was rare. We suggest that the X chromosome has one or more elements near its left end that promote meiotic chromosome pairing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号