首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
BST-2/tetherin is an interferon-inducible protein that restricts the release of enveloped viruses from the surface of infected cells by physically linking viral and cellular membranes. It is present at both the cell surface and in a perinuclear region, and viral anti-tetherin factors including HIV-1 Vpu and HIV-2 Env have been shown to decrease the cell surface population. To map the domains of human tetherin necessary for both virus restriction and sensitivity to viral anti-tetherin factors, we constructed a series of tetherin derivatives and assayed their activity. We found that the cytoplasmic tail (CT) and transmembrane (TM) domains of tetherin alone produced its characteristic cellular distribution, while the ectodomain of the protein, which includes a glycosylphosphatidylinositol (GPI) anchor, was sufficient to restrict virus release when presented by the CT/TM regions of a different type II membrane protein. To counteract tetherin restriction and remove it from the cell surface, HIV-1 Vpu required the specific sequence present in the TM domain of human tetherin. In contrast, the HIV-2 Env required only the ectodomain of the protein and was sensitive to a point mutation in this region. Strikingly, the anti-tetherin factor, Ebola virus GP, was able to overcome restriction conferred by both tetherin and a series of functional tetherin derivatives, including a wholly artificial tetherin molecule. Moreover, GP overcame restriction without significantly removing tetherin from the cell surface. These findings suggest that Ebola virus GP uses a novel mechanism to circumvent tetherin restriction.Pathogenic viruses often have evolved mechanisms to neutralize host defenses that act at the cellular level to interfere with the virus life cycle. Such cellular restriction factors have been most extensively characterized for HIV-1 (38) and include the interferon-inducible membrane protein BST-2/HM1.24/CD317/tetherin (28, 40). If unchecked, tetherin blocks the release of newly formed HIV-1 particles from cells by physically tethering them at the cell surface (7, 28, 32, 40). In addition, tetherin has been shown to act against a broad range of enveloped viral particles, including retroviruses, filoviruses, arenaviruses, and herpesviruses (17, 18, 23, 35). In turn, certain viruses that are targeted by tetherin appear to have evolved counteracting activities, and anti-tetherin factors so far identified include HIV-1 Vpu; HIV-2 Env; simian immunodeficiency virus (SIV) Nef, Vpu, and Env proteins; Ebola virus GP; and Kaposi''s sarcoma-associated herpesvirus (KSHV) K5 (11, 16, 18, 20, 23, 28, 36, 40, 44, 45).Tetherin is a homodimeric type II integral membrane protein containing an N-terminal cytoplasmic tail (CT), a single-pass transmembrane domain (TM), an ectodomain-containing predicted coiled-coil regions, two glycoslyation sites, three conserved cysteines, and a C-terminal glycosylphosphatidylinositol (GPI) anchor (2, 19, 31). This unusual topology, with two independent membrane anchors, has led to the suggestion that the retention of virions at the cell surface arises from tetherin''s ability to be inserted simultaneously in both host and viral membranes (28, 32, 41) or, alternatively, that dimers or higher-order complexes of tetherin conferred by the ectodomain mediate this effect (39). Interestingly, an artificial tetherin containing the same structural features as the native protein but constructed from unrelated sequences was able to restrict both HIV-1 and Ebola virus particles (32). This suggests that the viral lipid envelope is the target of tetherin and provides an explanation for tetherin''s broad activity against diverse enveloped viruses.A fraction of tetherin is present at the plasma membrane of cells (9, 14), and it has been proposed that viral anti-tetherin factors function by removing this cell surface fraction (40). This now has been shown to occur in the presence of HIV-1 Vpu (5, 7, 15, 26, 34, 40, 44), HIV-2 Env (5, 20), SIV Env (11), SIV Nef (15), and KSHV K5 (3, 23). In addition, certain anti-tetherin factors also may promote the degradation of tetherin, as has been observed for both HIV-1 Vpu (3, 5, 7, 10, 22, 26, 27) and KSHV K5 (3, 23), although Vpu also appears able to block tetherin restriction in the absence of degradation (8), and no effects on tetherin steady-state levels have been observed in the presence of either the HIV-2 or SIVtan Env (11, 20). Simply keeping tetherin away from the cell surface, or targeting it for degradation, may not be the only mechanism used by anti-tetherin factors, since it also has been reported that Vpu does not affect the levels of surface tetherin or its total cellular levels in certain T-cell lines (27).The interactions between tetherin and viral anti-tetherin factors show evidence of species specificity, suggesting ongoing evolution between viruses and their hosts. HIV-1 Vpu is active against human and chimpanzee tetherin but not other primate tetherins (10, 25, 34, 36, 44, 45), while SIV Nef proteins are active against primate but not human tetherins (16, 36, 44, 45). This suggests that, unlike tetherin restriction, the action of the anti-tetherin factors may involve specific sequence interactions. Indeed, the TM domain has been recognized as a target for HIV-1 Vpu (10, 15, 16, 25, 34), while a single point mutation introduced into the extracellular domain of human tetherin can block its antagonism by the SIVtan Env (11).In the present study, we investigated the roles of the different domains of tetherin in both promoting virus restriction and conferring susceptibility to the anti-tetherin factors encoded by HIV-1, HIV-2, and Ebola virus. We confirmed that tetherin restriction can be conferred by proteins that retain the two distinct membrane anchors, while signals for the cellular localization of the protein reside in the CT/TM domains of the protein. We found that the Vpu protein targets the TM domain of tetherin, while the HIV-2 Env targets the ectodomain of the protein. In contrast, the Ebola virus GP appears to use a non-sequence-specific mechanism to counteract tetherin restriction, since even an artificial tetherin could be successfully overcome by GP expression. Interestingly, Ebola virus GP counteracted tetherin restriction without removing the protein from the cell surface, suggesting that it is possible to overcome this restriction by mechanisms other than blocking tetherin''s cell surface expression.  相似文献   

2.
Bone marrow stromal cell antigen 2 (BST-2, also known as tetherin) restricts the production of a number of enveloped viruses by blocking virus release from the cell surface. This antiviral activity is counteracted by such viral factors as Vpu of human immunodeficiency virus type 1 (HIV-1). Here, we report that Vpu antagonizes human BST-2 but not BST-2 derived from African green monkeys. The determinants of susceptibility to Vpu map to the transmembrane domain of BST-2. In accordance with this, expression of human BST-2 containing a modified transmembrane domain effectively blocks the replication of wild-type Vpu-expressing HIV-1 in CD4+ T cells. Furthermore, these BST-2 variants, as opposed to wild-type human BST-2, are refractory to Vpu-mediated down-regulation as a result of an attenuated interaction with Vpu. In view of the work by others pointing to a key role of the transmembrane domain of Vpu in promoting virus release, our data suggest that a direct interaction through the transmembrane domain of each of these two proteins is a prerequisite for Vpu to down-modulate BST-2.Human immunodeficiency virus type 1 (HIV-1) encodes four accessory proteins, Vif, Vpr, Vpu, and Nef. Although they are dispensable for HIV-1 replication in certain transformed cell lines, these accessory proteins play important roles in HIV-1 pathogenesis by modulating host immunity and overcoming antagonism by cellular factors (10). For example, Vif counteracts APOBEC3G by recruiting the cullin 5-elongin B/C ubiquitin ligase complex and sending polyubiquitinated APOBEC3G to proteasomes for degradation (29). In the absence of Vif, newly synthesized APOBEC3G is incorporated into virus particles and hampers the production of infectious proviral DNA in the new round of infection (4, 10, 23). In addition to its role in down-modulating the cell surface expression of CD4 in infected T cells (11), Vpu stimulates HIV-1 production in cells such as HeLa cells (26). The mechanism behind this latter activity of Vpu was unknown until it was recently discovered that bone marrow stromal cell antigen 2 (BST-2, also known as tetherin, CD317, or HM1.24) blocks the release of HIV-1 and that this inhibitory effect is antagonized by viral Vpu (16, 25).BST-2 harbors an N-terminal transmembrane domain and a C-terminal glycosyl-phosphatidylinositol anchor that together create an unusual topology with both termini of BST-2 inserted into the plasma membrane (8, 18). This unique topology of BST-2 may underlie the mechanism for the retention of progeny virus particles at the cell surface (16). An indirect mechanism behind this tethering effect has not been ruled out, especially in view of the difficulty of detecting BST-2 protein in purified HIV-1 particles (14). In addition to HIV-1, a number of enveloped viruses are subject to inhibition by BST-2, including simian immunodeficiency virus, feline immunodeficiency virus, equine infectious anemia virus, Mason-Pfizer monkey virus, and Lassa virus, as well as Ebola and Marburg viruses (5, 6, 16, 19, 25). This suggests that BST-2 has a broad antiviral effect spectrum.The bst-2 gene has in its promoter the IRF-1/2 and ISGF3 response elements and thus belongs to the interferon-stimulated gene family (17). In line with its ability to impair the release of enveloped viruses, BST-2 has been demonstrated to be the effector in human embryonic kidney (HEK293T) cells that leads to the interferon-induced block of Vpu deletion-containing HIV-1 production (15). However, the African green monkey kidney cell line COS-7 responds to interferon treatment with a different outcome in that the production of both Vpu deletion-containing and Vpu-expressing HIV-1 is inhibited (15). This indicates that interferon induces a block to HIV-1 in COS-7 cells that cannot be overcome by Vpu. A conceivable candidate that creates this block is BST-2 in COS-7 cells (hereafter named agmBST-2). In this study, we provide evidence that depletion of endogenous BST-2 in COS-7 cells greatly alleviates interferon-induced inhibition of HIV-1 production. The refractoriness of agmBST-2 to Vpu results from a weak association of these two proteins and a resistance of agmBST-2 to Vpu-mediated down-regulation.  相似文献   

3.
Tetherin (CD317/BST-2), an interferon-induced membrane protein, restricts the release of nascent retroviral particles from infected cell surfaces. While human immunodeficiency virus type 1 (HIV-1) encodes the accessory gene vpu to overcome the action of tetherin, the lineage of primate lentiviruses that gave rise to HIV-2 does not. It has been previously reported that the HIV-2 envelope glycoprotein has a Vpu-like function in promoting virus release. Here we demonstrate that the HIV-2 Rod envelope glycoprotein (HIV-2 Rod Env) is a tetherin antagonist. Expression of HIV-2 Rod Env, but not that of HIV-1 or the closely related simian immunodeficiency virus (SIV) SIVmac1A11, counteracts tetherin-mediated restriction of Vpu-defective HIV-1 in a cell-type-specific manner. This correlates with the ability of the HIV-2 Rod Env to mediate cell surface downregulation of tetherin. Antagonism requires an endocytic motif conserved across HIV/SIV lineages in the gp41 cytoplasmic tail, but specificity for tetherin is governed by extracellular determinants in the mature Env protein. Coimmunoprecipitation studies suggest an interaction between HIV-2 Rod Env and tetherin, but unlike studies with Vpu, we found no evidence of tetherin degradation. In the presence of HIV-2 Rod Env, tetherin localization is restricted to the trans-Golgi network, suggesting Env-mediated effects on tetherin trafficking sequester it from virus assembly sites on the plasma membrane. Finally, we recapitulated these observations in HIV-2-infected CD4+ T-cell lines, demonstrating that tetherin antagonism and sequestration occur at physiological levels of Env expression during virus replication.Various stages of the replication cycle of primate lentiviruses can be targeted by host antiviral restriction factors (reviewed in reference 49). In addition to the well-characterized antiviral effects of members of the APOBEC3 family of cytidine deaminases, particularly APOBEC3G and -3F, and species-specific variants of tripartite motif family 5α, the release of nascent retroviral particles has recently been shown to be a target for a novel restriction factor, tetherin (CD317/bone marrow stromal cell antigen 2 [BST-2]) (31, 46). Tetherin is an interferon-inducible gene that was originally shown to impart a restriction on the release of mutants of human immunodeficiency virus type 1 (HIV-1) that lack a vpu gene (31, 46). In tetherin-positive cells, mature Vpu-defective HIV-1 particles are retained on the cell surface, linked to the plasma membrane (PM) and each other via protease-sensitive tethers, and can be subsequently endocytosed and accumulate in late endosomes (30, 31). Tetherin is not HIV specific and restricts the release of virus-like particles derived from all retroviruses tested (18), as well as those of filoviruses and arenaviruses (18, 19, 39).Tetherin is a small (181-amino-acid) type II membrane protein with an unusual topology that exists mainly as a disulfide-linked dimer (34). It consists of an N-terminal cytoplasmic tail, a transmembrane anchor, an extracellular domain that includes three cysteine residues important for dimerization, a putative coiled-coil, and finally a glycophosphatidyinosityl-linked lipid anchor (22) that is essential for restriction (31). Tetherin localizes to retroviral assembly sites on the PM (18, 31), and this unusual structure is highly suggestive that tetherin restricts virion release by incorporation into the viral membrane and cross-linking virions to cells. Such a mechanism would make tetherin a powerful antiviral effector that can target an obligate part of most, if not all, enveloped virus assembly strategies. Moreover, since tetherin restriction has no specific requirement for virus protein sequences, to avoid its action, mammalian viruses have evolved to encode several distinct countermeasures that specifically inhibit tetherin''s antiviral function.The Vpu accessory protein antagonizes tetherin-mediated restriction of HIV-1 (31, 46). In the presence of Vpu, tetherin is downregulated from the cell surface (2, 46) and is targeted for degradation (10, 13, 14), although whether these processes are required for antagonism of tetherin function is unclear (27). HIV-1 Vpu displays a distinct species specificity in that it is unable to target tetherin orthologues from rhesus macaques or African green monkeys (14, 25). This differential sensitivity maps to the tetherin transmembrane domain, particularly residues that are predicted to have been under high positive selection pressure during primate evolution (14, 16, 25). This suggests that tetherin evolution may have been driven in part by viral countermeasures like Vpu. Vpu, however, is only encoded by HIV-1 and its direct simian immunodeficiency virus (SIV) lineage precursors. The majority of SIVs, including the SIVsm, the progenitor of both HIV-2 and SIVmac, do not encode a Vpu protein (21). In some of these SIVs, tetherin antagonism was recently shown to map to the nef gene (16, 51). SIV Nef proteins, however, are generally ineffective against human tetherin because they target a (G/D)DIWK motif that was deleted from the human tetherin cytoplasmic tail sometime after the divergence of humans and chimpanzees (51). This raises the question of how HIV-2 is able to overcome human tetherin, as recent data show chronically HIV-2-infected CEM T cells have reduced tetherin levels on their surface (10).Interestingly, it has long been known that the envelope glycoprotein of certain HIV-2 isolates can stimulate the release of Vpu-defective HIV-1 virions from cells we now know to be tetherin positive (5, 6, 43). HIV and SIV Envs form trimeric spikes of dimers of the surface subunit (SU-gp105 in HIV-2/SIVmac and gp120 in HIV-1) that bind CD4 and the chemokine coreceptor and gp41 (the transmembrane [TM] subunit that facilitates fusion with and entry into the target cell). Envelope precursors (gp140 or gp160) are synthesized in the endoplasmic reticulum, where they become glycosylated and are exported to the surface via the secretory pathway (8). During transit through the Golgi apparatus and possibly in endosomal compartments, the immature precursors are cleaved by furin-like proteases to form mature spikes (15, 29). Multiple endocytosis motifs in the gp41 cytoplasmic tail lead to only minor quantities of Env being exposed at the cell surface at any given time (7, 40). Recent data demonstrated that the conserved GYxxθ motif, a binding site for the clathrin adaptor protein AP-2 (3), in the membrane-proximal region of HIV-2 gp41 is required to promote Vpu-defective HIV-1 release from HeLa cells (1, 32). Based on experiments with HIV-1/HIV-2 chimeric envelopes, an additional requirement in the extracellular component was suggested (1). In this study we set out to examine the Vpu-like activity of HIV-2 envelope in light of the discovery of tetherin. We demonstrate that the HIV-2 Env is a tetherin antagonist, and we provide mechanistic insight into the basis of this antagonism.  相似文献   

4.
Direct cell-to-cell spread of human immunodeficiency virus type 1 (HIV-1) between T cells at the virological synapse (VS) is an efficient mechanism of viral dissemination. Tetherin (BST-2/CD317) is an interferon-induced, antiretroviral restriction factor that inhibits nascent cell-free particle release. The HIV-1 Vpu protein antagonizes tetherin activity; however, whether tetherin also restricts cell-cell spread is unclear. We performed quantitative cell-to-cell transfer analysis of wild-type (WT) or Vpu-defective HIV-1 in Jurkat and primary CD4+ T cells, both of which express endogenous levels of tetherin. We found that Vpu-defective HIV-1 appeared to disseminate more efficiently by cell-to-cell contact between Jurkat cells under conditions where tetherin restricted cell-free virion release. In T cells infected with Vpu-defective HIV-1, tetherin was enriched at the VS, and VS formation was increased compared to the WT, correlating with an accumulation of virus envelope proteins on the cell surface. Increasing tetherin expression with type I interferon had only minor effects on cell-to-cell transmission. Furthermore, small interfering RNA (siRNA)-mediated depletion of tetherin decreased VS formation and cell-to-cell transmission of both Vpu-defective and WT HIV-1. Taken together, these data demonstrate that tetherin does not restrict VS-mediated T cell-to-T cell transfer of Vpu-defective HIV-1 and suggest that under some circumstances tetherin might promote cell-to-cell transfer, either by mediating the accumulation of virions on the cell surface or by regulating integrity of the VS. If so, inhibition of tetherin activity by Vpu may balance requirements for efficient cell-free virion production and cell-to-cell transfer of HIV-1 in the face of antiviral immune responses.Human immunodeficiency virus type 1 can disseminate between and within hosts by cell-free infection or by direct cell-cell spread. Cell-cell spread of HIV-1 between CD4+ T cells is an efficient means of viral dissemination (65) and has been estimated to be several orders of magnitude more rapid than cell-free virus infection (6, 8, 41, 64, 74). Cell-cell transmission of HIV-1 takes place at the virological synapse (VS), a multimolecular structure that forms at the interface between an HIV-1-infected T cell and an uninfected target T cell during intercellular contact (27). Related structures that facilitate cell-cell spread of HIV-1 between dendritic cells and T cells (42) and between macrophages and T cells (16, 17) and for cell-cell spread of the related retrovirus human T-cell leukemia virus type 1 (HTLV-1) (24) have also been described. Moreover, more long-range cell-cell transfer can occur via cellular projections, including filopodia (71) and membrane nanotubes (75). The VS is initiated by binding of the HIV-1 envelope glycoprotein (Env), which is expressed on the surfaces of infected T cells, to HIV-1 entry receptors (CD4 and either CXCR4 or CCR5) present on the target cell membrane (6, 22, 27, 41, 61, 73). Interactions between LFA-1 and ICAM-1 and ICAM-3 further stabilize the conjugate interface and, together with Env receptor binding, help trigger the recruitment of viral proteins, CD4/coreceptor, and integrins to the contact site (27, 28, 61). The enrichment of viral and cellular proteins at the VS is an active process, dependent on cytoskeletal remodeling, and in the infected T cell both the actin and tubulin network regulate polarization of HIV-1 proteins at the cell-cell interface, thus directing HIV-1 assembly and egress toward the engaged target cell (27, 29). Virus is transferred by budding into the synaptic cleft, and virions subsequently attach to the target cell membrane to mediate entry, either by fusion at the plasma membrane or possibly following endocytic uptake (2, 22). In this way, the VS promotes more rapid infection kinetics and may enhance HIV-1 pathogenesis in vivo.Cells have evolved a number of barriers to resist invading microorganisms. One mechanism that appears to be particularly important in counteracting HIV-1 infection is a group of interferon-inducible, innate restriction factors that includes TRIM5α, APOBEC3G, and tetherin (38, 49, 69, 79). Tetherin (BST-2/CD317) is a host protein expressed by many cell types, including CD4+ T cells, that acts at a late stage of the HIV-1 life cycle to trap (or “tether”) mature virions at the plasma membranes of virus-producing cells, thereby inhibiting cell-free virus release (49, 56, 81). This antiviral activity of tetherin is not restricted to HIV-1, and tetherin can also inhibit the release of other enveloped viruses from infected cells (31, 40, 54, 62). What the cellular function of tetherin is besides its antiviral activity is unclear, but because expression is upregulated following alpha/beta interferon (IFN-α/β) treatment (1) and tetherin can restrict a range of enveloped viruses, tetherin has been postulated to be a broad-acting mediator of the innate immune defense against enveloped viruses.To circumvent restriction of particle release, HIV-1 encodes the 16-kDa accessory protein Vpu, which antagonizes tetherin and restores normal virus budding (47, 78). The molecular mechanisms by which Vpu does this are not entirely clear, but evidence suggests that Vpu may exert its antagonistic function by downregulating tetherin from the cell surface, trapping it in the trans-Golgi network (10) and targeting it for degradation by the proteasome (12, 39, 81) or lysosome (9, 25, 44); however, degradation of tetherin may be dispensable for Vpu activity (13), and in HIV-1-infected T cells, surface downregulation of tetherin has been reported to be minor (45), suggesting that global removal of tetherin from the plasma membrane may not be necessary to antagonize its function.Tetherin-mediated restriction of HIV-1 and antagonism by Vpu have been the focus of much research, and inhibition of cell-free virus infection has been well documented (33, 47-49, 77, 81, 82). In contrast, less studied is the impact of tetherin on direct cell-cell dissemination. For example, it is not clear if tetherin-mediated restriction inhibits T cell-T cell spread as efficiently as cell-free release or whether tetherin affects VS formation. To address these questions, we analyzed Vpu+ and Vpu viruses for their ability to spread directly between Jurkat T cells and primary CD4+ T cells in the presence or absence of endogenous tetherin. Our data suggest that tetherin does not restrict HIV-1 in the context of cell-to-cell transmission of virus between T cells expressing endogenous tetherin. Interestingly, we also that observed that Vpu-defective virus may disseminate more efficiently by cell-cell spread at the VS. We postulate that cell-cell spread may favor viral pathogenesis by allowing HIV-1 to disseminate in the presence of tetherin during an interferon-producing innate response.  相似文献   

5.
The Env protein from gibbon ape leukemia virus (GaLV) has been shown to be incompatible with human immunodeficiency virus type 1 (HIV-1) in the production of infectious pseudotyped particles. This incompatibility has been mapped to the C-terminal cytoplasmic tail of GaLV Env. Surprisingly, we found that the HIV-1 accessory protein Vpu modulates this incompatibility. The infectivity of HIV-1 pseudotyped with murine leukemia virus (MLV) Env was not affected by Vpu. However, the infectivity of HIV-1 pseudotyped with an MLV Env with the cytoplasmic tail from GaLV Env (MLV/GaLV Env) was restricted 50- to 100-fold by Vpu. A Vpu mutant containing a scrambled membrane-spanning domain, VpuRD, was still able to restrict MLV/GaLV Env, but mutation of the serine residues at positions 52 and 56 completely alleviated the restriction. Loss of infectivity appeared to be caused by reduced MLV/GaLV Env incorporation into viral particles. The mechanism of this downmodulation appears to be distinct from Vpu-mediated CD4 downmodulation because Vpu-expressing cells that failed to produce infectious HIV-1 particles nonetheless continued to display robust surface MLV/GaLV Env expression. In addition, if MLV and HIV-1 were simultaneously introduced into the same cells, only the HIV-1 particle infectivity was restricted by Vpu. Collectively, these data suggest that Vpu modulates the cellular distribution of MLV/GaLV Env, preventing its recruitment to HIV-1 budding sites.The gammaretrovirus gibbon ape leukemia virus (GaLV) has been widely used for gene therapy because of its wide host cell tropism and nonpathogenicity (1, 6, 10, 12, 13, 20). The host cell receptor for GaLV Env has been cloned and identified as a sodium-dependent phosphate transporter protein (25, 26). Like other retroviruses, GaLV encodes a single transmembrane surface glycoprotein (GaLV Env), which is cleaved into surface (SU) and transmembrane (TM) subunits (Fig. (Fig.1).1). The TM domain of GaLV Env contains a short 30-amino-acid C-terminal cytoplasmic tail. Although GaLV Env functions well when coupled (pseudotyped) with murine leukemia virus (MLV)-based retroviral vectors, it has been shown to be completely incompatible with HIV-1 (4, 35). When GaLV Env is expressed with HIV-1, essentially no infectious HIV-1 particles are produced (4, 35). The mechanism for this infectivity downmodulation is unknown, but the component of GaLV Env responsible for the restriction has been mapped to the cytoplasmic tail. Replacing the cytoplasmic tail of GaLV Env with the equivalent sequence from MLV Env ameliorates the restriction. Likewise, replacing the cytoplasmic tail of MLV Env with that from GaLV Env confers the restriction (4).Open in a separate windowFIG. 1.Schematic of MLV Env protein. Sequences are the C-terminal cytoplasmic tails of MLV Env, GaLV Env, and human CD4. GaLV sequences in boldface are residues that have been shown to modulate the HIV-1 incompatibility (4). Underlined sequences in CD4 are amino acids required for Vpu-mediated downmodulation (2, 15). Arrows denote the location of MLV/GaLV tail substitution. SU, surface domain; TM, transmembrane domain.Vpu is an 81-amino-acid HIV-1 accessory protein produced from the same mRNA as the HIV-1 Env gene. The N terminus of Vpu contains a membrane-spanning domain, followed by a 50-amino-acid cytoplasmic domain. Vpu is unique to HIV-1 and a few closely related SIV strains. The best-characterized roles for Vpu in the HIV-1 life cycle are modulation of host proteins CD4 and tetherin (also known as BST-2, CD317, and HM1.24) (24, 38, 39). Vpu promotes the degradation of CD4 in the endoplasmic reticulum through a proteasome-dependent mechanism (29). The cytoplasmic tail of Vpu physically interacts with the cytoplasmic tail of CD4 and recruits the human β-transducing repeat-containing protein (β-TrCP) and E3 ubiquitin ligase components to polyubiquitinate and ultimately trigger the degradation of CD4 (18). Two serine residues at positions 52 and 56 of Vpu are phosphorylated by casein kinase-2 and are required for CD4 degradation (31, 32). The membrane-spanning domain of Vpu is not specifically required for CD4 degradation. A mutant protein containing a scrambled membrane-spanning sequence, VpuRD, is still able to trigger the degradation of CD4 (32). The region of CD4 that is targeted by Vpu is approximately 17 to 13 amino acids from the C terminus in the cytoplasmic tail (Fig. (Fig.1)1) (2, 15).In addition to degrading CD4, Vpu has also long been known to result in enhanced viral release (EVR) in certain cell lines (14, 36). Recently, the type I interferon-induced host protein tetherin was identified as being responsible for this Vpu-modulated restriction (24, 38). In the absence of Vpu, tetherin causes particles to remain tethered (hence the name) to the host cell postfission. Although Vpu counteracts the function of tetherin, the exact mechanism has not been fully elucidated. However, the mechanism for tetherin antagonism appears to be distinct from that for modulating CD4. Mutation of the serines 52 and 56 of Vpu abolish CD4 degradation, but only reduce EVR activity (5, 17, 21, 32). Some EVR activity remains even when much of the Vpu cytoplasmic tail is deleted (30). In addition, many mutations in the membrane-spanning domain, such as VpuRD, do not affect CD4 degradation and yet completely abolish EVR activity (27, 30, 37). The critical residues in tetherin for recognition by Vpu appear to be in the membrane-spanning domain and not the cytoplasmic tail (9, 19, 28). Although β-TrCP is required for complete EVR activity, there is no consensus whether the degradation of tetherin is proteasome or lysosome mediated (5, 7, 21) or whether degradation is required at all. In some cases there can be some EVR activity in the absence of tetherin degradation (17, 22).We demonstrate here that Vpu is responsible for the incompatibility between HIV-1 and GaLV Env. Glycoproteins containing the cytoplasmic tail from GaLV Env are prevented from being incorporated into HIV-1 particles by Vpu, effectively reducing infectious particle production by 50- to 100-fold. The serines at positions 52 and 56 are required for this restriction, but the membrane-spanning domain is not. Although the mechanism for this restriction appears similar to CD4 degradation, there are apparent differences. Vpu does not prevent surface expression, and it does not prevent its incorporation into MLV particles. Therefore, the mechanism of restriction appears to involve a system that does not rely directly on global protein degradation.  相似文献   

6.
7.
All lentiviruses except equine infectious anemia virus (EIAV) use the small accessory protein Vif to counteract the restriction activity of the relevant APOBEC3 (A3) proteins of their host species. Prior studies have suggested that the Vif-A3 interaction is species specific. Here, using the APOBEC3H (Z3)-type proteins from five distinct mammals, we report that this is generally not the case: some lentiviral Vif proteins are capable of triggering the degradation of both the A3Z3-type protein of their normal host species and those of several other mammals. For instance, SIVmac Vif can mediate the degradation of the human, macaque, and cow A3Z3-type proteins but not of the sheep or cat A3Z3-type proteins. Maedi-visna virus (MVV) Vif is similarly promiscuous, degrading not only sheep A3Z3 but also the A3Z3-type proteins of humans, macaques, cows, and cats. In contrast to the neutralization capacity of these Vif proteins, human immunodeficiency virus (HIV), bovine immunodeficiency virus (BIV), and feline immunodeficiency virus (FIV) Vif appear specific to the A3Z3-type protein of their hosts. We conclude, first, that the Vif-A3Z3 interaction can be promiscuous and, second, despite this tendency, that each lentiviral Vif protein is optimized to degrade the A3Z3 protein of its mammalian host. Our results thereby suggest that the Vif-A3Z3 interaction is relevant to lentivirus biology.Lentiviruses are a unique class of complex retroviruses that encode a variety of accessory proteins in addition to the required Gag, Pol, and Env proteins. The archetypal lentivirus, human immunodeficiency virus type 1 (HIV-1), infects humans, but other members include simian immunodeficiency virus (SIV), bovine immunodeficiency virus (BIV), maedi-visna virus (MVV), caprine arthritis-encephalitis virus (CAEV), equine infectious anemia virus (EIAV), and feline immunodeficiency virus (FIV), which infect monkeys, cattle, sheep, goats, horses, and cats, respectively. The HIV-1 accessory protein viral infectivity factor (Vif) has been extensively studied because of its essential function in inhibiting the cellular antiretroviral human APOBEC3G (A3G) protein (43). HIV-1 Vif binds to human A3G (and other A3 proteins) and serves as an adaptor to link it to an ELOC-based E3 ubiquitin ligase complex (30, 51, 52). A3G is then polyubiquitinated and degraded by the cellular proteasome (7, 15, 29, 30, 43, 46, 52).Due to the potential therapeutic value of disrupting this host-pathogen interaction, a significant amount of work has been invested in defining the important contact residues between A3G and HIV-1 Vif. Primate A3G homologs have been useful tools in this effort, as many fail to be neutralized by HIV-1 Vif despite a relatively high degree of sequence similarity. For example, while HIV-1 Vif effectively neutralizes human A3G, it does not neutralize African green monkey A3G or rhesus macaque A3G despite 77% and 75% identity, respectively (4, 26, 27, 41, 51). The differential capacity of the HIV-1 and SIVagm Vif proteins to degrade the A3G proteins of their hosts led to demonstrations that residue 128 is a key determinant: D128 made each A3G protein susceptible to HIV-1 Vif and K128 made each A3G protein susceptible to SIVagm Vif (4, 26, 41, 51). This apparent on/off switch led to the prevailing model that the Vif-A3 interaction is species specific. However, even early data sets showed at least two hints that the story was more complex. First, the identity of the A3G residue 128 (K or D) does not diminish the interaction with the Vif proteins of SIVmac or HIV-2 (41, 51). Second, SIVmac Vif was shown to potently counteract the A3G proteins from rhesus macaque (as expected) but also those from human, African green monkey, and chimpanzee (27). Therefore, the implication from these studies is that the full nature of the A3-Vif interaction has yet to be elucidated.Although A3G has clearly served as the prototype for understanding the A3-Vif interaction, a growing number of studies indicate that other A3s are also capable of restricting lentivirus replication and interacting with Vif. A3G is one of seven human A3 proteins (A3A to -H) encoded in tandem on chromosome 22 (7, 16, 49). All but A3A have been implicated in the restriction of HIV-1 replication (reviewed in references 1, 10, and 45). For instance, human A3H has been shown to restrict HIV-1 replication and is susceptible to degradation by HIV-1 Vif (8, 37, 47). A3H is a Z3-type DNA deaminase characterized by a conserved threonine and a valine, in addition to the canonical H-x1-E-x23-28-C-x2-4-C zinc-coordinating motif (23). The Z3-type deaminase is unique in that only one copy exists in all mammals whose genomes have been sequenced. It is encoded by a five-exon gene located at the distal end of each mammal''s A3 locus (adjacent to CBX7). Additional observations suggest that the Z3-type deaminases appear to have the capacity to restrict the Vif-deficient lentiviruses of their hosts. For example, African green monkey A3H can restrict the replication of SIVagm and is susceptible to degradation by SIVagm Vif, and the cat A3Z3 can restrict the replication of FIV and is susceptible to degradation by FIV Vif (33, 37, 48).Here, we take advantage of the fact that all sequenced mammals have a single A3Z3-type protein to test the hypothesis that these proteins are of general relevance to lentivirus restriction and to clarify the species-specific nature of the mammalian A3Z3/lentiviral Vif relationship. First, we ask if human, rhesus macaque, cow, sheep, and cat A3Z3-type proteins are all capable of retrovirus restriction. Second, we ask whether they are susceptible to Vif-mediated degradation in a host-specific manner. We show that each lentiviral Vif protein can indeed neutralize the Z3-type A3 protein of its host species. However, we were surprised to find that several of the Vif proteins, particularly SIVmac and MVV Vif, can neutralize a broad number of A3Z3 proteins irrespective of the species of origin and overall degree of similarity. These data indicate that the A3-Vif interaction is more promiscuous than previously appreciated. Such broad functional flexibility may be relevant to understanding past retroviral zoonoses and predicting potential future events. We conclude that the A3Z3-Vif interaction is conserved on a macroscopic level, consistent with an important role in viral replication and particularly in species like artiodactyls and felines with fewer A3 proteins.  相似文献   

8.
Immunization of rhesus macaques with strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection elicits T-cell responses to multiple viral gene products and antibodies capable of neutralizing lab-adapted SIV, but not neutralization-resistant primary isolates of SIV. In an effort to improve upon the antibody responses, we immunized rhesus macaques with three strains of single-cycle SIV (scSIV) that express envelope glycoproteins modified to lack structural features thought to interfere with the development of neutralizing antibodies. These envelope-modified strains of scSIV lacked either five potential N-linked glycosylation sites in gp120, three potential N-linked glycosylation sites in gp41, or 100 amino acids in the V1V2 region of gp120. Three doses consisting of a mixture of the three envelope-modified strains of scSIV were administered on weeks 0, 6, and 12, followed by two booster inoculations with vesicular stomatitis virus (VSV) G trans-complemented scSIV on weeks 18 and 24. Although this immunization regimen did not elicit antibodies capable of detectably neutralizing SIVmac239 or SIVmac251UCD, neutralizing antibody titers to the envelope-modified strains were selectively enhanced. Virus-specific antibodies and T cells were observed in the vaginal mucosa. After 20 weeks of repeated, low-dose vaginal challenge with SIVmac251UCD, six of eight immunized animals versus six of six naïve controls became infected. Although immunization did not significantly reduce the likelihood of acquiring immunodeficiency virus infection, statistically significant reductions in peak and set point viral loads were observed in the immunized animals relative to the naïve control animals.Development of a safe and effective vaccine for human immunodeficiency virus type 1 (HIV-1) is an urgent public health priority, but remains a formidable scientific challenge. Passive transfer experiments in macaques demonstrate neutralizing antibodies can prevent infection by laboratory-engineered simian-human immunodeficiency virus (SHIV) strains (6, 33, 34, 53, 59). However, no current vaccine approach is capable of eliciting antibodies that neutralize primary isolates with neutralization-resistant envelope glycoproteins. Virus-specific T-cell responses can be elicited by prime-boost strategies utilizing recombinant DNA and/or viral vectors (3, 10, 11, 16, 36, 73, 77, 78), which confer containment of viral loads following challenge with SHIV89.6P (3, 13, 66, 68). Unfortunately, similar vaccine regimens are much less effective against SIVmac239 and SIVmac251 (12, 16, 31, 36, 73), which bear closer resemblance to most transmitted HIV-1 isolates in their inability to utilize CXCR4 as a coreceptor (18, 23, 24, 88) and inherent high degree of resistance to neutralization by antibodies or soluble CD4 (43, 55, 56). Live, attenuated SIV can provide apparent sterile protection against challenge with SIVmac239 and SIVmac251 or at least contain viral replication below the limit of detection (20, 22, 80). Due to the potential of the attenuated viruses themselves to cause disease in neonatal rhesus macaques (5, 7, 81) and to revert to a pathogenic phenotype through the accumulation of mutations over prolonged periods of replication in adult animals (2, 35, 76), attenuated HIV-1 is not under consideration for use in humans.As an experimental vaccine approach designed to retain many of the features of live, attenuated SIV, without the risk of reversion to a pathogenic phenotype, we and others devised genetic approaches for producing strains of SIV that are limited to a single cycle of infection (27, 28, 30, 38, 39, 45). In a previous study, immunization of rhesus macaques with single-cycle SIV (scSIV) trans-complemented with vesicular stomatitis virus (VSV) G elicited potent virus-specific T-cell responses (39), which were comparable in magnitude to T-cell responses elicited by optimized prime-boost regimens based on recombinant DNA and viral vectors (3, 16, 36, 68, 73, 78). Antibodies were elicited that neutralized lab-adapted SIVmac251LA (39). However, despite the presentation of the native, trimeric SIV envelope glycoprotein (Env) on the surface of infected cells and virions, none of the scSIV-immunized macaques developed antibody responses that neutralized SIVmac239 (39). Therefore, we have now introduced Env modifications into scSIV that facilitate the development of neutralizing antibodies.Most primate lentiviral envelope glycoproteins are inherently resistant to neutralizing antibodies due to structural and thermodynamic properties that have evolved to enable persistent replication in the face of vigorous antibody responses (17, 46, 47, 64, 71, 75, 79, 83, 85). Among these, extensive N-linked glycosylation renders much of the Env surface inaccessible to antibodies (17, 48, 60, 63, 75). Removal of N-linked glycans from gp120 or gp41 by mutagenesis facilitates the induction of antibodies to epitopes that are occluded by these carbohydrates in the wild-type virus (64, 85). Consequently, antibodies from animals infected with glycan-deficient strains neutralize these strains better than antibodies from animals infected with the fully glycosylated SIVmac239 parental strain (64, 85). Most importantly with regard to immunogen design, animals infected with the glycan-deficient strains developed higher neutralizing antibody titers against wild-type SIVmac239 (64, 85). Additionally, the removal of a single N-linked glycan in gp120 enhanced the induction of neutralizing antibodies against SHIV89.6P and SHIVSF162 in a prime-boost strategy by 20-fold (50). These observations suggest that potential neutralization determinants accessible in the wild-type Env are poorly immunogenic unless specific N-linked glycans in gp120 and gp41 are eliminated by mutagenesis.The variable loop regions 1 and 2 (V1V2) of HIV-1 and SIV gp120 may also interfere with the development of neutralizing antibodies. Deletion of V1V2 from HIV-1 gp120 permitted neutralizing monoclonal antibodies to CD4-inducible epitopes to bind to gp120 in the absence of CD4, suggesting that V1V2 occludes potential neutralization determinants prior to the engagement of CD4 (82). A deletion in V2 of HIV-1 Env-exposed epitopes was conserved between clades (69), improved the ability of a secreted Env trimer to elicit neutralizing antibodies (9), and was present in a vaccine that conferred complete protection against SHIVSF162P4 (8). A deletion of 100 amino acids in V1V2 of SIVmac239 rendered the virus sensitive to monoclonal antibodies with various specificities (41). Furthermore, three of five macaques experimentally infected with SIVmac239 with V1V2 deleted resisted superinfection with wild-type SIVmac239 (51). Thus, occlusion of potential neutralization determinants by the V1V2 loop structure may contribute to the poor immunogenicity of the wild-type envelope glycoprotein.Here we tested the hypothesis that antibody responses to scSIV could be improved by immunizing macaques with strains of scSIV engineered to eliminate structural features that interfere with the development of neutralizing antibodies. Antibodies to Env-modified strains were selectively enhanced, but these did not neutralize the wild-type SIV strains. We then tested the hypothesis that immunization might prevent infection in a repeated, low-dose vaginal challenge model of heterosexual HIV-1 transmission. Indeed, while all six naïve control animals became infected, two of eight immunized animals remained uninfected after 20 weeks of repeated vaginal challenge. Relative to the naïve control group, reductions in peak and set point viral loads were statistically significant in the immunized animals that became infected.  相似文献   

9.
10.
11.
12.
13.
Coinfection with human T-cell lymphotropic virus type 2 (HTLV-2) and human immunodeficiency virus type 1 (HIV-1) has been reported to have either a slowed disease course or to have no effect on progression to AIDS. In this study, we generated a coinfection animal model and investigated whether HTLV-2 could persistently infect macaques, induce a T-cell response, and impact simian immunodeficiency virus SIVmac251-induced disease. We found that inoculation of irradiated HTLV-2-infected T cells into Indian rhesus macaques elicited humoral and T-cell responses to HTLV-2 antigens at both systemic and mucosal sites. Low levels of HTLV-2 provirus DNA were detected in the blood, lymphoid tissues, and gastrointestinal tracts of infected animals. Exposure of HTLV-2-infected or naïve macaques to SIVmac251 demonstrated comparable levels of SIVmac251 viral replication, similar rates of mucosal and peripheral CD4+ T-cell loss, and increased T-cell proliferation. Additionally, neither the magnitude nor the functional capacity of the SIV-specific T-cell-mediated immune response was different in HTLV-2/SIVmac251 coinfected animals versus SIVmac251 singly infected controls. Thus, HTLV-2 targets mucosal sites, persists, and importantly does not exacerbate SIVmac251 infection. These data provide the impetus for the development of an attenuated HTLV-2-based vectored vaccine for HIV-1; this approach could elicit persistent mucosal immunity that may prevent HIV-1/SIVmac251 infection.Human T-cell lymphotropic virus type 2 (HTLV-2) was discovered in 1982 and recognized as the second human retrovirus found (29). HTLV-2 is closely related to the first human retrovirus discovered, HTLV-1 (49, 50), a pathogenic virus that causes adult T-cell leukemia/lymphoma (ATLL) and an inflammatory neurologic disorder called HTLV-1-associated myelopathy or tropical spastic paraparesis (HAM/TSP) (22, 45).HTLV-2 is prevalent in Amerindian populations of North and South America and in Africa (57). The prevalence of HTLV-2 is generally low; however, in the past 20 years, an epidemic of HTLV-2 infection has occurred among intravenous drug users (8, 24, 54, 57). HTLV-2 establishes a lifelong infection and replicates at low levels in most infected individuals. While anecdotal cases of TSP/HAM-like neurological manifestations (1, 44) and hematopoietic diseases, such as large granular lymphoma (LGL), in HTLV-2-infected individuals have been reported (3, 37-39, 46), the extent to which HTLV-2 can induce disease in humans remains unclear. Indeed, even in the condition of immune deficiency, such as infection with human immunodeficiency virus type 1 (HIV-1), HTLV-2 coinfection has not been reported to be associated with cancer or neurological diseases. However, more studies are necessary to fully understand the role of HTLV-2 in human disease. While HTLV-1 infection has been connected with an accelerated course of disease in HIV-1 coinfected patients (2, 34), HTLV-2 has been reported to either have no effect (26) or suggested to exert a potential protective role during HIV-1 infection (12, 23). This protective role is thought to be due to a maintenance of CD4+ T cells, lowering immune activation, and delayed progression to AIDS (4, 5). In addition, modulation of cytokine and chemokine networks by HTLV-2 has been suggested to contribute to the control of HIV-1 infection (12, 36, 47). Since studies on the immunological interactions between HIV-1 and HTLV-2 have been performed in patients coinfected with HIV-1 and HTLV-2 in the chronic phase of HIV-1 disease, little is known about the effects of HTLV-2 infection during acute HIV-1 replication, mucosal CD4+ T-cell depletion, or HIV-1-specific immune responses. Furthermore, the potential protective effect of an HTLV-2 vector that would target both CD4+ and CD8+ T cells and induce a low-grade persistent infection makes HTLV-2 an interesting potential vaccine platform for an HIV-1 vaccine.Current HIV-1 vaccine strategies have focused on viral vectors delivering HIV-1 antigens. These vectors stimulate strong, systemic antigen-specific responses but are unable to protect from infection, since they generate only limited mucosal responses and do not persist. The only vaccine approach that has conferred protection in the simian immunodeficiency virus SIVmac251 macaque model is a live attenuated virus (17), suggesting that persistent expression of viral antigens in mucosal and lymphoid tissues may be necessary. An HTLV-2 vector expressing HIV-1 antigens at mucosal sites that stimulates and maintains T-cell responses in the gut may confer protection from infection by quickly eliminating cells infected by the founder virus at the portal of entry. This study establishes that the Indian rhesus macaque model for HTLV-2 infection is a suitable model to test this hypothesis, as it demonstrates that HTLV-2 targets systemic, lymphoid, as well as mucosal tissues of rhesus macaques. HTLV-2 infection induces humoral as well as cell-mediated immune responses, and importantly, T-cell responses can be found at both systemic and mucosal sites. In this study, we demonstrate that the viral and T-cell dynamics of macaques dually infected with HTLV-2 and SIVmac251 are similar to those of macaques singly infected with SIVmac251.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) is subject to both neutralizing antibody (NAb) and CD8 T-cell (cytotoxic T-lymphocyte [CTL]) immune pressure. We studied the reversion of the Env CTL escape mutant virus to the wild type and the relationship between the reversion of CTL mutations with N-linked glycosylation site (NLGS)-driven NAb escape in pigtailed macaques. Env CTL mutations either did not revert to the wild type or only transiently reverted 5 to 7 weeks after infection. The CTL escape mutant reversion was coincident, for the same viral clones, with the loss of NLGS mutations. At one site studied, both CTL and NLGS mutations were needed to confer NAb escape. We conclude that CTL and NAb escape within Env can be tightly linked, suggesting opportunities to induce effective multicomponent anti-Env immunity.CD8 T-cell responses against human immunodeficiency virus (HIV) have long been observed to select for viral variants that avoid cytotoxic T-lymphocyte (CTL) recognition (2, 5, 15, 18, 27). These immune escape mutations may, however, result in reduced replication competence (“fitness cost”) (11, 20, 26). CTL escape variants have been shown to revert to the wild type (WT) upon passage to major histocompatibility complex-mismatched hosts, both in macaques with simian immunodeficiency virus (SIV) or chimeric SIV/HIV (SHIV) infection (11, 12) and in humans with HIV type 1 (HIV-1) infection (1, 19).Most analyses of CTL escape and reversion have studied Gag CTL epitopes known to facilitate control of viremia (7, 14, 21, 30). Fewer analyses have studied Env-specific CTL epitopes. Recent sequencing studies suggest the potential for mutations within predicted HIV-1 Env-specific CTL epitopes to undergo reversion to the WT (16, 23). Env-specific CTL responses may, however, have less impact on viral control of both HIV-1 and SIV/SHIV than do Gag CTL responses (17, 24, 25), presumably reflecting either less-potent inhibition of viral replication or minimal fitness cost of escape (9).Serial viral escape from antibody pressure also occurs in both macaques and humans (3, 13, 28). Env is extensively glycosylated, and this “evolving glycan shield” can sterically block antibody binding without mutation at the antibody-binding site (8, 16, 31). Mutations at glycosylation sites, as well as other mutations, are associated with escape from neutralizing antibody (NAb) responses (4, 13, 29). Mutations in the amino acid sequences of N-linked glycosylation sites (NLGS) can alter the packing of the glycan cloud that surrounds the virion, by a loss, gain, or shift of an NLGS (32), thus facilitating NAb escape.Env is the only viral protein targeted by both CTL and NAb responses. The serial viral escape from both Env-specific CTL and NAb responses could have implications for viral fitness and the reversion of multiple mutations upon transmission to naïve hosts.We previously identified three common HIV-1 Env-specific CD8 T cell epitopes, RY8788-795, SP9110-118, and NL9671-679, and their immune escape patterns in pigtail macaques (Macaca nemestrina) infected with SHIVmn229 (25). SHIVmn229 is a chimeric virus constructed from an SIVmac239 backbone and an HIV-1HXB2 env fragment that was passaged through macaques to become pathogenic (11). This earlier work provided an opportunity for detailed studies of how viruses with Env-specific CTL escape mutations, as well as mutations in adjacent NLGS, evolve when transmitted to naïve pigtail macaques.  相似文献   

15.
The first morphological evidence of African swine fever virus (ASFV) assembly is the appearance of precursor viral membranes, thought to derive from the endoplasmic reticulum, within the assembly sites. We have shown previously that protein p54, a viral structural integral membrane protein, is essential for the generation of the viral precursor membranes. In this report, we study the role of protein p17, an abundant transmembrane protein localized at the viral internal envelope, in these processes. Using an inducible virus for this protein, we show that p17 is essential for virus viability and that its repression blocks the proteolytic processing of polyproteins pp220 and pp62. Electron microscopy analyses demonstrate that when the infection occurs under restrictive conditions, viral morphogenesis is blocked at an early stage, immediately posterior to the formation of the viral precursor membranes, indicating that protein p17 is required to allow their progression toward icosahedral particles. Thus, the absence of this protein leads to an accumulation of these precursors and to the delocalization of the major components of the capsid and core shell domains. The study of ultrathin serial sections from cells infected with BA71V or the inducible virus under permissive conditions revealed the presence of large helicoidal structures from which immature particles are produced, suggesting that these helicoidal structures represent a previously undetected viral intermediate.African swine fever virus (ASFV) (61, 72) is the only known DNA-containing arbovirus and the sole member of the Asfarviridae family (24). Infection by this virus of its natural hosts, the wild swine warthogs and bushpigs and the argasid ticks of the genus Ornithodoros, results in a mild disease, often asymptomatic, with low viremia titers, that in many cases develops into a persistent infection (3, 43, 71). In contrast, infection of domestic pigs leads to a lethal hemorrhagic fever for which the only available methods of disease control are the quarantine of the affected area and the elimination of the infected animals (51).The ASFV genome is a lineal molecule of double-stranded DNA of 170 to 190 kbp in length with convalently closed ends and terminal inverted repeats. The genome encodes more than 150 open reading frames, half of which lack any known or predictable function (16, 75).The virus particle, with an overall icosahedral shape and an average diameter of 200 nm (11), is organized in several concentric layers (6, 11, 15) containing more than 50 structural proteins (29). Intracellular particles are formed by an inner viral core, which contains the central nucleoid surrounded by a thick protein coat, referred to as core shell. This core is enwrapped by an inner lipid envelope (7, 34) on top of which the icosahedral capsid is assembled (26, 27, 31). Extracellular virions possess an additional membrane acquired during the budding from the plasma membrane (11). Both forms of the virus, intracellular and extracellular, are infective (8).The assembly of ASFV particles occurs in the cytoplasm of the infected cell, in viral factories located close to the cell nucleus (6, 13, 49). ASFV factories possess several characteristics similar to those of the cellular aggresomes (35), which are accumulations of aggregates of cellular proteins that form perinuclear inclusions (44).Current models propose that ASFV assembly begins with the modification of endoplasmic reticulum (ER) membranes, which are subsequently recruited to the viral factories and transformed into viral precursor membranes. These ER-derived viral membranes represent the precursors of the inner viral envelope and are the first morphological evidence of viral assembly (7, 60). ASFV viral membrane precursors evolve into icosahedral intermediates and icosahedral particles by the progressive assembly of the outer capsid layer at the convex face of the precursor membranes (5, 26, 27, 31) through an ATP- and calcium-dependent process (19). At the same time, the core shell is formed underneath the concave face of the viral envelope, and the viral DNA and nucleoproteins are packaged and condensed to form the innermost electron-dense nucleoid (6, 9, 12, 69). However, the assembly of the capsid and the internal envelope appears to be largely independent of the components of the core of the particle, since the absence of the viral polyprotein pp220 during assembly produces empty virus-like particles that do not contain the core (9).Comparative genome analysis suggests that ASFV shares a common origin with the members of the proposed nucleocytoplasmic large DNA viruses (NCLDVs) (40, 41). The reconstructed phylogeny of NCLDVs as well as the similitude in the structures and organizations of the genomes indicates that ASFV is more closely related to poxviruses than to other members of the NCLDVs. A consensus about the origin and nature of the envelope of the immature form of vaccinia virus (VV), the prototypical poxvirus, seems to be emerging (10, 17, 20, 54). VV assembly starts with the appearance of crescent-shaped structures within specialized regions of the cytoplasm also known as viral factories (21, 23). The crescent membranes originate from preexisting membranes derived from some specialized compartment of the ER (32, 37, 52, 53, 67), and an operative pathway from the ER to the crescent membrane has recently been described (38, 39). VV crescents apparently grow in length while maintaining the same curvature until they become closed circles, spheres in three dimensions, called immature virions (IV) (22). The uniform curvature is produced by a honeycomb lattice of protein D13L (36, 70), which attaches rapidly to the membranes so that nascent viral membranes always appear to be coated over their entirety. The D13L protein is evolutionarily related to the capsid proteins of the other members of the NCLDV group, including ASFV, but lacks the C-terminal jelly roll motif (40). This structural difference is probably related to the fact that poxviruses are the only member of this group without an icosahedral capsid; instead, the spherical D13L coat acts as a scaffold during the IV stage but is discarded in subsequent steps of morphogenesis (10, 28, 46, 66). Thus, although crescents in VV and precursors of the inner envelope in ASFV are the first morphogenetic stages discernible in the viral factories of these viruses, they seem to be different in nature. Crescents are covered by the D13L protein and are more akin to the icosahedral intermediates of ASFV assembly, whereas ASFV viral membrane precursors are more similar to the naked membranes seen when VV morphogenesis is arrested by rifampin treatment (33, 47, 48, 50) or when the expression of the D13L and A17L proteins are repressed during infection with lethal conditional VV viruses (45, 55, 56, 68, 74, 76).Although available evidence strongly supports the reticular origin of the ASFV inner envelope (7, 60), the mechanism of acquisition remains unknown, and the number of membranes present in the inner envelope is controversial. The traditional view of the inner envelope as formed by two tightly opposed membranes derived from ER collapsed cisternae (7, 59, 60) has recently been challenged by the careful examination of the width of the internal membrane of viral particles and the single outer mitochondrial membrane, carried out using chemical fixation, cryosectioning, and high-pressure freezing (34). The results suggest that the inner envelope of ASFV is a single lipid bilayer, which raises the question of how such a structure can be generated and stabilized in the precursors of the ASFV internal envelope. In the case of VV, the coat of the D13L protein has been suggested to play a key role in the stabilization of the single membrane structure of the crescent (10, 17, 36), but the ASFV capsid protein p72 is not a component of the viral membrane precursors. The identification and functional characterization of the proteins involved in the generation of these structures are essential for the understanding of the mechanisms involved in these early stages of viral assembly. For this reason, we are focusing our interest on the study of abundant structural membrane proteins that reside at the inner envelope of the viral particle. We have shown previously that one of these proteins, p54, is essential for the recruitment of ER membranes to the viral factory (59). Repression of protein p54 expression has a profound impact on virus production and leads to an early arrest in virion morphogenesis, resulting in the virtual absence of membranes in the viral factory.Protein p17, encoded by the late gene D117L in the BA71V strain, is an abundant structural protein (60, 65). Its sequence, which is highly conserved among ASFV isolates (16), does not show any significant similarity with the sequences present in the databases. Protein p17 is an integral membrane protein (18) that is predicted to insert in membranes with a Singer type I topology and has been localized in the envelope precursors as well as in both intracellular and extracellular mature particles (60), suggesting that it resides at the internal envelope, the only membranous structure of the intracellular particles.In this work, we analyze the role of protein p17 in viral assembly by means of an IPTG (isopropyl-β-d-thiogalactopyranoside)-dependent lethal conditional virus. The data presented indicate that protein p17 is essential for viral morphogenesis. The repression of this protein appears to block assembly at the level of viral precursor membranes, resulting in their accumulation at the viral factory.From the electron microscopy analysis of serial sections of viral factories at very early times during morphogenesis, we present experimental evidence that suggests that, during assembly, viral precursor membranes and core material organize into large helicoidal intermediates from which icosahedral particles emerge. The possible role of these structures during ASFV morphogenesis is discussed.  相似文献   

16.
Hantaviruses infect endothelial cells and cause 2 vascular permeability-based diseases. Pathogenic hantaviruses enhance the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF). However, the mechanism by which hantaviruses hyperpermeabilize endothelial cells has not been defined. The paracellular permeability of endothelial cells is uniquely determined by the homophilic assembly of vascular endothelial cadherin (VE-cadherin) within adherens junctions, which is regulated by VEGF receptor-2 (VEGFR2) responses. Here, we investigated VEGFR2 phosphorylation and the internalization of VE-cadherin within endothelial cells infected by pathogenic Andes virus (ANDV) and Hantaan virus (HTNV) and nonpathogenic Tula virus (TULV) hantaviruses. We found that VEGF addition to ANDV- and HTNV-infected endothelial cells results in the hyperphosphorylation of VEGFR2, while TULV infection failed to increase VEGFR2 phosphorylation. Concomitant with the VEGFR2 hyperphosphorylation, VE-cadherin was internalized to intracellular vesicles within ANDV- or HTNV-, but not TULV-, infected endothelial cells. Addition of angiopoietin-1 (Ang-1) or sphingosine-1-phosphate (S1P) to ANDV- or HTNV-infected cells blocked VE-cadherin internalization in response to VEGF. These findings are consistent with the ability of Ang-1 and S1P to inhibit hantavirus-induced endothelial cell permeability. Our results suggest that pathogenic hantaviruses disrupt fluid barrier properties of endothelial cell adherens junctions by enhancing VEGFR2-VE-cadherin pathway responses which increase paracellular permeability. These results provide a pathway-specific mechanism for the enhanced permeability of hantavirus-infected endothelial cells and suggest that stabilizing VE-cadherin within adherens junctions is a primary target for regulating endothelial cell permeability during pathogenic hantavirus infection.Hantaviruses cause 2 human diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) (50). HPS and HFRS are multifactorial in nature and cause thrombocytopenia, immune and endothelial cell responses, and hypoxia, which contribute to disease (7, 11, 31, 42, 62). Although these syndromes sound quite different, they share common components which involve the ability of hantaviruses to infect endothelial cells and induce capillary permeability. Edema, which results from capillary leakage of fluid into tissues and organs, is a common finding in both HPS and HFRS patients (4, 7, 11, 31, 42, 62). In fact, both diseases can present with renal or pulmonary sequelae, and the renal or pulmonary focus of hantavirus diseases is likely to result from hantavirus infection of endothelial cells within vast glomerular and pulmonary capillary beds (4, 7, 11, 31, 42, 62). All hantaviruses predominantly infect endothelial cells which line capillaries (31, 42, 44, 61, 62), and endothelial cells have a primary role in maintaining fluid barrier functions of the vasculature (1, 12, 55). Although hantaviruses do not lyse endothelial cells (44, 61), this primary cellular target underlies hantavirus-induced changes in capillary integrity. As a result, understanding altered endothelial cell responses following hantavirus infection is fundamental to defining the mechanism of permeability induced by pathogenic hantaviruses (1, 12, 55).Pathogenic, but not nonpathogenic, hantaviruses use β3 integrins on the surface of endothelial cells and platelets for attachment (19, 21, 23, 39, 46), and β3 integrins play prominent roles in regulating vascular integrity (3, 6, 8, 24, 48). Pathogenic hantaviruses bind to basal, inactive conformations of β3 integrins (35, 46, 53) and days after infection inhibit β3 integrin-directed endothelial cell migration (20, 46). This may be the result of cell-associated virus (19, 20, 22) which keeps β3 in an inactive state but could also occur through additional regulatory processes that have yet to be defined. Interestingly, the nonpathogenic hantaviruses Prospect Hill virus (PHV) and Tula virus (TULV) fail to alter β3 integrin functions, and their entry is consistent with the use of discrete α5β1 integrins (21, 23, 36).On endothelial cells, αvβ3 integrins normally regulate permeabilizing effects of vascular endothelial growth factor receptor-2 (VEGFR2) (3, 24, 48, 51). VEGF was initially identified as an edema-causing vascular permeability factor (VPF) that is 50,000 times more potent than histamine in directing fluid across capillaries (12, 14). VEGF is responsible for disassembling adherens junctions between endothelial cells to permit cellular movement, wound repair, and angiogenesis (8, 10, 12, 13, 17, 26, 57). Extracellular domains of β3 integrins and VEGFR2 reportedly form a coprecipitable complex (3), and knocking out β3 causes capillary permeability that is augmented by VEGF addition (24, 47, 48). Pathogenic hantaviruses inhibit β3 integrin functions days after infection and similarly enhance the permeability of endothelial cells in response to VEGF (22).Adherens junctions form the primary fluid barrier of endothelial cells, and VEGFR2 responses control adherens junction disassembly (10, 17, 34, 57, 63). Vascular endothelial cadherin (VE-cadherin) is an endothelial cell-specific adherens junction protein and the primary determinant of paracellular permeability within the vascular endothelium (30, 33, 34). Activation of VEGFR2, another endothelial cell-specific protein, triggers signaling responses resulting in VE-cadherin disassembly and endocytosis, which increases the permeability of endothelial cell junctions (10, 12, 17, 34). VEGF is induced by hypoxic conditions and released by endothelial cells, platelets, and immune cells (2, 15, 38, 52). VEGF acts locally on endothelial cells through the autocrine or paracrine activation of VEGFR2, and the disassembly of endothelial cell adherens junctions increases the availability of nutrients to tissues and facilitates leukocyte trafficking and diapedesis (10, 12, 17, 55). The importance of endothelial cell barrier integrity is often in conflict with requirements for endothelial cells to move in order to permit angiogenesis and repair or cell and fluid egress, and as a result, VEGF-induced VE-cadherin responses are tightly controlled (10, 17, 18, 32, 33, 59). This limits capillary permeability while dynamically responding to a variety of endothelial cell-specific factors and conditions. However, if unregulated, this process can result in localized capillary permeability and edema (2, 9, 10, 12, 14, 17, 29, 60).Interestingly, tissue edema and hypoxia are common findings in both HPS and HFRS patients (11, 31, 62), and the ability of pathogenic hantaviruses to infect human endothelial cells provides a means for hantaviruses to directly alter normal VEGF-VE-cadherin regulation. In fact, the permeability of endothelial cells infected by pathogenic Andes virus (ANDV) or Hantaan virus (HTNV) is dramatically enhanced in response to VEGF addition (22). This response is absent from endothelial cells comparably infected with the nonpathogenic TULV and suggests that enhanced VEGF-induced endothelial cell permeability is a common underlying response of both HPS- and HFRS-causing hantaviruses (22). In these studies, we comparatively investigate responses of human endothelial cells infected with pathogenic ANDV and HTNV, as well as nonpathogenic TULV.  相似文献   

17.
Claudin-1, a component of tight junctions between liver hepatocytes, is a hepatitis C virus (HCV) late-stage entry cofactor. To investigate the structural and functional roles of various claudin-1 domains in HCV entry, we applied a mutagenesis strategy. Putative functional intracellular claudin-1 domains were not important. However, we identified seven novel residues in the first extracellular loop that are critical for entry of HCV isolates drawn from six different subtypes. Most of the critical residues belong to the highly conserved claudin motif W30-GLW51-C54-C64. Alanine substitutions of these residues did not impair claudin-1 cell surface expression or lateral protein interactions within the plasma membrane, including claudin-1-claudin-1 and claudin-1-CD81 interactions. However, these mutants no longer localized to cell-cell contacts. Based on our observations, we propose that cell-cell contacts formed by claudin-1 may generate specialized membrane domains that are amenable to HCV entry.Hepatitis C virus (HCV) is a major human pathogen that affects approximately 3% of the global population, leading to cirrhosis and hepatocellular carcinoma in chronically infected individuals (5, 23, 42). Hepatocytes are the major target cells of HCV (11), and entry follows a complex cascade of interactions with several cellular factors (6, 8, 12, 17). Infectious viral particles are associated with lipoproteins and initially attach to target cells via glycosaminoglycans and the low-density lipoprotein receptor (1, 7, 31). These interactions are followed by direct binding of the E2 envelope glycoprotein to the scavenger receptor class B type I (SR-B1) and then to the CD81 tetraspanin (14, 15, 33, 36). Early studies showed that CD81 and SR-B1 were necessary but not sufficient for HCV entry, and claudin-1 was discovered to be a requisite HCV entry cofactor that appears to act at a very late stage of the process (18).Claudin-1 is a member of the claudin protein family that participates in the formation of tight junctions between adjacent cells (25, 30, 37). Tight junctions regulate the paracellular transport of solutes, water, and ions and also generate apical-basal cell polarity (25, 37). In the liver, the apical surfaces of hepatocytes form bile canaliculi, whereas the basolateral surfaces face the underside of the endothelial layer that lines liver sinusoids. Claudin-1 is highly expressed in tight junctions formed by liver hepatocytes as well as on all hepatoma cell lines that are permissive to HCV entry (18, 24, 28). Importantly, nonhepatic cell lines that are engineered to express claudin-1 become permissive to HCV entry (18). Claudin-6 and -9 are two other members of the human claudin family that enable HCV entry into nonpermissive cells (28, 43).The precise role of claudin-1 in HCV entry remains to be determined. A direct interaction between claudins and HCV particles or soluble E2 envelope glycoprotein has not been demonstrated (18; T. Dragic, unpublished data). It is possible that claudin-1 interacts with HCV entry receptors SR-B1 or CD81, thereby modulating their ability to bind to E2. Alternatively, claudin-1 may ferry the receptor-virus complex to fusion-permissive intracellular compartments. Recent studies show that claudin-1 colocalizes with the CD81 tetraspanin at the cell surface of permissive cell lines (22, 34, 41). With respect to nonpermissive cells, one group observed that claudin-1 was predominantly intracellular (41), whereas another reported associations of claudin-1 and CD81 at the cell surface, similar to what is observed in permissive cells (22).Claudins comprise four transmembrane domains along with two extracellular loops and two cytoplasmic domains (19, 20, 25, 30, 37). The first extracellular loop (ECL1) participates in pore formation and influences paracellular charge selectivity (25, 37). It has been shown that the ECL1 of claudin-1 is required for HCV entry (18). All human claudins comprise a highly conserved motif, W30-GLW51-C54-C64, in the crown of ECL1 (25, 37). The exact function of this domain is unknown, and we hypothesized that it is important for HCV entry. The second extracellular loop is required for the holding function and oligomerization of the protein (25). Claudin-1 also comprises various signaling domains and a PDZ binding motif in the intracellular C terminus that binds ZO-1, another major component of tight junctions (30, 32, 37). We further hypothesized that some of these domains may play a role in HCV entry.To understand the role of claudin-1 in HCV infection, we developed a mutagenesis strategy targeting the putative sites for internalization, glycosylation, palmitoylation, and phosphorylation. The functionality of these domains has been described by others (4, 16, 25, 35, 37, 40). We also mutagenized charged and bulky residues in ECL1, including all six residues within the highly conserved motif W30-GLW51-C54-C64. None of the intracellular domains were found to affect HCV entry. However, we identified seven residues in ECL1 that are critical for entry mediated by envelope glycoproteins derived from several HCV subtypes, including all six residues of the conserved motif. These mutants were still expressed at the cell surface and able to form lateral homophilic interactions within the plasma membrane as well as to engage in lateral interactions with CD81. In contrast, they no longer engaged in homophilic trans interactions at cell-cell contacts. We conclude that the highly conserved motif W30-GLW51-C54-C64 of claudin-1 is important for HCV entry into target cells and participates in the formation of cell-cell contacts.  相似文献   

18.
19.
20.
The filovirus VP40 protein is capable of budding from mammalian cells in the form of virus-like particles (VLPs) that are morphologically indistinguishable from infectious virions. Ebola virus VP40 (eVP40) contains well-characterized overlapping L domains, which play a key role in mediating efficient virus egress. L domains represent only one component required for efficient budding and, therefore, there is a need to identify and characterize additional domains important for VP40 function. We demonstrate here that the 96LPLGVA101 sequence of eVP40 and the corresponding 84LPLGIM89 sequence of Marburg virus VP40 (mVP40) are critical for efficient release of VP40 VLPs. Indeed, deletion of these motifs essentially abolished the ability of eVP40 and mVP40 to bud as VLPs. To address the mechanism by which the 96LPLGVA101 motif of eVP40 contributes to egress, a series of point mutations were introduced into this motif. These mutants were then compared to the eVP40 wild type in a VLP budding assay to assess budding competency. Confocal microscopy and gel filtration analyses were performed to assess their pattern of intracellular localization and ability to oligomerize, respectively. Our results show that mutations disrupting the 96LPLGVA101 motif resulted in both altered patterns of intracellular localization and self-assembly compared to wild-type controls. Interestingly, coexpression of either Ebola virus GP-WT or mVP40-WT with eVP40-ΔLPLGVA failed to rescue the budding defective eVP40-ΔLPLGVA mutant into VLPs; however, coexpression of eVP40-WT with mVP40-ΔLPLGIM successfully rescued budding of mVP40-ΔLPLGIM into VLPs at mVP40-WT levels. In sum, our findings implicate the LPLGVA and LPLGIM motifs of eVP40 and mVP40, respectively, as being important for VP40 structure/stability and budding.Ebola and Marburg viruses are members of the family Filoviridae. Filoviruses are filamentous, negative-sense, single-stranded RNA viruses that cause lethal hemorrhagic fevers in both humans and nonhuman primates (5). Filoviruses encode seven viral proteins including: NP (major nucleoprotein), VP35 (phosphoprotein), VP40 (matrix protein), GP (glycoprotein), VP30 (minor nucleoprotein), VP24 (secondary matrix protein), and L (RNA-dependent RNA polymerase) (2, 5, 10, 12, 45). Numerous studies have shown that expression of Ebola virus VP40 (eVP40) alone in mammalian cells leads to the production of virus-like particles (VLPs) with filamentous morphology which is indistinguishable from infectious Ebola virus particles (12, 17, 18, 25, 26, 27, 30, 31, 34, 49). Like many enveloped viruses such as rhabdovirus (11) and arenaviruses (44), Ebola virus encodes late-assembly or L domains, which are sequences required for the membrane fission event that separates viral and cellular membranes to release nascent virion particles (1, 5, 7, 10, 12, 18, 25, 27, 34). Thus far, four classes of L domains have been identified which were defined by their conserved amino acid core sequences: the Pro-Thr/Ser-Ala-Pro (PT/SAP) motif (25, 27), the Pro-Pro-x-Tyr (PPxY) motif (11, 12, 18, 19, 41, 53), the Tyr-x-x-Leu (YxxL) motif (3, 15, 27, 37), and the Phe-Pro-Ile-Val (FPIV) motif (39). Both PTAP and the PPxY motifs are essential for efficient particle release for eVP40 (25, 27, 48, 49), whereas mVP40 contains only a PPxY motif. L domains are believed to act as docking sites for the recruitment of cellular proteins involved in endocytic trafficking and multivesicular body biogenesis to facilitate virus-cell separation (8, 13, 14, 16, 28, 29, 33, 36, 43, 50, 51).In addition to L domains, oligomerization, and plasma-membrane localization of VP40 are two functions of the protein that are critical for efficient budding of VLPs and virions. Specific sequences involved in self-assembly and membrane localization have yet to be defined precisely. However, recent reports have attempted to identify regions of VP40 that are important for its overall function in assembly and budding. For example, the amino acid region 212KLR214 located at the C-terminal region was found to be important for efficient release of eVP40 VLPs, with Leu213 being the most critical (30). Mutation of the 212KLR214 region resulted in altered patterns of cellular localization and oligomerization of eVP40 compared to those of the wild-type genotype (30). In addition, the proline at position 53 was also implicated as being essential for eVP40 VLP release and plasma-membrane localization (54).In a more recent study, a YPLGVG motif within the M protein of Nipah virus (NiV) was shown to be important for stability, membrane binding, and budding of NiV VLPs (35). Whether this NiV M motif represents a new class of L domain remains to be determined. However, it is clear that this YPLGVG motif of NiV M is important for budding, perhaps involving a novel mechanism (35). Our rationale for investigating the corresponding, conserved motifs present within the Ebola and Marburg virus VP40 proteins was based primarily on these findings with NiV. In addition, Ebola virus VP40 motif maps close to the hinge region separating the N- and C-terminal domains of VP40 (4). Thus, the 96LPLGVA101 motif of eVP40 is predicted to be important for the overall stability and function of VP40 during egress. Findings presented here indicate that disruption of these filovirus VP40 motifs results in a severe defect in VLP budding, due in part to impairment in overall VP40 structure, stability and/or intracellular localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号