首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Paragangliomas of the head and neck are highly vascular and usually clinically benign tumors arising in the paraganglia of the autonomic nervous system. A significant number of cases (10–50%) are proven to be familial. Multiple genes encoding subunits of the mitochondrial succinate-dehydrogenase (SDH) complex are associated with hereditary paraganglioma: SDHB, SDHC and SDHD. Furthermore, a hereditary paraganglioma family has been identified with linkage to the PGL2 locus on 11q13. No SDH genes are known to be located in the 11q13 region, and the exact gene defect has not yet been identified in this family.

Methods

We have performed a RNA expression microarray study in sporadic, SDHD- and PGL2-linked head and neck paragangliomas in order to identify potential differences in gene expression leading to tumorigenesis in these genetically defined paraganglioma subgroups. We have focused our analysis on pathways and functional gene-groups that are known to be associated with SDH function and paraganglioma tumorigenesis, i.e. metabolism, hypoxia, and angiogenesis related pathways. We also evaluated gene clusters of interest on chromosome 11 (i.e. the PGL2 locus on 11q13 and the imprinted region 11p15).

Results

We found remarkable similarity in overall gene expression profiles of SDHD -linked, PGL2-linked and sporadic paraganglioma. The supervised analysis on pathways implicated in PGL tumor formation also did not reveal significant differences in gene expression between these paraganglioma subgroups. Moreover, we were not able to detect differences in gene-expression of chromosome 11 regions of interest (i.e. 11q23, 11q13, 11p15).

Conclusion

The similarity in gene-expression profiles suggests that PGL2, like SDHD, is involved in the functionality of the SDH complex, and that tumor formation in these subgroups involves the same pathways as in SDH linked paragangliomas. We were not able to clarify the exact identity of PGL2 on 11q13. The lack of differential gene-expression of chromosome 11 genes might indicate that chromosome 11 loss, as demonstrated in SDHD-linked paragangliomas, is an important feature in the formation of paragangliomas regardless of their genetic background.  相似文献   

2.

Background

Perilipin 2 (Plin2) is a lipid droplet protein that has roles in both lipid and glucose homeostasis. An increase in Plin2 in liver is associated with the development of steatosis, glucose intolerance, and ceramide accumulation in alcoholic liver disease. We investigated the role of Plin2 on energy balance and glucose and lipid homeostasis in wildtype and Plin2 knockout (Plin2KO) mice chronically fed a Lieber-DeCarli liquid ethanol or control diet for six weeks.

Methods

We performed in vivo measurements of energy intake and expenditure; body composition; and glucose tolerance. After sacrifice, liver was dissected for histology and lipid analysis.

Results

We found that neither genotype nor diet had a significant effect on final weight, body composition, or energy intake between WT and Plin2KO mice fed alcohol or control diets. Additionally, alcohol feeding did not affect oxygen consumption or carbon dioxide production in Plin2KO mice. We performed glucose tolerance testing and observed that alcohol feeding failed to impair glucose tolerance in Plin2KO mice. Most notably, absence of Plin2 prevented hepatic steatosis and ceramide accumulation in alcohol-fed mice. These changes were related to downregulation of genes involved in lipogenesis and triglyceride synthesis.

Conclusions

Plin2KO mice chronically fed alcohol are protected from hepatic steatosis, glucose intolerance, and hepatic ceramide accumulation, suggesting a critical pathogenic role of Plin2 in experimental alcoholic liver disease.  相似文献   

3.

Background

Melioidosis, caused by infection with Burkholderia (B.) pseudomallei, is a severe illness that is endemic in Southeast Asia. Osteopontin (OPN) is a phosphorylated glycoprotein that is involved in several immune responses including induction of T-helper 1 cytokines and recruitment of inflammatory cells.

Methodology and Principal Findings

OPN levels were determined in plasma from 33 melioidosis patients and 31 healthy controls, and in wild-type (WT) mice intranasally infected with B. pseudomallei. OPN function was studied in experimental murine melioidosis using WT and OPN knockout (KO) mice. Plasma OPN levels were elevated in patients with severe melioidosis, even more so in patients who went on to die. In patients who recovered plasma OPN concentrations had decreased after treatment. In experimental melioidosis in mice plasma and pulmonary OPN levels were also increased. Whereas WT and OPN KO mice were indistinguishable during the first 24 hours after infection, after 72 hours OPN KO mice demonstrated reduced bacterial numbers in their lungs, diminished pulmonary tissue injury, especially due to less necrosis, and decreased neutrophil infiltration. Moreover, OPN KO mice displayed a delayed mortality as compared to WT mice. OPN deficiency did not influence the induction of proinflammatory cytokines.

Conclusions

These data suggest that sustained production of OPN impairs host defense during established septic melioidosis.  相似文献   

4.

Background

DYT11 myoclonus-dystonia (M-D) syndrome is a neurological movement disorder characterized by myoclonic jerks and dystonic postures or movement that can be alleviated by alcohol. It is caused by mutations in SGCE encoding ε-sarcoglycan (ε-SG); the mouse homolog of this gene is Sgce. Paternally-inherited Sgce heterozygous knockout (Sgce KO) mice exhibit myoclonus, motor impairment and anxiety- and depression-like behaviors, modeling several clinical symptoms observed in DYT11 M-D patients. The behavioral deficits are accompanied by abnormally high levels of dopamine and its metabolites in the striatum of Sgce KO mice. Neuroimaging studies of DYT11 M-D patients show reduced dopamine D2 receptor (D2R) availability, although the possibility of increased endogenous dopamine, and consequently, competitive D2R occupancy cannot be ruled out.

Methodology/Principal Findings

The protein levels of striatal D2R, dopamine transporter (DAT), and dopamine D1 receptor (D1R) in Sgce KO mice were analyzed by Western blot. The striatal dopamine release after amphetamine injection in Sgce KO mice were analyzed by microdialysis in vivo. The striatal D2R was significantly decreased in Sgce KO mice without altering DAT and D1R. Sgce KO mice also exhibited a significant increase of dopamine release after amphetamine injection in comparison to wild-type (WT) littermates.

Conclusion/Significance

The results suggest ε-SG may have a role in the regulation of D2R expression. The loss of ε-SG results in decreased striatal D2R, and subsequently leads to increased discharge of dopamine which could contribute to the behavioral impairment observed in DYT11 dystonia patients and in Sgce KO mice. The results suggest that reduction of striatal D2R and enhanced striatal dopamine release may contribute to the pathophysiology of DYT11 M-D patients.  相似文献   

5.
6.
Lou PH  Gustavsson N  Wang Y  Radda GK  Han W 《PloS one》2011,6(10):e26671

Background

Secretion of insulin and glucagon is triggered by elevated intracellular calcium levels. Although the precise mechanism by which the calcium signal is coupled to insulin and glucagon granule exocytosis is unclear, synaptotagmin-7 has been shown to be a positive regulator of calcium-dependent insulin and glucagon secretion, and may function as a calcium sensor for insulin and glucagon granule exocytosis. Deletion of synaptotagmin-7 leads to impaired glucose-stimulated insulin secretion and nearly abolished Ca2+-dependent glucagon secretion in mice. Under non-stressed resting state, however, synaptotagmin-7 KO mice exhibit normal insulin level but severely reduced glucagon level.

Methodology/Principal Findings

We studied energy expenditure and metabolism in synaptotagmin-7 KO and control mice using indirect calorimetry and biochemical techniques. Synaptotagmin-7 KO mice had lower body weight and body fat content, and exhibited higher oxygen consumption and basal metabolic rate. Respiratory exchange ratio (RER) was lower in synaptotagmin-7 KO mice, suggesting an increased use of lipid in their energy production. Consistent with lower RER, gene expression profiles suggest enhanced lipolysis and increased capacity for fatty acid transport and oxidation in synaptotagmin-7 KO mice. Furthermore, expression of uncoupling protein 3 (UCP3) in skeletal muscle was approximately doubled in the KO mice compared with control mice.

Conclusions

These results show that the lean phenotype in synaptotagmin-7 KO mice was mostly attributed to increased lipolysis and energy expenditure, and suggest that reduced glucagon level may have broad influence on the overall metabolism in the mouse model.  相似文献   

7.
8.

Background

CEL-MODY is a monogenic form of diabetes with exocrine pancreatic insufficiency caused by mutations in CARBOXYL-ESTER LIPASE (CEL). The pathogenic processes underlying CEL-MODY are poorly understood, and the global knockout mouse model of the CEL gene (CELKO) did not recapitulate the disease. We therefore aimed to create and phenotype a mouse model specifically over-expressing mutated CEL in the pancreas.

Methods

We established a monotransgenic floxed (flanking LOX sequences) mouse line carrying the human CEL mutation c.1686delT and crossed it with an elastase-Cre mouse to derive a bitransgenic mouse line with pancreas-specific over-expression of CEL carrying this disease-associated mutation (TgCEL). Following confirmation of murine pancreatic expression of the human transgene by real-time quantitative PCR, we phenotyped the mouse model fed a normal chow and compared it with mice fed a 60% high fat diet (HFD) as well as the effects of short-term and long-term cerulein exposure.

Results

Pancreatic exocrine function was normal in TgCEL mice on normal chow as assessed by serum lipid and lipid-soluble vitamin levels, fecal elastase and fecal fat absorption, and the normoglycemic mice exhibited normal pancreatic morphology. On 60% HFD, the mice gained weight to the same extent as controls, had normal pancreatic exocrine function and comparable glucose tolerance even after resuming normal diet and follow up up to 22 months of age. The cerulein-exposed TgCEL mice gained weight and remained glucose tolerant, and there were no detectable mutation-specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation.

Conclusions

In this murine model of human CEL-MODY diabetes, we did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein.  相似文献   

9.
10.

Background

The receptor for advanced glycation end-products (RAGE) has been suggested to modulate lung injury in models of acute pulmonary inflammation. To study this further, model systems utilizing wild type and RAGE knockout (KO) mice were used to determine the role of RAGE signaling in lipopolysaccharide (LPS) and E. coli induced acute pulmonary inflammation. The effect of intraperitoneal (i.p.) and intratracheal (i.t.) administration of mouse soluble RAGE on E. coli injury was also investigated.

Methodology/Principal Findings

C57BL/6 wild type and RAGE KO mice received an i.t. instillation of LPS, E. coli, or vehicle control. Some groups also received i.p. or i.t. administration of mouse soluble RAGE. After 24 hours, the role of RAGE expression on inflammation was assessed by comparing responses in wild type and RAGE KO. RAGE protein levels decreased in wild type lung homogenates after treatment with either LPS or bacteria. In addition, soluble RAGE and HMGB1 increased in the BALF after E. coli instillation. RAGE KO mice challenged with LPS had the same degree of inflammation as wild type mice. However, when challenged with E. coli, RAGE KO mice had significantly less inflammation when compared to wild type mice. Most cytokine levels were lower in the BALF of RAGE KO mice compared to wild type mice after E. coli injury, while only monocyte chemotactic protein-1, MCP-1, was lower after LPS challenge. Neither i.p. nor i.t. administration of mouse soluble RAGE attenuated the severity of E. coli injury in wild type mice.

Conclusions/Significance

Lack of RAGE in the lung does not protect against LPS induced acute pulmonary inflammation, but attenuates injury following live E. coli challenge. These findings suggest that RAGE mediates responses to E. coli-associated pathogen-associated molecular pattern molecules other than LPS or other bacterial specific signaling responses. Soluble RAGE treatment had no effect on inflammation.  相似文献   

11.

Background

Copy number variants have emerged as an important genomic cause of common, complex neurodevelopmental disorders. These usually change copy number of multiple genes, but deletions at 2p16.3, which have been associated with autism, schizophrenia and mental retardation, affect only the neurexin 1 gene, usually the alpha isoform. Previous analyses of neurexin 1α (Nrxn1α) knockout (KO) mouse as a model of these disorders have revealed impairments in synaptic transmission but failed to reveal defects in social behaviour, one of the core symptoms of autism.

Methods

We performed a detailed investigation of the behavioural effects of Nrxn1α deletion in mice bred onto a pure genetic background (C57BL/6J) to gain a better understanding of its role in neurodevelopmental disorders. Wildtype, heterozygote and homozygote Nrxn1α KO male and female mice were tested in a battery of behavioural tests (n = 9–16 per genotype, per sex).

Results

In homozygous Nrxn1α KO mice, we observed altered social approach, reduced social investigation, and reduced locomotor activity in novel environments. In addition, male Nrxn1α KO mice demonstrated an increase in aggressive behaviours.

Conclusions

These are the first experimental data that associate a deletion of Nrxn1α with alterations of social behaviour in mice. Since this represents one of the core symptom domains affected in autism spectrum disorders and schizophrenia in humans, our findings suggest that deletions within NRXN1 found in patients may be responsible for the impairments seen in social behaviours, and that the Nrxn1α KO mice are a useful model of human neurodevelopmental disorder.  相似文献   

12.

Background

Pseudomonas aeruginosa (PA) infection is involved in various lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. However, treatment of PA infection is not very effective in part due to antibiotic resistance. α1-antitrypsin (A1AT) has been shown to reduce PA infection in humans and animals, but the underlying mechanisms remain unclear. The goal of our study is to test whether a novel endogenous host defense protein, short palate, lung, and nasal epithelium clone 1 (SPLUNC1), is involved in the therapeutic effect of A1AT during lung PA infection.

Method

SPLUNC1 knockout (KO) and littermate wild-type (WT) mice on the C57BL/6 background were intranasally infected with PA to determine the therapeutic effects of A1AT. A1AT was aerosolized to mice 2 hrs after the PA infection, and mice were sacrificed 24 hrs later. PA load and inflammation were quantified in the lung, and SPLUNC1 protein in bronchoalveolar lavage (BAL) fluid was examined by Western blot.

Results

In WT mice, PA infection significantly increased neutrophil elastase (NE) activity, but reduced SPLUNC1 protein in BAL fluid. Notably, PA-infected mice treated with A1AT versus bovine serum albumin (BSA) demonstrated higher levels of SPLUNC1 protein expression, which are accompanied by lower levels of NE activity, lung bacterial load, and pro-inflammatory cytokine production. To determine whether A1AT therapeutic effects are dependent on SPLUNC1, lung PA load in A1AT- or BSA-treated SPLUNC1 KO mice was examined. Unlike the WT mice, A1AT treatment in SPLUNC1 KO mice had no significant impact on lung PA load and pro-inflammatory cytokine production.

Conclusion

A1AT reduces lung bacterial infection in mice in part by preventing NE-mediated SPLUNC1 degradation.  相似文献   

13.
Deng W  Wang X  Xiao J  Chen K  Zhou H  Shen D  Li H  Tang Q 《PloS one》2012,7(1):e30256

Background

The effect of regulator of G protein signaling 5 (RGS5) on cardiac hypertrophy, atherosclerosis and angiogenesis has been well demonstrated, but the role in the development of obesity and insulin resistance remains completely unknown. We determined the effect of RGS5 deficiency on obesity, hepatic steatosis, inflammation and insulin resistance in mice fed either a normal-chow diet (NC) or a high-fat diet (HF).

Methodology/Principal Findings

Male, 8-week-old RGS5 knockout (KO) and littermate control mice were fed an NC or an HF for 24 weeks and were phenotyped accordingly. RGS5 KO mice exhibited increased obesity, fat mass and ectopic lipid deposition in the liver compared with littermate control mice, regardless of diet. When fed an HF, RGS5 KO mice had a markedly exacerbated metabolic dysfunction and inflammatory state in the blood serum. Meanwhile, macrophage recruitment and inflammation were increased and these increases were associated with the significant activation of JNK, IκBα and NF-κBp65 in the adipose tissue, liver and skeletal muscle of RGS5 KO mice fed an HF relative to control mice. These exacerbated metabolic dysfunction and inflammation are accompanied with decreased systemic insulin sensitivity in the adipose tissue, liver and skeletal muscle of RGS5 KO mice, reflected by weakened Akt/GSK3β phosphorylation.

Conclusions/Significance

Our data suggest that loss of RGS5 exacerbates HF-induced obesity, hepatic steatosis, inflammation and insulin resistance.  相似文献   

14.

Background

Diacylglycerol kinase (DGK) is an enzyme that phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). DGKβ is widely distributed in the central nervous system, such as the olfactory bulb, cerebral cortex, striatum, and hippocampus. Recent studies reported that the splice variant at the COOH-terminal of DGKβ was related to bipolar disorder, but its detailed mechanism is still unknown.

Methodology/Principal Findings

In the present study, we performed behavioral tests using DGKβ knockout (KO) mice to investigate the effects of DGKβ deficits on psychomotor behavior. DGKβ KO mice exhibited some behavioral abnormalities, such as hyperactivity, reduced anxiety, and reduced depression. Additionally, hyperactivity and reduced anxiety were attenuated by the administration of the mood stabilizer, lithium, but not haloperidol, diazepam, or imipramine. Moreover, DGKβ KO mice showed impairment in Akt-glycogen synthesis kinase (GSK) 3β signaling and cortical spine formation.

Conclusions/Significance

These findings suggest that DGKβ KO mice exhibit lithium-sensitive behavioral abnormalities that are, at least in part, due to the impairment of Akt-GSK3β signaling and cortical spine formation.  相似文献   

15.
16.

Introduction

Interleukin (IL)-33 is a cytokine of the IL-1 family, which signals through the ST2 receptor. Previous work suggested implication of the IL-33/ST2 axis in the pathogenesis of human and mouse arthritis. Here, we directly investigated the role of endogenous IL-33 in K/BxN serum transfer-induced arthritis by using IL-33 knockout (KO) mice.

Methods

Arthritis was induced by injection of complete K/BxN serum or purified IgG. Disease severity was monitored by clinical and histological scoring.

Results

K/BxN serum transfer induced pronounced arthritis with similar incidence and severity in IL-33 KO and wild-type (WT) mice. In contrast, disease development was significantly reduced in ST2 KO mice. IL-33 expression in synovial tissue was comparable in arthritic WT and ST2 KO mice, and absent in IL-33 KO mice. Transfer of purified arthritogenic IgG instead of complete K/BxN serum also resulted in similar arthritis severity in IL-33 KO and WT mice, excluding a contribution of IL-33 contained in the serum of donor mice to explain this result. We investigated additional potential confounding factors, including purity of genetic background, but the mechanisms underlying reduced arthritis in ST2 KO mice remained unclear.

Conclusions

The data obtained with IL-33 KO mice indicate that endogenous IL-33 is not required for the development of joint inflammation in K/BxN serum transfer-induced arthritis. On the contrary, arthritis severity was reduced in ST2 KO mice. This observation might relate to IL-33 independent effects of ST2, and/or reveal the existence of confounding variables affecting the severity of joint inflammation in these KO strains.  相似文献   

17.

Introduction

Oxysterol binding protein Related Proteins (ORPs) mediate intracellular lipid transport and homeostatic regulation. ORP8 downregulates ABCA1 expression in macrophages and cellular cholesterol efflux to apolipoprotein A-I. In line, ORP8 knockout mice display increased amounts of HDL cholesterol in blood. However, the role of macrophage ORP8 in atherosclerotic lesion development is unknown.

Methods and Results

LDL receptor knockout (KO) mice were transplanted with bone marrow (BM) from ORP8 KO mice and C57Bl/6 wild type mice. Subsequently, the animals were challenged with a high fat/high cholesterol Western-type diet to induce atherosclerosis. After 9 weeks of Western-Type diet feeding, serum levels of VLDL cholesterol were increased by 50% in ORP8 KO BM recipients compared to the wild-type recipients. However, no differences were observed in HDL cholesterol. Despite the increase in VLDL cholesterol, lesions in mice transplanted with ORP8 KO bone marrow were 20% smaller compared to WT transplanted controls. In addition, ORP8 KO transplanted mice displayed a modest increase in the percentage of macrophages in the lesion as compared to the wild-type transplanted group. ORP8 deficient macrophages displayed decreased production of pro-inflammatory factors IL-6 and TNFα, decreased expression of differentiation markers and showed a reduced capacity to form foam cells in the peritoneal cavity.

Conclusions

Deletion of ORP8 in bone marrow-derived cells, including macrophages, reduces lesion progression after 9 weeks of WTD challenge, despite increased amounts of circulating pro-atherogenic VLDL. Reduced macrophage foam cell formation and lower macrophage inflammatory potential are plausible mechanisms contributing to the observed reduction in atherosclerosis.  相似文献   

18.

Introduction

Activation of the inflammasome has been implicated in the pathology of various autoinflammatory and autoimmune diseases. While the NLRP3 inflammasome has been linked to arthritis progression, little is known about its synovial regulation or contribution to joint histopathology. Regulators of inflammation activation, such as interleukin (IL)-10, may have the potential to limit the inflammasome-driven arthritic disease course and associated structural damage. Hence, we used IL-10-deficient (IL-10KO) mice to assess NLRP3 inflammasome-driven arthritic pathology.

Methods

Antigen-induced arthritis (AIA) was established in IL-10KO mice and wild-type controls. Using histological and radiographic approaches together with quantitative real-time PCR of synovial mRNA studies, we explored the regulation of inflammasome components. These were combined with selective blocking agents and ex vivo investigative studies in osteoclast differentiation assays.

Results

In AIA, IL-10KO mice display severe disease with increased histological and radiographic joint scores. Here, focal bone erosions were associated with increased tartrate-resistant acid phosphatase (TRAP)-positive cells and a localized expression of IL-1β. When compared to controls, IL-10KO synovium showed increased expression of Il1b, Il33 and NLRP3 inflammasome components. Synovial Nlrp3 and Casp1 expression further correlated with Acp5 (encoding TRAP), while neutralization of IL-10 receptor signaling in control mice caused increased expression of Nlrp3 and Casp1. In ex vivo osteoclast differentiation assays, addition of exogenous IL-10 or selective blockade of the NLRP3 inflammasome inhibited osteoclastogenesis.

Conclusions

These data provide a link between IL-10, synovial regulation of the NLRP3 inflammasome and the degree of bone erosions observed in inflammatory arthritis.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0419-y) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

In a variety of organisms, including mammals, caloric restriction improves metabolic status and lowers the incidence of chronic-degenerative diseases, ultimately leading to increased lifespan.

Methodology/Principal Findings

Here we show that knockout mice for Eps8, a regulator of actin dynamics, display reduced body weight, partial resistance to age- or diet-induced obesity, and overall improved metabolic status. Alteration in the liver gene expression profile, in behavior and metabolism point to a calorie restriction-like phenotype in Eps8 knockout mice. Additionally, and consistent with a calorie restricted metabolism, Eps8 knockout mice show increased lifespan. The metabolic alterations in Eps8 knockout mice correlated with a significant reduction in intestinal fat absorption presumably caused by a 25% reduction in intestinal microvilli length.

Conclusions/Significance

Our findings implicate actin dynamics as a novel variable in the determination of longevity. Additionally, our observations suggest that subtle differences in energy balance can, over time, significantly affect bodyweight and metabolic status in mice.  相似文献   

20.

Background

The lactogenic hormones prolactin (PRL) and placental lactogens (PL) play central roles in reproduction and mammary development. Their actions are mediated via binding to PRL receptor (PRLR), highly expressed in brown adipose tissue (BAT), yet their impact on adipocyte function and metabolism remains unclear.

Methodology/Principal Findings

PRLR knockout (KO) newborn mice were phenotypically characterized in terms of thermoregulation and their BAT differentiation assayed for gene expression studies. Derived brown preadipocyte cell lines were established to evaluate the molecular mechanisms involved in PRL signaling on BAT function. Here, we report that newborn mice lacking PRLR have hypotrophic BAT depots that express low levels of adipocyte nuclear receptor PPARγ2, its coactivator PGC-1α, uncoupling protein 1 (UCP1) and the β3 adrenoceptor, reducing mouse viability during cold challenge. Immortalized PRLR KO preadipocytes fail to undergo differentiation into mature adipocytes, a defect reversed by reintroduction of PRLR. That the effects of the lactogens in BAT are at least partly mediated by Insulin-like Growth Factor-2 (IGF-2) is supported by: i) a striking reduction in BAT IGF-2 expression in PRLR KO mice and in PRLR-deficient preadipocytes; ii) induction of cellular IGF-2 expression by PRL through JAK2/STAT5 pathway activation; and iii) reversal of defective differentiation in PRLR KO cells by exogenous IGF-2.

Conclusions

Our findings demonstrate that the lactogens act in concert with IGF-2 to control brown adipocyte differentiation and growth. Given the prominent role of brown adipose tissue during the perinatal period, our results identified prolactin receptor signaling as a major player and a potential therapeutic target in protecting newborn mammals against hypothermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号