首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coordinated polarization of neighboring cells within the plane of the tissue, known as planar cell polarity (PCP), is a recurring theme in biology. It is required for numerous developmental processes for the form and function of many tissues and organs across species. The genetic pathway regulating PCP was first discovered in Drosophila, and an analogous but distinct pathway is emerging in vertebrates. It consists of membrane protein complexes known as core PCP proteins that are conserved across species. Here we report that the over-expression of the murine Ankrd6 (mAnkrd6) gene that shares homology with Drosophila core PCP gene diego causes a typical PCP phenotype in Drosophila, and mAnkrd6 can rescue the loss of function of diego in Drosophila. In mice, mAnkrd6 protein is asymmetrically localized in cells of the inner ear sensory organs, characteristic of components of conserved core PCP complexes. The loss of mAnkrd6 causes PCP defects in the inner ear sensory organs. Moreover, canonical Wnt signaling is significantly increased in mouse embryonic fibroblasts from mAnkrd6 knockout mice in comparison to wild type controls. Together, these results indicated that mAnkrd6 is a functional homolog of the Drosophila diego gene for mammalian PCP regulation and act to suppress canonical Wnt signaling.  相似文献   

2.
The planar cell polarity (PCP) pathway is a conserved non-canonical (β-catenin-independent) branch of Wnt signaling crucial to embryogenesis, during which it regulates cell polarity and polarized cell movements. Disruption of PCP components in mice, including Vangl2 and Dact1, results in defective neural tube closure and other developmental defects. Here, we show that Sestd1 is a novel binding partner of Vangl2 and Dact1. The Sestd1-Dact1 interface is formed by circumscribed regions of Sestd1 (the carboxyl-terminal region) and Dact1 (the amino-terminal region). Remarkably, we show that loss of Sestd1 precisely phenocopies loss of Dact1 during embryogenesis in mice, leading to a spectrum of birth malformations, including neural tube defects, a shortened and/or curly tail, no genital tubercle, blind-ended colons, hydronephrotic kidneys, and no bladder. Moreover, as with Dact1, a knock-out mutation at the Sestd1 locus exhibits reciprocal genetic rescue interactions during development with a semidominant mutation at the Vangl2 locus. Consistent with this, examination of Wnt pathway activities in Sestd1 mutant mouse embryonic tissue reveals disrupted PCP pathway biochemistry similar to that characterized in Dact1 mutant embryos. The Sestd1 protein is a divergent member of the Trio family of GTPase regulatory proteins that lacks a guanine nucleotide exchange factor domain. Nonetheless, in cell-based assays the Sestd1-Dact1 interaction can induce Rho GTPase activation. Together, our data indicate that Sestd1 cooperates with Dact1 in Vangl2 regulation and in the PCP pathway during mammalian embryonic development.  相似文献   

3.
The Wnt signaling pathways control many critical developmental and adult physiological processes. In vertebrates, one fundamentally important function of Wnts is to provide directional information by regulating the evolutionarily conserved planar cell polarity (PCP) pathway during embryonic morphogenesis. However, despite the critical roles of Wnts and PCP in vertebrate development and disease, little is known about the molecular mechanisms underlying Wnt regulation of PCP. Here, we have found that the receptor-like tyrosine kinase (Ryk), a Wnt5a-binding protein required in axon guidance, regulates PCP signaling. We show that Ryk interacts with Vangl2 genetically and biochemically, and such interaction is potentiated by Wnt5a. Loss of Ryk in a Vangl2+/− background results in classic PCP defects, including open neural tube, misalignment of sensory hair cells in the inner ear, and shortened long bones in the limbs. Complete loss of both Ryk and Vangl2 results in more severe phenotypes that resemble the Wnt5a−/− mutant in many aspects such as shortened anterior-posterior body axis, limb, and frontonasal process. Our data identify the Wnt5a-binding protein Ryk as a general regulator of the mammalian Wnt/PCP signaling pathway. We show that Ryk transduces Wnt5a signaling by forming a complex with Vangl2 and that Ryk regulates PCP by at least in part promoting Vangl2 stability. As human mutations in WNT5A and VANGL2 are found to cause Robinow syndrome and neural tube defects, respectively, our results further suggest that human mutations in RYK may also be involved in these diseases.  相似文献   

4.

Background

The planar cell polarity (PCP) signalling pathway is fundamental to a number of key developmental events, including initiation of neural tube closure. Disruption of the PCP pathway causes the severe neural tube defect of craniorachischisis, in which almost the entire brain and spinal cord fails to close. Identification of mouse mutants with craniorachischisis has proven a powerful way of identifying molecules that are components or regulators of the PCP pathway. In addition, identification of an allelic series of mutants, including hypomorphs and neomorphs in addition to complete nulls, can provide novel genetic tools to help elucidate the function of the PCP proteins.

Results

We report the identification of a new N-ethyl-N-nitrosourea (ENU)-induced mutant with craniorachischisis, which we have named chuzhoi (chz). We demonstrate that chuzhoi mutant embryos fail to undergo initiation of neural tube closure, and have characteristics consistent with defective convergent extension. These characteristics include a broadened midline and reduced rate of increase of their length-to-width ratio. In addition, we demonstrate disruption in the orientation of outer hair cells in the inner ear, and defects in heart and lung development in chuzhoi mutants. We demonstrate a genetic interaction between chuzhoi mutants and both Vangl2 Lp and Celsr1 Crsh mutants, strengthening the hypothesis that chuzhoi is involved in regulating the PCP pathway. We demonstrate that chuzhoi maps to Chromosome 17 and carries a splice site mutation in Ptk7. This mutation results in the insertion of three amino acids into the Ptk7 protein and causes disruption of Ptk7 protein expression in chuzhoi mutants.

Conclusions

The chuzhoi mutant provides an additional genetic resource to help investigate the developmental basis of several congenital abnormalities including neural tube, heart and lung defects and their relationship to disruption of PCP. The chuzhoi mutation differentially affects the expression levels of the two Ptk7 protein isoforms and, while some Ptk7 protein can still be detected at the membrane, chuzhoi mutants demonstrate a significant reduction in membrane localization of Ptk7 protein. This mutant provides a useful tool to allow future studies aimed at understanding the molecular function of Ptk7.  相似文献   

5.
Planar cell polarity (PCP) regulates cell alignment required for collective cell movement during embryonic development. This requires PCP/PCP effector proteins, some of which also play essential roles in ciliogenesis, highlighting the long-standing question of the role of the cilium in PCP. Wdpcp, a PCP effector, was recently shown to regulate both ciliogenesis and collective cell movement, but the underlying mechanism is unknown. Here we show Wdpcp can regulate PCP by direct modulation of the actin cytoskeleton. These studies were made possible by recovery of a Wdpcp mutant mouse model. Wdpcp-deficient mice exhibit phenotypes reminiscent of Bardet–Biedl/Meckel–Gruber ciliopathy syndromes, including cardiac outflow tract and cochlea defects associated with PCP perturbation. We observed Wdpcp is localized to the transition zone, and in Wdpcp-deficient cells, Sept2, Nphp1, and Mks1 were lost from the transition zone, indicating Wdpcp is required for recruitment of proteins essential for ciliogenesis. Wdpcp is also found in the cytoplasm, where it is localized in the actin cytoskeleton and in focal adhesions. Wdpcp interacts with Sept2 and is colocalized with Sept2 in actin filaments, but in Wdpcp-deficient cells, Sept2 was lost from the actin cytoskeleton, suggesting Wdpcp is required for Sept2 recruitment to actin filaments. Significantly, organization of the actin filaments and focal contacts were markedly changed in Wdpcp-deficient cells. This was associated with decreased membrane ruffling, failure to establish cell polarity, and loss of directional cell migration. These results suggest the PCP defects in Wdpcp mutants are not caused by loss of cilia, but by direct disruption of the actin cytoskeleton. Consistent with this, Wdpcp mutant cochlea has normal kinocilia and yet exhibits PCP defects. Together, these findings provide the first evidence, to our knowledge, that a PCP component required for ciliogenesis can directly modulate the actin cytoskeleton to regulate cell polarity and directional cell migration.  相似文献   

6.
Cell polarity genes have important functions in photoreceptor morphogenesis. Based on recent discovery of stabilized microtubule cytoskeleton in developing photoreceptors and its role in photoreceptor cell polarity, microtubule associated proteins might have important roles in controlling cell polarity proteins' localizations in developing photoreceptors. Here, Tau, a microtubule associated protein, was analyzed to find its potential role in photoreceptor cell polarity. Tau colocalizes with acetylated/stabilized microtubules in developing pupal photoreceptors. Although it is known that tau mutant photoreceptor has no defects in early eye differentiation and development, it shows dramatic disruptions of cell polarity proteins, adherens junctions, and the stable microtubules in developing pupal photoreceptors. This role of Tau in cell polarity proteins' localization in photoreceptor cells during the photoreceptor morphogenesis was further supported by Tau's overexpression studies. Tau overexpression caused dramatic expansions of apical membrane domains where the polarity proteins localize in the developing pupal photoreceptors. It is also found that Tau's role in photoreceptor cell polarity depends on Par‐1 kinase. Furthermore, a strong genetic interaction between tau and crumbs was found. It is found that Tau has a crucial role in cell polarity protein localization during pupal photoreceptor morphogenesis stage, but not in early eye development including eye cell differentiation.  相似文献   

7.
Spectrins are major proteins in the cytoskeletal network of most cells. In Drosophila, βHeavy‐Spectrin encoded by the karst gene functions together with Crb during photoreceptor morphogenesis. However, the roles of two other Spectrins (α‐ and β‐Spectrins) in developing photoreceptor cells have not been studied. Here, we analyzed the effects of spectrin mutations on developing eyes to determine their roles in photoreceptor morphogenesis. We found that the Spectrins are dispensable for retinal differentiation in eye imaginal discs during larval stage. However, photoreceptors deficient in α‐ or β‐Spectrin display dramatic apical membrane expansions including Crb and show morphogenesis defects during pupal eye development, suggesting that α‐ and β‐Spectrins are specifically required for photoreceptor polarity during pupal eye development. Karst localizes apically, whereas β‐Spectrin is preferentially distributed in the basolateral region. We show that overexpression of β‐Spectrin causes a strong shrinkage of apical membrane domains, and loss of β‐Spectrin causes an expansion of apical domains, implying an antagonistic relationship between β‐Spectrin and Karst. These results indicate that Spectrins are required for controlling photoreceptor morphogenesis through the modulations of cell membrane domains. genesis 47:744–750, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
During development, epithelial cells in some tissues acquire a polarity orthogonal to their apical–basal axis. This polarity, referred to as planar cell polarity (PCP), or tissue polarity, is essential for the normal physiological function of many epithelia. Early studies of PCP focused on insect epithelia (Lawrence, 1966 [1]), and the earliest genetic analyses were carried out in Drosophila (Held et al., 1986; Gubb and Garcia-Bellido, 1982 [2,3]). Indeed, most of our mechanistic understanding of PCP derives from the ongoing use of Drosophila as a model system. However, a range of medically important developmental defects and physiological processes are under the control of PCP mechanisms that appear to be at least partially conserved, driving considerable interest in studying PCP both in Drosophila and in vertebrate model systems. Here, I present a model of the PCP signaling mechanism based on studies in Drosophila. I highlight two areas in which our understanding is deficient, and which lead to current confusion in the literature. Future studies that shed light on these areas will substantially enhance our understanding of the fascinating yet challenging problem of understanding the mechanisms that generate PCP.  相似文献   

9.
Collective and directed cell movements are crucial for diverse developmental processes in the animal kingdom, but they are also involved in wound repair and disease. During these processes groups of cells are oriented within the tissue plane, which is referred to as planar cell polarity (PCP). This requires a tight regulation that is in part conducted by the PCP pathway. Although this pathway was initially characterized in flies, subsequent studies in vertebrates revealed a set of conserved core factors but also effector molecules and signal modulators, which build the fundamental PCP machinery. The PCP pathway in Drosophila regulates several developmental processes involving collective cell movements such as border cell migration during oogenesis, ommatidial rotation during eye development, and embryonic dorsal closure. During vertebrate embryogenesis, PCP signaling also controls collective and directed cell movements including convergent extension during gastrulation, neural tube closure, neural crest cell migration, or heart morphogenesis. Similarly, PCP signaling is linked to processes such as wound repair, and cancer invasion and metastasis in adults. As a consequence, disruption of PCP signaling leads to pathological conditions. In this review, we will summarize recent findings about the role of PCP signaling in collective cell movements in flies and vertebrates. In addition, we will focus on how studies in Drosophila have been relevant to our understanding of the PCP molecular machinery and will describe several developmental defects and human disorders in which PCP signaling is compromised. Therefore, new discoveries about the contribution of this pathway to collective cell movements could provide new potential diagnostic and therapeutic targets for these disorders.  相似文献   

10.
Neural tube defects (NTDs) are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP) pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2Lp, ScribCrc and Celsr1Crsh mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1Crsh;Vangl2Lp;ScribCrc triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas ScribCrc is a null mutant and produces no Scrib protein, Celsr1Crsh and Vangl2Lp homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic interactions are of direct relevance to human patients and emphasize the importance of performing comprehensive genetic screens in humans.KEY WORDS: Neural tube defects, Planar cell polarity, Genetic interactions, Craniorachischisis, Multiple heterozygosity  相似文献   

11.
Abstract

Studies on cell polarity proteins and planar cell polarity (PCP) proteins date back to almost 40?years ago in Drosophila and C. elegans when these proteins were shown to be crucial to support apico-basal polarity and also directional alignment of polarity cells across the plane of an epithelium during morphogenesis. In adult mammals, cell polarity and PCP are most notable in cochlear hair cells. However, the role of these two groups of proteins to support spermatogenesis was not explored until a decade earlier when several proteins that confer cell polarity and PCP proteins were identified in the rat testis. Since then, there are several reports appearing in the literature to examine the role of both cell polarity and PCP in supporting spermatogenesis. Herein, we provide an overview regarding the role of cell polarity and PCP proteins in the testis, evaluating these findings in light of studies in other mammalian epithelial cells/tissues. Our goal is to provide a timely evaluation of these findings, and provide some thought provoking remarks to guide future studies based on an evolving concept in the field.  相似文献   

12.
Cells of many tissues acquire cellular asymmetry to execute their physiologic functions. The planar cell polarity system, first characterized in Drosophila, is important for many of these events. Studies in Drosophila suggest that an upstream system breaks cellular symmetry by converting tissue gradients to subcellular asymmetry, whereas a downstream system amplifies subcellular asymmetry and communicates polarity between cells. In this review, we discuss apparent similarities and differences in the mechanism that controls PCP as it has been adapted to a broad variety of morphological cellular asymmetries in various organisms.The terms tissue polarity and planar cell polarity (PCP) were coined to describe the coordinated orientation of cells and cellular structures along an axis within the plane of an epithelial surface. Polarized cellular orientation and migration controlled by PCP is critical for multiple developmental processes, and defects underlie developmental anomalies. Vertebrate PCP mutations produce problems, including neural tube, cardiac, and renal developmental defects and misorientation of hair follicles and inner ear hair cells (Wang and Nathans 2007; Simons and Mlodzik 2008). PCP may be involved in the invasive and metastatic properties of carcinomas (Jessen 2009). Recently, many PCP-related phenotypes have been observed in association with mutations affecting primary cilia, thus connecting primary cilia to the PCP process (Singla and Reiter 2006; see Hirokawa et al. 2009). Therefore, dissecting the mechanisms of PCP signaling is of considerable interest.PCP was initially characterized in Drosophila through genetic studies of PCP mutants, which led to the proposal of a PCP signaling pathway (Wong and Adler 1993; reviewed in Adler 1992). According to newer models, epithelial polarity is established by the combination of a global directional cue distributed throughout the epithelium and cellular factors that interpret this cue to align cells with each other and the axis of polarity (Tree et al. 2002a; Zallen 2007). Once molecular polarity is determined, cell-type-specific downstream proteins affect morphological polarity. PCP components are highly conserved from flies to vertebrates, and the PCP pathway is now known to be active in many processes in polarized cells and tissues not limited to epithelia. PCP components are involved in oriented cell division, acquisition of asymmetric cellular morphology, and directional cell migration, each process representing a vectorial behavior. Although the mechanism of PCP signaling in most cases is just beginning to be understood, there appear to be diverse mechanisms sharing common themes. This mechanistic diversity may be demanded by the varying PCP-dependent morphological processes, and evidently arose by divergence from a common ancestral mechanism.Here, we describe our current understanding of how the PCP pathway functions in diverse processes, highlighting both common themes and diverging mechanisms. The obvious medical importance of the PCP pathway (see, for example, Kibar et al. 2007), and the growing interest in primary cilia will surely stimulate rapid gains in our knowledge of PCP in multiple cellular contexts.  相似文献   

13.
Laterality defects such as situs inversus are not uncommonly encountered in humans, either in isolation or as part of another syndrome, but can have devastating developmental consequences. The events that break symmetry during early embryogenesis are highly conserved amongst vertebrates and involve the establishment of unidirectional flow by cilia within an organising centre such as the node in mammals or Kupffer's vesicle (KV) in teleosts. Disruption of this flow can lead to the failure to successfully establish left-right asymmetry. The correct apical-posterior cellular position of each node/KV cilium is critical for its optimal radial movement which serves to sweep fluid (and morphogens) in the same direction as its neighbours. Planar cell polarity (PCP) is an important conserved process that governs ciliary position and posterior tilt; however the underlying mechanism by which this occurs remains unclear. Here we show that Bbs8, a ciliary/basal body protein important for intraciliary/flagellar transport and the core PCP protein Vangl2 interact and are required for establishment and maintenance of left-right asymmetry during early embryogenesis in zebrafish. We discovered that loss of bbs8 and vangl2 results in laterality defects due to cilia disruption at the KV. We showed that perturbation of cell polarity following abrogation of vangl2 causes nuclear mislocalisation, implying defective centrosome/basal body migration and apical docking. Moreover, upon loss of bbs8 and vangl2, we observed defective actin organisation. These data suggest that bbs8 and vangl2 act synergistically on cell polarization to establish and maintain the appropriate length and number of cilia in the KV and thereby facilitate correct LR asymmetry.  相似文献   

14.
Closure of the neural tube is essential for normal development of the brain and spinal cord. Failure of closure results in neural tube defects (NTDs), common and clinically severe congenital malformations whose molecular mechanisms remain poorly understood. On the other hand, it is increasingly well established that common molecular mechanisms are employed to regulate morphogenesis of multicellular organisms. For example, signaling triggered by polypeptide growth factors is highly conserved among species and utilized in multiple developmental processes. Recent studies have revealed that the Drosophila planar cell polarity (PCP) pathway, which directs position and direction of wing hairs on the surface of the fly wing, is well conserved, and orthologs of several genes encoding components of the pathway are also found in vertebrates. Interestingly, in vertebrates, this signaling pathway appears to be co-opted to regulate "convergent extension" cell movements during gastrulation. Disruption of vertebrate PCP genes in Xenopus laevis or zebrafish causes severe gastrulation defects or the shortening of the trunk, as well as mediolateral expansion of somites. In Xenopus, in which the neural tube closes by elevation and fusion of neural folds, inhibition of convergent extension can also prevent neural tube closure causing a "spina bifida-like" appearance. Furthermore, several of the genes involved in the PCP pathway have recently been shown to be required for neural tube closure in the mouse, since mutation of these genes causes NTDs. Therefore, understanding the mechanisms underlying the establishment of cell polarity in Drosophila may provide important clues to the molecular basis of NTDs.  相似文献   

15.
The development of specialized organs is tightly linked to the regulation of cell growth, orientation, migration and adhesion during embryogenesis. In addition, the directed movements of cells and their orientation within the plane of a tissue, termed planar cell polarity (PCP), appear to be crucial for the proper formation of the body plan. In Drosophila embryogenesis, Discs large (dlg) plays a critical role in apical-basal cell polarity, cell adhesion and cell proliferation. Craniofacial defects in mice carrying an insertional mutation in Dlgh-1 suggest that Dlgh-1 is required for vertebrate development. To determine what roles Dlgh-1 plays in vertebrate development, we generated mice carrying a null mutation in Dlgh-1. We found that deletion of Dlgh-1 caused open eyelids, open neural tube, and misorientation of cochlear hair cell stereociliary bundles, indicative of defects in planar cell polarity (PCP). Deletion of Dlgh-1 also caused skeletal defects throughout the embryo. These findings identify novel roles for Dlgh-1 in vertebrates that differ from its well-characterized roles in invertebrates and suggest that the Dlgh-1 null mouse may be a useful animal model to study certain human congenital birth defects.  相似文献   

16.
Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP) in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell''s apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP) is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2) in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.  相似文献   

17.

Background

Mutations in spastin are the most common cause of hereditary spastin paraplegia, a neurodegenerative disease. In this study, the role of spastin was examined in Drosophila photoreceptor development.

Methodology/Principal Findings

The spastin mutation in developing pupal eyes causes a mild mislocalization of the apical membrane domain at the distal section, but the apical domain was dramatically reduced at the proximal section of the developing pupal eye. Since the rhabdomeres in developing pupal eyes grow from distal to proximal, this phenotype strongly suggests that spastin is required for apical domain maintenance during rhabdomere elongation. This role of spastin in apical domain modulation was further supported by spastin''s gain-of-function phenotype. Spastin overexpression in photoreceptors caused the expansion of the apical membrane domain from apical to basolateral in the developing photoreceptor. Although the localizations of the apical domain and adherens junctions (AJs) were severely expanded, there were no defects in cell polarity.

Conclusions/Significance

These results strongly suggest that spastin is essential for apical domain biogenesis during rhabdomere elongation in Drosophila photoreceptor morphogenesis.  相似文献   

18.
We investigate planar cell polarity (PCP) in the Drosophila larval epidermis. The intricate pattern of denticles depends on only one system of PCP, the Dachsous/Fat system. Dachsous molecules in one cell bind to Fat molecules in a neighbour cell to make intercellular bridges. The disposition and orientation of these Dachsous–Fat bridges allows each cell to compare two neighbours and point its denticles towards the neighbour with the most Dachsous. Measurements of the amount of Dachsous reveal a peak at the back of the anterior compartment of each segment. Localization of Dachs and orientation of ectopic denticles help reveal the polarity of every cell. We discuss whether these findings support our gradient model of Dachsous activity. Several groups have proposed that Dachsous and Fat fix the direction of PCP via oriented microtubules that transport PCP proteins to one side of the cell. We test this proposition in the larval cells and find that most microtubules grow perpendicularly to the axis of PCP. We find no meaningful bias in the polarity of microtubules aligned close to that axis. We also reexamine published data from the pupal abdomen and find no evidence supporting the hypothesis that microtubular orientation draws the arrow of PCP.  相似文献   

19.
The rate of loss of water and the rate of uptake of oxygen were measured continuously throughout the development of Lucilia cuprina within the puparium. Changes in these parameters were correlated with changes observed in morphology of cuticles and respiratory structures during development.In development at 26°C, there is, at 20–22 hr after puparium formation a major loss of water by mechanical expulsion of moulting fluid chiefly through the posterior larval spiracles after the severing of the posterior larval tracheae. This loss of water is essential to survival and is followed by an extremely low rate of water loss attributed to slow diffusion of water through the resulting air gap between the pupal cuticle and the puparium. There is an increase in oxygen consumption during the pupal movements associated with the casting of the larval tracheae followed by a sharp reduction in oxygen consumption until the pupal horns are everted a short time later. This combination of physiological events enables development to proceed over a wide range of conditions in the puparial environment.  相似文献   

20.
The transporting function of many branched tubular networks like our lungs and circulatory system depend on the sizes and shapes of their branches. Understanding the mechanisms of tube size control during organ development may offer new insights into a variety of human pathologies associated with stenoses or cystic dilations in tubular organs. Here, we present the first secreted luminal proteins involved in tube diametric expansion in the Drosophila airways. obst-A and gasp are conserved among insect species and encode secreted proteins with chitin binding domains. We show that the widely used tracheal marker 2A12, recognizes the Gasp protein. Analysis of obst-A and gasp single mutants and obst-A; gasp double mutant shows that both genes are primarily required for airway tube dilation. Similarly, Obst-A and Gasp control epidermal cuticle integrity and larval growth. The assembly of the apical chitinous matrix of the airway tubes is defective in gasp and obst-A mutants. The defects become exaggerated in double mutants indicating that the genes have partially redundant functions in chitin structure modification. The phenotypes in luminal chitin assembly in the airway tubes are accompanied by a corresponding reduction in tube diameter in the mutants. Conversely, overexpression of Obst-A and Gasp causes irregular tube expansion and interferes with tube maturation. Our results suggest that the luminal levels of matrix binding proteins determine the extent of diametric growth. We propose that Obst-A and Gasp organize luminal matrix assembly, which in turn controls the apical shapes of adjacent cells during tube diameter expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号