首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aims:  The aim of this paper was to develop a loop-mediated isothermal amplification (LAMP) method for rapid, sensitive and inexpensive detection of Singapore grouper iridovirus (SGIV) in grouper (GP), Epinephelus sp.
Methods and Results:  A set of six specific primers was designed by targeting the SGIV ORF-014L. With Bst DNA polymerase large fragment, the target DNA can be amplified as early as 20 min at 65°C in a simple water bath. The detection limit is about 0·02 fg (equivalent to 6·3 copies) of plasmid ORF-014L. LAMP products could be judged with three different methods. There were no cross-reactions with seven other aquatic animal viruses indicating high specificity of the LAMP. The LAMP method was applied to detect SGIV in virus-infected GP cells and GP tissues effectively.
Conclusions:  The LAMP described in this study is a cheap, sensitive, specific and rapid protocol for the detection of SGIV in cells and in GP tissues.
Significance and Impact of the Study:  The developed LAMP method can be simply applied both in field condition and in laboratory operation for specific detection of SGIV infection.  相似文献   

3.
Aims:  To develop a rapid and sensitive method for detecting Brucella spp.
Methods and Results:  Two sets of six Brucella -specific primers for loop-mediated isothermal amplification (LAMP) were designed from the sequence of the Brucella abortus BCSP31 gene. The specificity and sensitivity were examined for six Brucella species (22 strains) and 18 non- Brucella species (28 strains). The LAMP assay was specific to Brucella spp. in 35 min at 63°C and sensitive (detected 10 fg of genomic DNA). The assay was also applied for the detection of Brucella DNA in contaminated milk and infected mouse organs.
Conclusions:  We developed a sensitive and specific LAMP assay for Brucella spp., with the test appearing to be useful for the detection of the pathogen from clinical and food samples.
Significance and Impact of the Study:  This is the first report of the development of LAMP for the detection of Brucella spp. As the LAMP assay can be performed at a constant temperature and its reactivity is directly observed with the naked eye without electrophoresis, our assay should be useful for the diagnosis of brucellosis as well as the detection of the bacteria in environmental or food samples.  相似文献   

4.
Objective To establish a loop-mediated isothermal amplification( LAMP) method for detecting diarrhea pathogens( Shigella and Salmonella) in rhesus monkeys and evaluate the application of the LAMP method for detecting bacterial diseases in nonhuman primate laboratory animals. Materials and Methods A total of 205 fecal samples of rhesus monkeys were detected in this LAMP assay. The specificity and sensitivity of LAMP for Shigella and Salmonella were analyzed,and real-time polymerase chain reaction( REAL-TIME PCR) assay was employed as control. Results The LAMP method established here needed only 45 min to complete the reaction at 63℃. Its detection limit was 10 pg / μL and with a high specificity. The positive rate of Shigella and Salmonella was 1. 5% and 6. 3%,respectively. Conclusions Here we have established a fast and simple Shigella and Salmonella LAMP detection method that has strong specificity and high sensitivity and is suitable for rapid detection of bacterial disease in macaques. The development of this rapid detection kit is underway,and it will be helpful to the diarrhea detection.  相似文献   

5.
6.
A colorimetric loop-mediated isothermal amplification (LAMP) assay with hydroxy naphthol blue was designed to amplify a region in the outer membrane lipoprotein (oprL) gene of Pseudomonas aeruginosa. The LAMP assay showed 100% specificity for the serogroup and other bacteria, and the sensitivity was 10-fold higher than that of the PCR assays. The LAMP assay could detect P. aeruginosa inoculated in mouse feces at 130 colony-forming units (CFU)/0.1 g feces (3.25 CFU/reaction). The assay was completed within 2 h from DNA extraction. In a field trial, the LAMP assay revealed that none of the 27 samples was obtained from 2 specific pathogen-free (SPF) mouse facilities that were monitoring infection with P. aeruginosa; 1 out of 12 samples from an SPF mouse facility that was not monitoring infection with P. aeruginosa and 2 out of 7 samples from a conventional mouse facility were positive for P. aeruginosa. In contrast, P. aeruginosa was not detected in any of the samples by a conventional culture assay. Thus, this colorimetric LAMP assay is a simple and rapid method for P. aeruginosa detection.  相似文献   

7.
Recent outbreaks linked to Salmonella-contaminated produce heightened the need to develop simple, rapid, and accurate detection methods, particularly those capable of determining cell viability. In this study, we examined a novel strategy for the rapid detection and quantification of viable salmonellae in produce by coupling a simple propidium monoazide sample treatment with loop-mediated isothermal amplification (PMA-LAMP). We first designed and optimized a LAMP assay targeting Salmonella. Second, the performance of PMA-LAMP for detecting and quantifying viable salmonellae was determined. Finally, the assay was evaluated in experimentally contaminated produce items (cantaloupe, spinach, and tomato). Under the optimized condition, PMA-LAMP consistently gave negative results for heat-killed Salmonella cells with concentrations up to 10(8) CFU/ml (or CFU/g in produce). The detection limits of PMA-LAMP were 3.4 to 34 viable Salmonella cells in pure culture and 6.1 × 10(3) to 6.1 × 10(4) CFU/g in spiked produce samples. In comparison, PMA-PCR was up to 100-fold less sensitive. The correlation between LAMP time threshold (T(T)) values and viable Salmonella cell numbers was high (R(2) = 0.949 to 0.993), with a quantification range (10(2) to 10(5) CFU/reaction in pure culture and 10(4) to 10(7) CFU/g in produce) comparable to that of PMA in combination with quantitative real-time PCR (PMA-qPCR). The complete PMA-LAMP assay took about 3 h to complete when testing produce samples. In conclusion, this rapid, accurate, and simple method to detect and quantify viable Salmonella cells in produce may present a useful tool for the produce industry to better control potential microbial hazards in produce.  相似文献   

8.
9.
Opisthorchis viverrini and other foodborne trematode infections are major health problem in Thailand, the Lao People's Democratic Republic, Vietnam and Cambodia. Differential diagnosis of O. viverrini based on the microscopic observation of parasite eggs is difficult in areas where Clonorchis sinensis and minute intestinal flukes coexist. We therefore established a rapid, sensitive and specific method for detecting O. viverrini infection from the stool samples using the loop-mediated isothermal amplification (LAMP) method. A total of five primers from seven regions were designed to target the internal transcribed spacer 1 (ITS1) in ribosomal DNA for specific amplification. Hydroxy naphthol blue (HNB) was more effective to detect the LAMP product compared to the Real-time LAMP and turbidity assay for its simple and distinct detection. The LAMP assay specifically amplified O. viverrini ITS1 but not C. sinensis and minute intestinal flukes with the limit of detection around 10− 3 ng DNA/μL. The sensitivity of the LAMP was 100% compared to egg positive samples. While all microscopically positive samples were positive by LAMP, additionally 5 of 13 (38.5%) microscopically negative samples were also LAMP positive. The technique has great potential for differential diagnosis in endemic areas with mixed O. viverrini and intestinal fluke infections. As it is an easy and simple method, the LAMP is potentially applicable for point-of-care diagnosis.  相似文献   

10.
Loop-mediated isothermal amplification (LAMP) was applied to develop a rapid and simple detection system for eight periodontal pathogens: Aggregatibacter (Actinobacillus) actinomycetemcomitans, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Treponema denticola and Tannerella forsythia. Primers were designed from the 16S ribosomal RNA gene for each pathogen, and the LAMP amplified the targets specifically and efficiently under isothermal condition at 64 degrees C. To simplify the manipulation of LAMP examination, boiled cells and intact cells suspended in phosphate-buffered saline (PBS) were tested as templates besides extracted DNA template. The detection limits were 1-10 cells per tube using extracted DNA template. However, LAMP methods using boiled cells and intact cells required 10-100 and 100-1000 cells per tube, respectively. LAMPs for A. actinomycetemcomitans, P. gingivalis and P. intermedia were then applied to clinical plaque samples, and the method demonstrated equal or higher sensitivity compared with the conventional real-time PCR method. These findings suggest the usefulness of the LAMP method for the rapid and simple microbiological diagnosis of periodontitis, and the possibility of LAMP examination without the DNA extraction step.  相似文献   

11.
Aims:  To develop a convenient and rapid detection method for toxigenic Clostridium botulinum types A and B using a loop-mediated isothermal amplification (LAMP) method.
Methods and results:  The LAMP primer sets for the type A or B botulinum neurotoxin gene, BoNT / A or BoNT / B , were designed. To determine the specificity of the LAMP assay, a total of 14 C. botulinum strains and 17 other Clostridium strains were tested. The assays for the BoNT/A or BoNT/B gene detected only type A or B C. botulinum strains, respectively, but not other types of C. botulinum or strains of other Clostridium species. Using purified chromosomal DNA, the sensitivity of LAMP for the BoNT/A or BoNT/B gene was 1 pg or 10 pg of DNA per assay, respectively. The assay times needed to detect 1 ng of DNA were only 23 and 22 min for types A and B, respectively. In food samples, the detection limit per reaction was one cell for type A and 10 cells for type B.
Conclusions:  The LAMP is a sensitive, specific and rapid detection method for C. botulinum types A and B.
Significance and Impact of the Study:  The LAMP assay would be useful for detection of C. botulinum in environmental samples.  相似文献   

12.
13.
With an aim to develop a quick and simple method to survey pathogen-transmitting vectors, LAMP (loop-mediated isothermal amplification) was applied to the identification of Plasmodium-carrying mosquitoes, specifically a Plasmodium-transmitting experimental model using rodent malaria parasite (Plasmodium berghei) and anopheline mosquitoes (Anopheles stephensi). The detection sensitivity limit of the LAMP reaction amplifying the SPECT2 gene was determined to be 1 × 102 purified Plasmodium parasites, estimated to be sufficient for reliable identification of infectious mosquitoes. The robustness of the LAMP reaction was revealed by its ability to detect both Plasmodium oocysts and sporozoites from an “all-in-one” template using whole mosquito bodies. Moreover, LAMP successfully identified an infectious mosquito carrying just a single oocyst in its midgut, a level that can be easily overlooked in conventional microscopic analysis. These observations suggest that LAMP is more reliable and useful for routine diagnosis of vector mosquitoes in regions where vector-borne diseases such as malaria are endemic.  相似文献   

14.
The dinoflagellate Prorocentrum minimum was successfully detected using loop-mediated isothermal amplification (LAMP) and real-time fluorescence quantitative PCR (RTFQ-PCR). Both specificity and sensitivity testing in the two methods have been validated. In the LAMP assay, the specific ladder-like pattern of bands only appeared in those templates containing P. minimum. The sensitivity of LAMP was tenfold higher than conventional PCR. In RTFQ-PCR assay, only positive amplifications were detected from those samples containing P. minimum. RTFQ-PCR can detect 0.1 cells and 10 pg of DNA within 40 cycles, showing its high sensitivity. Cells could be quantified according to standard curves in agreement with the quantification by standard microscopy counting methods. The LAMP method therefore is appropriate for on-the-spot testing because of its rapidity and simplification, and the RTFQ-PCR is fit for laboratory testing owing to its accurate quantification. The two methods are of significance in forecasting red tides.  相似文献   

15.
Environmental water is considered one of the main vehicles for the transmission of antimicrobial resistance (AMR), posing an increasing threat to humans and animals health. Continuous efforts are being made to eliminate AMR; however, the detection of AMR pathogens from water samples often requires at least one culture step, which is time-consuming and can limit sensitivity. In this study, we employed comparative genomics to identify the prevalence of AMR genes within among: Escherichia coli, Klebsiella, Salmonella enterica and Acinetobacter, using publicly available genomes. The mcr-1, blaKPC (KPC-1 to KPC-4 alleles), blaOXA-48, blaOXA-23 and blaVIM (VIM-1 and VIM-2 alleles) genes are of great medical and veterinary significance, thus were selected as targets for the development of isothermal loop-mediated amplification (LAMP) detection assays. We also developed a rapid and sensitive sample preparation method for an integrated culture-independent LAMP-based detection from water samples. The developed assays successfully detected the five AMR gene markers from pond water within 1 h and were 100% sensitive and specific with a detection limit of 0.0625 μg/mL and 10 cfu/mL for genomic DNA and spiked bacterial cells, respectively. The integrated detection can be easily implemented in resource-limited areas to enhance One Health AMR surveillances and improve diagnostics.  相似文献   

16.
Loop-mediated isothermal amplification (LAMP) is a novel DNA amplification method that amplifies a target sequence specifically under isothermal conditions. The product of LAMP is detected by the turbidity of the reaction mixture without electrophoresis. The objective of this study was to develop a rapid sexing method for bovine preimplantation embryos using LAMP. The first experiment was conducted to optimize the DNA extraction method for LAMP-based embryo sexing. The DNA of single blastomeres was extracted using three methods: heat, NaOH, and proteinase K-Tween 20 (PK-TW) treatments. Sexing was performed with two LAMP reactions, male-specific and male-female common reaction, after DNA extraction. The rates of correct determination of sex were 88.9-94.4%, with no difference among methods. The sensitivity and accuracy of LAMP-based embryo sexing were evaluated in the next experiment. The proportion of samples in which the sex was correctly determined was 75-100% for one to five biopsied cells. Lastly, in vivo-derived embryos were examined to verify the usefulness of LAMP-based embryo sexing, and some of these fresh, sexed embryos were transferred into recipient animals. The time needed for sexing was <1 h. The pregnancy rate was 57.4% and all calves born were of the predicted sex (12 male and 21 female). Therefore, LAMP-based embryo sexing accurately determined gender and is suitable for field application.  相似文献   

17.
New methods were developed for the detection of koi herpesvirus (KHV, CyHV-3) by LAMP, which were compared with the PCR for specificity and sensitivity. We designed two primer sets targeting a specific sequence within the 9/5 PCR amplicon (9/5 LAMP) and the upper region of the Sph I-5 PCR amplicon ( Sph I-5 LAMP), including a sequence highly conserved among the strains. The amplification was monitored in real-time based on the increase in turbidity, with magnesium pyrophosphate as the by-product. The reactions were carried out under isothermal conditions at 65°C for 60 min. The detection limit of both LAMP was six copies, equal to the modified Sph I-5 PCR. No cross-reactivity with other fish pathogenic viruses and bacteria was observed. Sph I-5 LAMP was found to have a quicker response in terms of the reaction velocity than 9/5 LAMP. Therefore, we consider Sph I-5 LAMP to be superior for routine use. Additionally, LAMP was found applicable to crude extract from gills and other organs. LAMP methods are superior in terms of sensitivity, specificity, rapidity and simplicity, and are potentially a valuable diagnostic tool for KHV infections.  相似文献   

18.
19.
20.
目的建立并优化环介导等温扩增(LAMP)技术对解脲脲原体(U.urealyticum)的检测,并应用于临床样本分析。方法针对U.urealyticum的urease基因设计LAMP引物;研究LAMP的最适温度、最佳检测时间及灵敏度和特异度;与传统PCR检测进行方法学比对。结果 LAMP技术检测U.urealyticum的最适温度和最佳时间分别是61℃和60 min,并且具有良好灵敏度和特异度,较普通PCR检测的灵敏度高出1 000倍。临床样本检测中,PCR和LAMP技术达到的灵敏度分别为25.00%和87.50%。两种方法的特异度均为100.00%。结论 LAMP与PCR相比在基层检测和大规模筛查方面有显著的优势和巨大的利用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号