首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animal alarm calls can encode information about a predator''s category, size, distance or threat level. In non-human primates, alarm calls typically refer to broad classes of disturbances, in some instances to specific predators. Here, we present the results of a field experiment with a New World primate, the black-fronted titi monkey (Callicebus nigrifrons), designed to explore the information conveyed by their alarm call system. Adults produced sequences consisting of two main alarm call types that conveyed, in different parts of the utterance, information about a predator''s type and location. In particular, sequence compositions differed depending on whether the predator was a mammalian carnivore or a raptor, and whether it was detected in a tree or on the ground. This is the first demonstration of a sequence-based alarm call system in a non-human animal that has the capacity to encode both location and type of predatory threat.  相似文献   

2.
Compared to humans, non-human primates have very little control over their vocal production. Nonetheless, some primates produce various call combinations, which may partially offset their lack of acoustic flexibility. A relevant example is male Campbell''s monkeys (Cercopithecus campbelli), which give one call type (‘Krak’) to leopards, while the suffixed version of the same call stem (‘Krak-oo’) is given to unspecific danger. To test whether recipients attend to this suffixation pattern, we carried out a playback experiment in which we broadcast naturally and artificially modified suffixed and unsuffixed ‘Krak’ calls of male Campbell''s monkeys to 42 wild groups of Diana monkeys (Cercopithecus diana diana). The two species form mixed-species groups and respond to each other''s vocalizations. We analysed the vocal response of male and female Diana monkeys and overall found significantly stronger vocal responses to unsuffixed (leopard) than suffixed (unspecific danger) calls. Although the acoustic structure of the ‘Krak’ stem of the calls has some additional effects, subject responses were mainly determined by the presence or the absence of the suffix. This study indicates that suffixation is an evolved function in primate communication in contexts where adaptive responses are particularly important.  相似文献   

3.
Communication about the presence of predators is an important benefit of group living. Critical information about the nature of danger can be conveyed through referential alarm calls. Raptors pose a significant predatory threat to callitrichid species. Unlike a raptor in flight, a perched raptor cannot attack suddenly at great speed, and it can be monitored from a safe distance. In this sense a perched bird may pose a threat more similar to that of a terrestrial predator such as a snake. Here we compare predatory contexts by addressing these two questions: 1) Do marmosets produce acoustically distinct alarm calls to snake models and perched raptor models? 2) Do the visual responses of the marmosets to the playbacks of perched raptor–elicited calls differ from those given to the playbacks of calls given in response to snakes? We recorded alarm calls from two groups of outdoor-housed Geoffroy’s marmosets (Callithrix geoffroyi) in response to predator models. Later, we played back stimuli created from these recordings to the marmosets and scored their gaze direction. Results show that calls given to models of perched raptors are acoustically distinct from those given to models of snakes. Further, the relative number of upward to downward looks while listening to the playbacks of perched raptor–elicited calls was significantly greater than it was for snake-elicited calls. Reactions to airborne raptors are known to elicit freezing or rapid flight, neither of which occurred in response to our playbacks. Our data suggest a greater complexity in the alarm call repertoire of marmosets than previously demonstrated.  相似文献   

4.
《Animal behaviour》1988,36(2):477-486
Free-ranging vervet monkeys, Cercopithecus aethiops, who had learned to ignore playbacks of one type of call by an unreliable signaller subsequently also ignored playback of an acoustically different call by the same individual if the calls had similar referents. Such transfer did not occur if either the identity of the signaller changed or if the two calls had different referents. After repeatedly being played an intergroup call in the absence of other groups, vervets also ignored an acoustically different intergroup call given by the same individual. The monkeys did not transfer habituation, however, if the new call was given by a different individual. In tests where the referents of two calls were different, the monkeys also failed to transfer habituation across call types. Vervet monkeys who had learned to ignore an unreliable leopard alarm call did not later ignore an eagle alarm call, even when the signaller remained the same. Results suggest that vervets, like humans, process information at a semantic, and not just an acoustic, level.  相似文献   

5.
Context-specific calls, which have a distinct acoustic structure and are selectively produced in specific contexts, are a prerequisite for calls that function referentially. Functionally referential calls, which convey information to conspecifics about objects and events in the external world, have been found in a number of species, notably primates. Evidence of context-specific calls in apes, however, is largely absent. We analysed whether the barks of wild male chimpanzees in the Ta? Forest, Côte d'Ivoire, are context specific. We examined the acoustic structure of barks, and other calls produced in association with barks, in six contexts, using discriminant function analysis. Chimpanzees produced context-specific signals in two ways. First, they produced two acoustically graded bark subtypes, in hunt and snake contexts, respectively. Second, they produced context-specific signal combinations of barks with acoustically different call types or drums. These signal combinations increased specificity levels in three of the six contexts to over 90%, a level similar to the classic vervet monkey, Cercophithecus aethiops, predator alarm calls. Furthermore, specific chimpanzee signals were produced in contexts other than alarm, such as travel and hunting, where the potential benefits of evolving specific calls are less obvious. These signals may convey specific context information to listeners, and thus function referentially; however, to confirm this, analyses of listeners' responses are required. The results show that two strategies for producing context-specific signals seem to have evolved in a species other than humans: chimpanzees produce context-specific bark subtypes and context-specific signal combinations. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

6.
7.
Studies on primate vocalisation have revealed different types of alarm call systems ranging from graded signals based on response urgency to functionally referential alarm calls that elicit predator‐specific reactions. In addition, alarm call systems that include both highly specific and other more unspecific calls have been reported. There has been consistent discussion on the possible factors leading to the evolution of different alarm call systems, among which is the need of qualitatively different escape strategies. We studied the alarm calls of free‐ranging saddleback and moustached tamarins (Saguinus fuscicollis and Saguinus mystax) in northeast Peru. Both species have predator‐specific alarm calls and show specific non‐vocal reactions. In response to aerial predators, they look upwards and quickly move downwards, while in response to terrestrial predators, they look downwards and sometimes approach the predator. We conducted playback experiments to test if the predator‐specific reactions could be elicited in the absence of the predator by the tamarins’ alarm calls alone. We found that in response to aerial alarm call playbacks the subjects looked significantly longer upwards, and in response to terrestrial alarm call playbacks they looked significantly longer downwards. Thus, the tamarins reacted as if external referents, i.e. information about the predator type or the appropriate reaction, were encoded in the acoustic features of the calls. In addition, we found no differences in the responses of S. fuscicollis and S. mystax whether the alarm call stimulus was produced by a conspecific or a heterospecific caller. Furthermore, it seems that S. fuscicollis terrestrial alarm calls were less specific than either S. mystax terrestrial predator alarms or either species’ aerial predator alarms, but because of the small sample size it is difficult to draw a final conclusion.  相似文献   

8.
The ability for humans to create seemingly infinite meaning from a finite set of sounds has likely been a critical component in our success as a species, allowing the unbounded communication of information. Syntax, the combining of meaningful sounds into phrases, is one of the primary features of language that enables this extensive expressivity. The evolutionary history of syntax, however, remains largely debated, and it is only very recently that comparative data for syntax in animals have been revealed. Here, we provide further evidence for a structural basis of potential syntactic‐like call combinations in the vocal communication system of a group‐living songbird. Acoustic analyses indicate that Western Australian magpies (Gymnorhina tibicen dorsalis) structurally combine generic alarm calls with acoustically distinct alert calls to produce an alarm alert sequence. These results are distinct from previous examples of call combinations as, to our knowledge, evidence for this capacity is yet to be demonstrated in the natural communication of a non‐human species that is capable of vocal learning throughout life. These findings offer prospects for experimental investigation into the presence and function of magpie call combinations, extending our understanding of animal vocal complexity.  相似文献   

9.
‘Contest hoots’ are acoustically complex vocalisations produced by adult and subadult male bonobos (Pan paniscus). These calls are often directed at specific individuals and regularly combined with gestures and other body signals. The aim of our study was to describe the multi-modal use of this call type and to clarify its communicative and social function. To this end, we observed two large groups of bonobos, which generated a sample of 585 communicative interactions initiated by 10 different males. We found that contest hooting, with or without other associated signals, was produced to challenge and provoke a social reaction in the targeted individual, usually agonistic chase. Interestingly, ‘contest hoots’ were sometimes also used during friendly play. In both contexts, males were highly selective in whom they targeted by preferentially choosing individuals of equal or higher social rank, suggesting that the calls functioned to assert social status. Multi-modal sequences were not more successful in eliciting reactions than contest hoots given alone, but we found a significant difference in the choice of associated gestures between playful and agonistic contexts. During friendly play, contest hoots were significantly more often combined with soft than rough gestures compared to agonistic challenges, while the calls'' acoustic structure remained the same. We conclude that contest hoots indicate the signaller''s intention to interact socially with important group members, while the gestures provide additional cues concerning the nature of the desired interaction.  相似文献   

10.
Nonlinear vocal phenomena are a ubiquitous feature of human and non-human animal vocalizations. Although we understand how these complex acoustic intrusions are generated, it is not clear whether they function adaptively for the animals producing them. One explanation is that nonlinearities make calls more unpredictable, increasing behavioural responses and ultimately reducing the chances of habituation to these call types. Meerkats (Suricata suricatta) exhibit nonlinear subharmonics in their predator alarm calls. We specifically tested the ‘unpredictability hypothesis’ by playing back naturally occurring nonlinear and linear medium-urgency alarm call bouts. Results indicate that subjects responded more strongly and foraged less after hearing nonlinear alarm calls. We argue that these findings support the unpredictability hypothesis and suggest this is the first study in animals or humans to show that nonlinear vocal phenomena function adaptively.  相似文献   

11.
The origin of language is one of the most significant evolutionary milestones of life on Earth, but one of the most persevering scientific unknowns. Two decades ago, game theorists and mathematicians predicted that the first words and grammar emerged as a response to transmission errors and information loss in language''s precursor system, however, empirical proof is lacking. Here, we assessed information loss in proto-consonants and proto-vowels in human pre-linguistic ancestors as proxied by orangutan consonant-like and vowel-like calls that compose syllable-like combinations. We played back and re-recorded calls at increasing distances across a structurally complex habitat (i.e. adverse to sound transmission). Consonant-like and vowel-like calls degraded acoustically over distance, but no information loss was detected regarding three distinct classes of information (viz. individual ID, context and population ID). Our results refute prevailing mathematical predictions and herald a turning point in language evolution theory and heuristics. Namely, explaining how the vocal–verbal continuum was crossed in the hominid family will benefit from future mathematical and computational models that, in order to enjoy empirical validity and superior explanatory power, will be informed by great ape behaviour and repertoire.  相似文献   

12.
In habitats in which multiple species are prey to the same predators, individuals can greatly benefit from recognizing information regarding predators that is provided by other species. Past studies have demonstrated that various mammals respond to familiar heterospecific alarm calls, but whether acoustic similarity to a familiar call can prompt a mammal's recognition of an unfamiliar call has yet to be shown. We presented alarm calls to free‐ranging eastern gray squirrels (Sciurus carolinensis) and recorded behavioral changes in vigilance and antipredatory response. Playbacks included alarm calls of a sympatric bird (American robin, Turdus migratorius), an allopatric bird with a call structure similar to that of the robin (common blackbird, Turdus merula), and an allopatric bird with a distinct call structure (New Holland honeyeater, Phylidonyris novaehollandiae). Squirrels responded significantly more frequently to squirrel alarm calls (positive control) than to robin song (negative control) or honeyeater calls. Squirrel response to robin and blackbird alarm calls was statistically similar to their response to squirrel alarm calls, indicating that squirrels responded to those alarm calls as if they provided information about the presence of predators. However, squirrel response to robin song was not statistically different from response to any of the other avian calls, including the robin and blackbird alarms, suggesting that squirrels neither respond to blackbird alarms as if they clearly signify danger, nor as if they clearly do not signify danger, perhaps reflecting some ambiguity in interpretation of the calls. These results suggest that squirrel responses to alarm calls are generally based on call familiarity, but that acoustic similarity of an unfamiliar allopatric call to a familiar call also can elicit antipredator behavior. The lack of response to honeyeater alarm calls also supports the hypothesis that call recognition by gray squirrels is dependent on familiarity, rather than simply detection of an acoustic feature common to alarm calls across a variety of avian species.  相似文献   

13.
Vervet monkeys (Cercopithecus aethiops) at Amboseli, Kenya, give acoustically different alarm calls to different predators. Each alarm evokes contrasting, seemingly adaptive, responses. Animals on the ground respond to leopard alarms by running into trees, to eagle alarms by looking up, and to snake alarms by looking down. In a 14-month field study examining the semantic properties of alarm calls, we played tape-recorded alarms to vervets in the absence of actual predators and filmed the monkeys' responses. Playbacks confirmed observations and showed that (1) alarm length, amplitude and alarmist's age/sex class had little effect on response quality, and (2) context was not a systematic determinant of response. We conclude that vervet alarm calls function to designate different classes of external danger.  相似文献   

14.
15.
When a predator is not an immediate threat, a prey may produce relatively loud alarm calls because the risk is low. Since such calls could nevertheless attract acoustically oriented predators, the cost of predator attraction must be outweighed by factors beneficial to the caller. In this field study we elicited low-risk alarm calls by temporarily catching wintering adult male great tits Parus major at feeders both within and outside their territories. We tested whether the alarm calls of dominant males can be explained in terms of mate warning, reciprocal altruism or notifying the predator of detection. If alarms are intended to warn mates, males accompanied by their mates should give alarm calls both within and outside home range, even if other permanent flock members are absent. If alarms are to be explained by reciprocal altruism, male great tits should give low-risk alarm calls when accompanied by permanent flock members other than mate within and not outside of the home-range. If alarm calling is a message to a predator, males should call when foraging alone. We found that male great tits gave low-risk alarm calls when accompanied by their mates, independent of feeder location. They also gave low-risk alarm calls within home ranges in the presence of other permanent flock members when mates were absent. In contrast, only a few males gave calls when foraging alone within their home ranges, or when in the company of unfamiliar great tits outside their usual home-range. The results suggest that the utterance of alarm calls may be explained as mate protection and reciprocal altruism among familiar individuals.  相似文献   

16.
In this study, we compared the usage of alarm calls and anti‐predator strategies between a captive and a wild lemur population. The wild lemur population was studied earlier in Western Madagascar ( Fichtel & Kappeler 2002 ). The captive population was studied in outdoor enclosures of the Duke University Primate Center. Alarm calls and anti‐predator behavior were elicited by conducting experiments with both vocal and visual dummies. We scored the subjects’ immediate behavioral responses, including alarm calls, from video recordings made during the experiments. In principle, both populations have a mixed alarm call system with functionally referential alarm calls for aerial predators and general alarm calls for terrestrial and aerial predators and for situations associated with high arousal, such as group encounters. Although wild and captive sifakas exhibit the same alarm call system and use the same alarm call types, we discovered striking differences in the usage and perception of some of the alarm calls. We argue that these differences indicate either an evolutionary drift in the meaning of these calls or reflect cultural variation. The latter possibility is consistent with our understanding of the ontogeny of call usage and comprehension.  相似文献   

17.
One commonly studied behavioral syndrome is the correlation between aggression and boldness. Studies in song sparrows (M. melodia) have found greater aggression and boldness in urban populations and a correlation between aggression and boldness in rural populations, but not within urban populations. In previous studies, boldness was measured as flight initiation distance (FID), which may reflect habituation by urban birds to human presence. In this study, we measured boldness using playbacks of heterospecific alarm calls and investigated whether higher boldness is a general trait of urban birds and whether the same pattern of correlations between aggression and boldness would be seen. We conducted trials involving FID, alarm call playbacks and conspecific song playbacks on 25 birds from both an urban and a rural site. The results showed that urban birds were bolder, as measured by FID and response to alarm calls. Boldness and aggression were correlated in rural birds with each method of measuring boldness but were correlated in urban birds only when using alarm call playbacks. Our results suggest that a behavioral syndrome exists in both urban and rural populations but that urban birds are able to decrease their response to human disturbance.  相似文献   

18.
Animal semantic communication has received considerable theoretical and empirical attention because of its relevance to human language. Advances have been made by studies of alarm-call behaviour in nonhumans. In monkeys, for example, there is evidence that recipients have a fairly sophisticated understanding of a call's meaning; that is, the predator type usually associated with a certain alarm call. Little is known, however, about the mental mechanisms that drive call production in nonhuman primates. In some nonprimate species, it has been found that signallers do not respond to a predator's physical features but instead seem to respond to its relative threat or direction of attack. In these species, therefore, alarm calls do not denote different predator categories but simply reflect different types or levels of danger. Because different predator categories typically impose different types and degrees of threat it is entirely possible that nonhuman primates also respond to threat rather than a predator's category. This study examined how wild Diana monkeys, Cercopithecus diana, of the Ta? forest, Ivory Coast, label predation events. By altering playback stimuli and the position of a concealed speaker, I investigated whether Diana monkeys respond with acoustically different alarm calls depending on a predator's (1) distance (close versus far), (2) elevation (above versus below), or (3) category (eagle versus leopard). Analysis of male and female alarm-call behaviour showed that Diana monkeys consistently responded to predator category regardless of immediate threat or direction of attack. Data further suggested that, in addition to predator category, monkeys' alarm calls might also convey information about the predator's distance. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

19.
In various contexts, animals rely on acoustic signals to differentiate between conspecifics. Currently, studies examining vocal signatures use two main approaches. In the first approach, researchers search for acoustic characteristics that have the potential to be individual specific. This approach yields information on variation in signal parameters both within and between individuals and generates practical tools that can be used in population monitoring. In the second approach, playback experiments with natural calls are conducted to discern whether animals are capable of discriminating among the vocal signatures of different individuals. However, both approaches do not reveal the exact signal characteristics that are being used in the discrimination process. In this study, we tested whether an individual-specific call characteristic – namely the length of the intervals between successive maximal amplitude peaks within syllables (PPD) – is crucial in neighbour-stranger discrimination by males of the nocturnal and highly secretive bird species, the corncrake (Crex crex). We conducted paired playback experiments in which corncrakes (n = 47) were exposed to artificial calls with PPD characteristics of neighbour and stranger birds. These artificial calls differed only in PPD structure. The calls were broadcast from a speaker, and we recorded the birds'' behavioural responses. Although corncrakes have previously been experimentally shown to discriminate between neighbours and strangers, we found no difference in the responses to the artificial calls representing neighbours versus strangers. This finding demonstrates that even if vocal signatures are individual specific within a species, it does not automatically mean that said signatures are being crucial in discrimination among individuals. At the same time, the birds'' aggressive responses to the artificial calls indicated that the information transmitted by PPDs is important in species-specific call recognition and may be used by males and/or females to evaluate sender quality, similarly like sound frequency in some insect species.  相似文献   

20.
The great gerbil (Rhombomys opimus), a social rodent that lives in family groups, emits three different alarm vocalizations in the presence of predators: a rhythmic call; a faster more intense call; and a single whistle. We tested the hypothesis that the alarm calls communicate risk of predation. We quantified the relationship between predator distance and type of alarm call via human approaches to gerbils. We also tested responses of focal adults in family groups to playback broadcasts of the different calls and controls of bird song and tape noise. Results showed that alarm calls were related to distance from a predator. Gerbils gave the rhythmic call when the predator was farthest away, the more intense call as the predator moved closer; and a short whistle when startled by a close approach of the predator. Gerbils stopped feeding and stood vigilant in a frozen alert posture in response to playbacks of all three alarm calls. They decreased non‐vigilant behavior to the alarm vocalizations more than to the controls and decreased non‐vigilant behavior significantly more in response to the intense alarm and whistle compared with the rhythmic alarm. We conclude that one function of gerbil alarm calls is to communicate response urgency to family members. The rhythmic alarm communicates danger at a distance, whereas the intense alarm and whistle signal the close approach of a predator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号