首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of titration viscometry a number of distinct modes could be resolved for the interaction between the antibiotic netropsin and DNA species of 50, 58, and 69 mole + (A+T) below r = 0.04 netropsin molecules bound per DNA phosphate group. The number of corresponding binding sites increases with a high power of the (A+T) content. The apparent association constants are very high (greater than 10(6) M-1, some perhaps greater than 10(6) M-1) and also rather different for most of the binding sites. It is suggested that some of these interaction modes differ in the number of hydrogen bonds formed between donors of the ligand and acceptors of the binding sites. The interaction modes were characterized quantitatively by their (species-independent) changes of DNA contour length and by the percentage of local DNA stiffening.  相似文献   

2.
3.
Hampshire AJ  Fox KR 《Biochimie》2008,90(7):988-998
We have examined the effects of local DNA sequence on the interaction of distamycin, Hoechst 33258, echinomycin, actinomycin and mithramycin with their preferred binding sites using a series of DNA fragments that contain every symmetrical hexanucleotide sequence. In several instances we find that the affinity for the ligands' preferred binding sites is affected by the hexanucleotide context in which they are located. The AT-selective minor groove binding ligand Hoechst 33258 shows a 200-fold difference in binding to the 16 different X(A/T)(4)Y sites; the strongest binding is to AAATTT and the weakest is to (G/C)TTAA(C/G). Although TTAA is generally a poor binding site, ATTAAT is better than TTTAAA and they are both much better than GTTAAC and CTTAAG. Similarly, TTATAA and ATATAT are better binding sites than GTATAC and CTATAG. In contrast, distamycin shows less discrimination between the various X(A/T)(4)Y sites, with a 20-fold difference between the best [(A/T)AATT(T/A)] and worst [GATATC and (G/C)TTAA(C/G)] sites. Although actinomycin binds to GpC it shows little or no interaction with any of the GGCC sites, yet shows only a six-fold variation in affinities for the other XYGCXY sites. Echinomycin binds to CpG yet shows no binding to TTCGAA, TGCGCA and AGCGCT, while the best binding is to AACGTT. The tetranucleotides CCGG and ACGT produce consistently good binding sites, irrespective of the surrounding sequences, while the interaction with TCGA and GCGC is sensitive to the hexanucleotide context. Hexanucleotides with a central GCGC, flanked by A and T are weaker echinomycin sites than those flanked by G and C, especially CGCGCG. The best X(G/C)(4)Y binding sites for mithramycin were located at AGCGCT and GGGCCC, and the worst at CCCGGG and TCCGGA. These footprinting fragments are valuable tools for comparing the binding of ligands to all the potential symmetrical hexanucleotides and provide insights into the effects of local DNA sequence on ligand-DNA interactions.  相似文献   

4.
In this paper we report a detailed enzymatic characterization of the interaction of the polymerase accessory protein complex of the T4 DNA replication system with the various nucleic acid cofactors that activate the ATPase of the complex. We show that the ATPase activity of the T4 coded gene 44/62 protein complex is stimulated synergistically by binding of DNA and T4 gene 45 protein and that the level of ATPase activation appears to be directly correlated with the binding of nucleic acid cofactor. Binding of any partially or completely single-stranded DNA to the complete accessory protein complex increases the catalytic activity (as measured by Vmax) while decreasing the binding affinity for the ATP substrate. While single-stranded DNA is a moderately effective cofactor, we find that the optimal nucleic acid-binding site for the complex is the primer-template junction, rather than single-stranded DNA ends as previously reported in the literature. Gene 45 protein plays an essential role in directing the specificity of binding to primer-template sites, lowering the Km for primer-template sites almost 1000-fold, and increasing Vmax 100-fold, compared with the analogous values for gene 44/62 protein alone. The most effective primer-template site for binding and enzymatic activation has the physiologically relevant recessed 3'-OH configuration and an optimal size in excess of 18 base pairs of duplex DNA. We find that the chemical nature of the primer terminus (i.e. 3'-OH or 3'-H) does not affect the extent of ATPase activation and that binding of the polymerase accessory protein complex to DNA cofactors is salt concentration dependent but appreciably less so when the activating DNA is a primer-template junction. Finally, we show that the gene 32 protein (T4 coded single-stranded DNA-binding protein) can compete with the polymerase accessory protein complex for single-stranded DNA but not for the primer-template junction activation sites. The implications of these results for the structure and function of the polymerase accessory protein complex within the T4 DNA replication system are discussed.  相似文献   

5.
The kinetics of protein-nucleic acid interactions are discussed with particular emphasis on the effects of salt concentration and valence on the observed rate constants. A general review is given of the use of experimentally determined salt dependences of observed kinetic parameters as a tool to probe the mechanism of interaction. Quantitative analysis of these salt dependences, through the application of polyelectrolyte theory, can be used to distinguish reactions which occur in a single step from those reactions which involve distinct intermediates. For those rate constants which display a large salt dependence, in either the association or dissociation reaction, this is due to the high concentration of counterions (e.g., Na+) in the vicinity of the nucleic acid which are subsequently released (or bound in the case of dissociation) at some point before the rate limiting step of the reaction. A general discussion of other features which affect protein-nucleic acid kinetics, such as nucleic acid length and the ratio of nonspecific to specific DNA binding sites (in the case of sequence specific binding proteins), is also given. The available data on the nucleic acid binding kinetics of small ligands (ions, dyes, oligopeptides), nonspecific binding proteins (T4 gene 32 protein, fd gene 5 and Escherichia coli SSB), and sequence specific binding proteins (lac repressor, RNA polymerase, Eco RI restriction endonuclease) are discussed with emphasis on the interpretation of the experimentally determined salt dependences.  相似文献   

6.
Glyceraldehyde-3-phosphate dehydrogenase binds to homologous and heterologous single-stranded but not double-stranded DNA. Binding to RNA, poly(A) and poly(dA-dT) has also been observed. Enzyme binding to these nucleic acids leads to the formation of an insoluble complex which can be sedimented at low speed.The interaction of glyceraldehyde-3-phosphate dehydrogenase with DNA is strongly inhibited by NAD and NADH but not by NADP. Adenine nucleotides, which inhibit the dehydrogenase activity by competing with NAD for its binding site (Yang, S.T. and Deal, W.C., Jr. (1969) Biochemistry 8, 2806–2813), also inhibit enzyme binding to DNA, whereas glyceraldehyde-3-phosphate and inorganic phosphate are non-inhibitory. These results suggest that DNA interacts through the NAD binding sites of glyceraldehyde-3-phosphate dehydrogenase. In accordance with this idea, it was found that DNA also binds to lactate dehydrogenase, an enzyme containing a similar dinucleotide binding domain, and that this binding is inhibited by NADH.A study of the base specificity of the DNA-glyceraldehyde-3-phosphate dehydrogenase interaction using dinucleoside monophosphates shows that inhibition of DNA binding by the dinucleotides requires the presence of a 3′-terminal adenosine and is greater when the 5′-terminus contains a pyrimidine instead of a purine. These results suggest that the dinucleotides bind at the NAD site of the dehydrogenase and that the enzyme would interact preferentially with PypA dinucleotides present in the nucleic acid.  相似文献   

7.
Using a new methodological approach based on the binding of 125I-labeled troponin C to troponins I and T immobilized on polyvinylchloride, the Ca2+-dependent interaction of troponin components was investigated. In the absence of Ca2+, two types of sites of troponin C--troponin T interaction were revealed (Kd = 3.6.10(-8) M and 5.10(-7) M). It was found that Ca2+ induced the formation of a troponin I--troponin C complex which was resistant to 5 M urea (Kd = 4.10(-8) M). In the absence of Ca2+, the binary troponin T--troponin C complex also revealed two types of interaction sites (Kd = 7.1.10(-8) M and 2.10(-7) M); however, in the presence of Ca2+ only high affinity sites whose number increased almost 2-fold were revealed. The events that may take place in the whole troponin complex during Ca2+ binding by troponin C are discussed.  相似文献   

8.
The interaction of calf-thymus DNA with Cu(II) and Pb(II) ions has been investigated in H2O and D2O solutions at physiological pH, using laser Raman spectroscopy. The results confirm the destabilizing effect of Cu2+ ions, which are shown to bind strongly to the guanine and cytidine bases, perturbing the A-T base pairs and disrupting the double-helical structure of DNA, whose conformation is markedly altered by these interactions. Earlier claims that Pb2+ ions destabilize DNA are not supported by the present study. These ions are found to interact only weakly with the nucleic bases, binding to the N7 position of the guanine bases and also interacting with the A-T pairs. Both types of ions are found to interact with the charged phosphate groups of DNA, although these sites are preferred over the nucleic bases by Pb2+ ions.  相似文献   

9.
Pulse radiolysis has been used to study the interaction of aminoacridines with nucleic acids. The data confirm that there are two modes of binding. These are: a weak interaction which has a maximum binding ratio of one site per dye; and a strong binding process effected by both electrostatic and Van der Waals interactions. The limit of this latter, strong binding mode is approximately six sites per dye. The radiation-induced transient absorption spectrum of benzoflavine is characterized by a pronounced bleaching at 440 nm, which is quenched by the addition of nucleic acids. Mechanisms have been proposed for the reactions of both eaq-and .OH with benzoflavine which account both for the observed bleaching of benzoflavine solutions and for the protective effect of nucleic acids. It is proposed that eaq-reacts with benzoflavine to form a stable benzoflavine semiquinone radical and that .OH reacts with subsequent formation of a very stable benzoflavine hydroxycyclohexadienyl radical.  相似文献   

10.
球孢白僵菌是一种广谱性杀虫真菌,为了探索其转录因子BbMSN2识别启动子核心序列的能力,本研究外源表达并纯化了BbMSN2蛋白,合成了3个含有不同数量核心序列(AGGGG/ CCCCT)的核酸探针和6个核心序列点突变的核酸探针,将BbMSN2蛋白和核酸探针体外结合,通过凝胶迁移实验检测核酸探针及结合蛋白的迁移情况。研究发现,目的蛋白与含有核心序列的核酸探针结合时,核酸探针发生了凝胶迁移现象,其中核心序列数量对凝胶迁移的协同效益不显著。但目的蛋白与核心序列点突变核酸探针结合时,凝胶迁移现象明显减弱。上述结果表明,转录因子BbMSN2可以和含有核心序列核酸探针结合并发生相互作用,且对识别序列具有很强的特异性。本研究为深入探索BbMSN2转录调控机制奠定了试验基础。  相似文献   

11.
We have examined the effect of a naphthylquinoline triplex-binding ligand on the formation of intermolecular triplexes on DNA fragments containing the target sites A6G6xC6T6 and G6A6xT6C6. The ligand enhances the binding of T6C2, but not T2C6, to A6G6xC6T6 suggesting that it has a greater effect on TxAT than C+xGC triplets. The complex with T6C2 is only stable below pH 6.0, confirming the requirement for protonation of the third strand cytosines. Antiparallel triplexes with GT-containing oligonucleotides are also stabilised by the ligand. The complex between G5T5 and A6G6xC6T6 is stabilised by lower ligand concentrations than that between T5G5 and G6A6xC6T6. The ligand does not promote the interaction with GT-containing oligonucleotides which have been designed to bind in a parallel orientation. Although the formation of antiparallel triplexes is pH independent, we find that the ligand has a greater stabilising effect at lower pH, suggesting that the active species is protonated. The ligand does not promote the binding of antiparallel GA-containing oligonucleotides at pH 7.5 but induces the interaction between A5G5 and G6A6xT6C6 at pH 5.5. Ethidium bromide does not promote the formation of any of these triplexes and destabilises the interaction of acridine-linked pyrimidine-containing third strands with these target sites.  相似文献   

12.
A new method for preparation of nucleic acid specimens for electron microscopy has been adapted to study the interaction of proteins with DNA. Both a detergent and a basic protein are added to the DNA-protein solution before spreading on a hypophase containing 0.2 m ammonium acetate. This method has been tested using T7 DNA and Escherichia coli RNA polymerase. Specifically bound enzyme molecules were clearly visible on the well extended DNA molecules; the binding sites were located at 0.59, 1.24, 1.57, and 1.86% of the total length of T7 DNA. Under carefully controlled conditions, 40–85% of the DNA molecules specifically bound at least one enzyme molecule.  相似文献   

13.
A new system for the determination of nucleic acid by rare earth metallic porphyrin of [tetra‐(3‐methoxy‐4‐hydroxyphenyl)]–Tb3+ [T(3‐MO‐4HP)–Tb3+] porphyrin as fluorescence spectral probe has been developed in this paper. Nucleic acid can enhance the fluorescence intensity of the T(3‐MO‐4HP)–Tb3+ porphyrin in the presence of bis(2‐ethylhexyl)sulfosuccinate sodium salt(AOT) micelle. In pH 8.00 Tris–HCl buffer solution, under optimum conditions, the enhanced fluorescence intensity is in proportion to the concentration of nucleic acids in the range of 0.05–3.00 µg mL?1 for calf thymus DNA (ct DNA) and 0.03–4.80 µg mL?1 for fish sperm DNA(fs DNA). Their detection limits are 0.03 and 0.01 µg mL?1, respectively. In addition, the binding interaction mechanism between T(3‐MO‐4HP)–Tb3+ porphyrin and ct DNA is also investigated by resonance scattering and fluorescence spectra. The maximum binding number is calculated by molar ratio method. The new system can be used for the determination of nucleic acid in pig liver, yielding satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The effects on TFIIIA binding affinity of a series of substitution mutations in the Xenopus laevis oocyte 5S RNA gene were quantified. These data indicate that TFIIIA binds specifically to 5S DNA by forming sequence-specific contacts with three discrete sites located within the classical A and C boxes and the intermediate element of the internal control region. Substitution of the nucleotide sequence at any of the three sites significantly reduces TFIIIA binding affinity, with a 100-fold reduction observed for substitutions in the box C subregion. These results are consistent with a direct interaction of TFIIIA with specific base pairs within the major groove of the DNA. A comparison of the TFIIIA binding data for the same mutations expressed in 5S RNA indicates that the protein does not make any strong sequence-specific contacts with the RNA. Although the protein footprinting sites on the 5S DNA and 5S RNA are coincident, nucleotide substitutions in 5S RNA which moderately reduce TFIIIA binding affinity do not correspond at all to the three specific TFIIIA interaction sites within the gene. The implications of these results for models which attempt to reconcile the DNA and RNA binding activities of TFIIIA by proposing a common structural motif for the two nucleic acids are discussed.  相似文献   

15.
We rank the reactivity of the adenyl residues (A) of model DNA and RNA molecules with electropositive subnano size [Ag]n+ sites as a function of nucleic acid primary sequences and secondary structures and in the presence of biological amounts of Cl- and Na+ or Mg2+ ions. In these conditions A is markedly more reactive than any other nucleic acid bases. A reactivity is higher in ribo (r) than in deoxyribo (d) species [pA>pdA and (pA)n>(pdA)n]. Base pairing decreases A reactivity in corresponding duplexes but much less in r than in d. In linear single and paired dCAG or dGAC loci, base stacking inhibits A reactivity even if A is bulged or mispaired (A.A). dA tracts are highly reactive only when dilution prevents self-association and duplex structures. In d hairpins the solvent-exposed A residues are reactive in CAG and GAC triloops and even more in ATC loops. Among the eight rG1N2R3A4 loops, those bearing a single A (A4) are the least reactive. The solvent-exposed A2 is reactive, but synergistic structural transitions make the initially stacked A residues of any rGNAA loop much more reactive. Mg2+ cross-bridging single strands via phosphates may screen A reactivity. In contrast d duplexes cross-bridging enables "A flipping" much more in rA.U pairs than in dA.T. Mg2+ promotes A reactivity in unpaired strands. For hairpins Mg2+ binding stabilizes the stems, but according to A position in the loops, A reactivity may be abolished, reduced, or enhanced. It is emphasized that not only accessibility but also local flexibility, concerted docking, and cation and anion binding control A reactivity.  相似文献   

16.
Libraries for genomic SELEX.   总被引:9,自引:5,他引:4       下载免费PDF全文
An increasing number of proteins are being identified that regulate gene expression by binding specific nucleic acidsin vivo. A method termed genomic SELEX facilitates the rapid identification of networks of protein-nucleic acid interactions by identifying within the genomic sequences of an organism the highest affinity sites for any protein of the organism. As with its progenitor, SELEX of random-sequence nucleic acids, genomic SELEX involves iterative binding, partitioning, and amplification of nucleic acids. The two methods differ in that the variable region of the nucleic acid library for genomic SELEX is derived from the genome of an organism. We have used a quick and simple method to construct Escherichia coli, Saccharomyces cerevisiae, and human genomic DNA PCR libraries that can be transcribed with T7 RNA polymerase. We present evidence that the libraries contain overlapping inserts starting at most of the positions within the genome, making these libraries suitable for genomic SELEX.  相似文献   

17.
The technique of DNAase I footprinting has been used to investigate preferred binding sites for actinomycin D and distamycin on a 160-base-pair DNA fragment from E. coli containing the tyr T promoter sequence. Only sites containing the dinucleotide step GpC are protected by binding of actinomycin, and all such sites are protected. Distamycin recognizes four major regions rich in A + T residues. Both antibiotics induce enhanced rates of cleavage at certain regions flanking their binding sites. These effects are not restricted to any particular base sequence since they are produced in runs of A and T by actinomycin and in GC-rich sequences by distamycin. The observed increases in susceptibility to nuclease attack are attributed to DNA structural variations induced in the vicinity of the ligand binding site, most probably involving changes in the width of the helical minor groove.  相似文献   

18.
The phenanthridinium dye ethidium bromide is a prototypical DNA intercalating agent. For decades, this anti-trypanosomal agent has been known to intercalate into nucleic acids, with little preference for particular sequences. Only polydA-polydT tracts are relatively refractory to ethidium intercalation. In an effort to tune the sequence selectivity of known DNA binding agents, we report here the synthesis and detailed characterization of the mode of binding to DNA of a novel ethidium derivative possessing two guanidinium groups at positions 3 and 8. This compound, DB950, binds to DNA much more tightly than ethidium and exhibits distinct DNA-dependent absorption and fluorescence properties. The study of the mode of binding to DNA by means of circular and electric linear dichroism revealed that, unlike ethidium, DB950 forms minor groove complexes with AT sequences. Accurate quantification of binding affinities by surface plasmon resonance using A(n)T(n) hairpin oligomer indicated that the interaction of DB950 is over 10-50 times stronger than that of ethidium and comparable to that of the known minor groove binder furamidine. DB950 interacts weakly with GC sites by intercalation. DNase I footprinting experiments performed with different DNA fragments established that DB950 presents a pronounced selectivity for AT-rich sites, identical with that of furamidine. The replacement of the amino groups of ethidium with guanidinium groups has resulted in a marked gain of both affinity and sequence selectivity. DB950 provides protection against DNase I cleavage at AT-containing sites which frequently correspond to regions of enhanced cleavage in the presence of ethidium. Although DB950 maintains a planar phenanthridinium chromophore, the compound no longer intercalates at AT sites. The guanidinium groups of DB950, just like the amidinium group of furamidine (DB75), are the critical determinants for recognition of AT binding sites in DNA. The chemical modulation of the ethidium exocyclic amines is a profitable option to tune the nucleic acid recognition properties of phenylphenanthridinium dyes.  相似文献   

19.
The interactions between troponin subunits have been studied by intrinsic fluorescence and electron spin resonance (ESR) spectroscopy. The tryptophan fluorescence of troponin T (TnT) and troponin I (TnI) when complexed with troponin C (TnC) undergoes a Ca2+-dependent transition. The midpoints of such spectral changes occur at pCa approximately equal to 6, suggesting that the conformational change of TnT and TnI is induced by Ca2+ binding to the low-affinity sites of TnC. When TnC is labelled at Cys-98 with a maleimide spin probe (MSL), the spin signal is sensitive to Ca2+ binding to both the high and the low-affinity sites of TnC in the presence of either or both of the other two troponin subunits. Since Cys-98 is located in the vicinity of one of the high-affinity sites, these results are indicative of a long-range interaction between the two halves of the TnC molecule. Our earlier kinetic studies [Wang, C.-L. A., Leavis, P. C. & Gergely, J. (1983) J. Biol. Chem. 258, 9175-9177] have shown such interactions in TnC alone. Since the ESR spectral change associated with metal binding to the low-affinity sites is only observed when MSL-TnC is complexed with TnT and/or TnI, this long-range interaction within TnC appears to be mediated through the other troponin subunits.  相似文献   

20.
Identification of mixed di-cation forms of G-quadruplex in solution   总被引:1,自引:1,他引:0  
Multinuclear NMR study has demonstrated that G-quadruplex adopted by d(G3T4G4) exhibits two cation binding sites between three of its G-quartets. Titration of tighter binding K+ ions into the solution of d(G3T4G4)2 folded in the presence of 15NH4+ ions uncovered a mixed mono-K+-mono-15NH4+ form that represents intermediate in the conversion of di-15NH4+ into di-K+ form. Analogously, 15NH4+ ions were found to replace Na+ ions inside d(G3T4G4)2 quadruplex. The preference of 15NH4+ over Na+ ions for the two binding sites is considerably smaller than the preference of K+ over 15NH4+ ions. The two cation binding sites within the G-quadruplex core differ to such a degree that 15NH4+ ions bound to the site, which is closer to the edge-type loop, are always replaced first during titration by K+ ions. The second binding site is not taken up by K+ ion until K+ ion already resides at the first binding site. Quantitative analysis of concentrations of the three di-cation forms, which are in slow exchange on the NMR time scale, at 12 K+ ion concentrations afforded equilibrium binding constants. K+ ion binding to sites U and L within d(G3T4G4)2 is more favorable with respect to 15NH4+ ions by Gibbs free energies of approximately -24 and -18 kJ mol(-1) which includes differences in cation dehydration energies, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号