首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A topological localization of epitopes on the surface of the Aa6 subunit of Androctonus australis hemocyanin has been carried out. First, immunocomplex strings composed of native hemocyanin and monoclonal antibodies were examined in the electron microscope and submitted to an image processing by correspondence analysis. The average images were then compared to a three-dimensional model of the 24-mer suggesting that 11 of the 13 epitopes are located in three zones of the subunit surface. Second, the overlaps between the epitopes were then studied by polyacrylamide gel electrophoresis, competitive binding inhibition, and immunoelectron microscopy. Four groups of epitopes were identified. One group was capable of binding exclusively to the free subunit. The other three groups were identical to those found in immunoelectron microscopy. The data are consistent with the existence of a small number of immunodominant regions on the surface of the Aa6 subunit.  相似文献   

2.
J Lamy  J Lamy  P Billiald  P Y Sizaret  G Cavé  J Frank  G Motta 《Biochemistry》1985,24(20):5532-5542
Monoclonal antibodies (mAb) directed vs. subunits from hemocyanin (Hc) of the scorpion Androctonus australis were used in molecular immunoelectron microscopy (MIEM) to directly localize the epitopes within the subunits. Four types of mAb were used. First, mAb 6302, an IgG clone highly specific for subunit Aa 2, produced with native hemocyanin long strings composed of hemocyanin molecules in the side view and in the 45 degrees view. At lower concentration, "parachute" and "butterfly" structures composed of two Hc molecules and one monoclonal immunoglobin G (IgG) molecule were obtained. Fab fragments prepared from mAb 6302 bound exactly on the top and bottom edges of the molecule. The second type of mAb (6003), directed vs. subunit Aa 2, produced nice immunocomplexes with the free subunit but nothing with the native oligomer. It is suggested that due to steric hindrance or to conformational changes the epitope is not accessible in the native molecule. The third mAb belonged to the IgM class and apparently bound Hc in the Aa 2 area. However, because of the difficulty of separating the immunocomplexes from the residual mAb and the polymorphism of the IgM molecules, monoclonal IgM are no longer used for MIEM. The last type of mAb (5701) had a high affinity and a high specificity for subunit Aa 6. It produced two types of immunocomplexes with native Hc. The two types differed by a 180 degrees rotation around one of the Fab arms. These complexes, which support recent results of Wrigley et al. [Wrigley, N. G., Brown, E. B., & Skehel, J. J. (1983) J. Mol. Biol. 169, 771-774] and of Roux [Roux, K. H. (1983) Eur. J. Immunol. 14, 459-464], indicate that monoclonal IgG have a high degree of rotational flexibility around the Fab arm. Monoclonal antibody 5701 bound exactly at the corner of the molecule in the area where subunit Aa 6 is known to be located. The MIEM approach of the location of the epitope requires the model of the architecture and of the quaternary structure to be very precise. Thus, recent findings of Gaykema et al. [Gaykema, W. P. J., Hol, J. M., Vereijken, J. M., Soeter, N. M., Bak, H. J., & Beintema, J. J. (1984) Nature (London) 309, 23-29] and of Van Heel et al. [Van Heel, M., Keegstra, W., Schutter, W., & Van Bruggen, E. F. J. (1983) Life Chem. Rep., Suppl. Ser. 1, 69-73] led to a reexamination of previous models.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Immunological cross-reactivities between isolated subunits of the scorpion Androctonus australis (Aa) and of the horseshoe crab Limulus polyphemus (Lp) hemocyanins were studied using subunit-specific antibodies prepared through immunoadsorption to pure immobilized subunits. Rocket immunoelectrophoreses of the various subunits of both hemocyanins were carried out at constant antigen concentration against the various subunit-specific antibody preparations. Then the data were analyzed through factorial correspondence analysis and compared to the respective intramolecular locations of the subunits in both hemocyanins. The results show that the dimeric subunits located in the central part of each (4 X 6)meric structure (Aa whole molecule and Lp half molecule) were strongly preserved. In addition, the (8 X 6)mer-forming subunit of Lp hemocyanin (LpIV) and the subunit occupying the same intramolecular position in Aa hemocyanin (Aa5A) were also strongly preserved. Besides the strong antigenic relatedness, less pronounced crossed immunoprecipitations or no precipitation at all were observed between subunits with homologous positions suggesting a minor structural and/or functional roles for these subunits. All the antigen-antibody combinations leading to an absence of immunoprecipitation were screened for the presence of soluble immunocomplexes by radioimmunological tests. In all cases, soluble immunocomplexes were observed. These results suggest the following evolution scenario. First, the central dimeric subunits, responsible of the dodecamer aggregation (Aa3C and 5B and LpV and VI) were already differentiated when Merostomata diverged from Arachnida. Second, the differentiation of the (8 X 6)mer-forming subunit occurred in the Merostomata ramification in a preserved subunit already possessing a functional advantage. Third, the differentiation of subunits Aa3A and Aa3B recently occurred in the scorpion ramification.  相似文献   

4.
An immunocomplex of the 4 × 6-meric hemocyanin of the scorpion Androctonus australis with the monoclonal Fab fragment L104 was reconstructed from electron micrographs of a negatively stained specimen, using the double-carbon-layer technique. The resulting structure enables a clear visualization of the Fab fragments bound to the four copies of the Aa6 subunit and directly confirms a previous localization of the L104 epitope deduced from two-dimensional image processing. Despite a strong flattening effect produced by the negative-staining technique the orientations of the Fab fragments are well characterized. Moreover, the observation of a central hole within the elbow bends of the Fab fragments provides information about the disposition of the Fabs around their main axis.  相似文献   

5.
We analyzed the binding site on Cry1Aa toxin for the Cry1Aa receptor in Bombyx mori, 115-kDa aminopeptidase N type 1 (BmAPN1) (K. Nakanishi, K. Yaoi, Y. Nagino, H. Hara, M. Kitami, S. Atsumi, N. Miura, and R. Sato, FEBS Lett. 519:215-220, 2002), by using monoclonal antibodies (MAbs) that block binding between the binding site and the receptor. First, we produced a series of MAbs against Cry1Aa and obtained two MAbs, MAbs 2C2 and 1B10, that were capable of blocking the binding between Cry1Aa and BmAPN1 (blocking MAbs). The epitope of the Fab fragments of MAb 2C2 overlapped the BmAPN1 binding site, whereas the epitope of the Fab fragments of MAb 1B10 did not overlap but was located close to the binding site. Using three approaches for epitope mapping, we identified two candidate epitopes for the blocking MAbs on Cry1Aa. We constructed two Cry1Aa toxin mutants by substituting a cysteine on the toxin surface at each of the two candidate epitopes, and the small blocking molecule N-(9-acridinyl)maleimide (NAM) was introduced at each cysteine substitution to determine the true epitope. The Cry1Aa mutant with NAM bound to Cys582 did not bind either of the two blocking MAbs, suggesting that the true epitope for each of the blocking MAbs was located at the site containing Val582, which also consisted of 508STLRVN513 and 582VFTLSAHV589. These results indicated that the BmAPN1 binding site overlapped part of the region blocked by MAb 2C2 that was close to but excluded the actual epitope of MAb 2C2 on domain III of Cry1Aa toxin. We also discuss another area on Cry1Aa toxin as a new candidate site for BmAPN1 binding.  相似文献   

6.
Translation of Androctonus australis poly(A)-RNA in vitro led to a number of polypeptides products (8-10) of 70-73 kDa analyzed by two-dimensional gel electrophoresis and identified by immunoprecipitation with an anti-(dissociated hemocyanin) antiserum. The translated hemocyanin polypeptides have the same physico-chemical characteristics as authentic hemocyanin subunits. Subunits Aa 2 and Aa 4 have been identified with monospecific antisera characterized (a) by their capability of reacting with their homologous subunit and (b) by their inability of binding to cross-reacting subunits. Each polypeptide chain is coded by a different messenger without significant post-translational events. Hemocyanin could be detected among the translation products of the poly(A)-RNA isolated from the cuticle under the carapace.  相似文献   

7.
We analyzed the binding site on Cry1Aa toxin for the Cry1Aa receptor in Bombyx mori, 115-kDa aminopeptidase N type 1 (BmAPN1) (K. Nakanishi, K. Yaoi, Y. Nagino, H. Hara, M. Kitami, S. Atsumi, N. Miura, and R. Sato, FEBS Lett. 519:215-220, 2002), by using monoclonal antibodies (MAbs) that block binding between the binding site and the receptor. First, we produced a series of MAbs against Cry1Aa and obtained two MAbs, MAbs 2C2 and 1B10, that were capable of blocking the binding between Cry1Aa and BmAPN1 (blocking MAbs). The epitope of the Fab fragments of MAb 2C2 overlapped the BmAPN1 binding site, whereas the epitope of the Fab fragments of MAb 1B10 did not overlap but was located close to the binding site. Using three approaches for epitope mapping, we identified two candidate epitopes for the blocking MAbs on Cry1Aa. We constructed two Cry1Aa toxin mutants by substituting a cysteine on the toxin surface at each of the two candidate epitopes, and the small blocking molecule N-(9-acridinyl)maleimide (NAM) was introduced at each cysteine substitution to determine the true epitope. The Cry1Aa mutant with NAM bound to Cys582 did not bind either of the two blocking MAbs, suggesting that the true epitope for each of the blocking MAbs was located at the site containing Val582, which also consisted of 508STLRVN513 and 582VFTLSAHV589. These results indicated that the BmAPN1 binding site overlapped part of the region blocked by MAb 2C2 that was close to but excluded the actual epitope of MAb 2C2 on domain III of Cry1Aa toxin. We also discuss another area on Cry1Aa toxin as a new candidate site for BmAPN1 binding.  相似文献   

8.
Several gene fusion technologies have been successfully applied to label particular subunits or domains within macromolecular complexes to enable positional mapping of electron microscopy (EM) density maps, but exogenous fusion of a protein domain into the target polypeptide can cause unwanted structural and functional outcomes. Fab fragments from antibodies can be used as labeling reagents during EM visualization without gene manipulation of the target protein, but this method requires a panel of high-affinity antibodies that recognize a wide variety of epitopes. Linear peptide tags and their anti-tag antibodies can be used but they have a limited mapping ability as their placement is usually limited to the terminal regions of a protein. The PA dodecapeptide epitope tag (GVAMPGAEDDVV), forms a tight β-turn in the antigen binding pocket of its antibody (NZ-1). This capability allows for insertion of the PA tag into various surface-exposed loops within a multi-domain cell adhesion receptor, αIIbβ3 integrin. We confirmed that the purified PA-tagged integrin ectodomain fragments can form a stable complex with NZ-1 Fab. Negative stain EM of the various integrin-NZ-1 complexes revealed that a majority of the particles exhibited a clear density corresponding to the NZ-1 Fab; and the positions of the bound Fab were in good agreement with the predicted location of the inserted PA tag. The high-affinity and insertion-compatibility of the PA tag system allowed us to develop a new EM labeling methodology applicable to proteins for which good antibodies are not available.  相似文献   

9.
We describe two monoclonal antibodies, R3/47 and YR1/1, directed against different epitopes of the expressed rat class I major transplantation antigen RT1Aa, that interact with each other so that the binding of one antibody, YR1/1, is greatly enhanced by the binding of the other. The positive interaction between R3/47 and YR1/1 also occurs when using RT1Aa molecules solubilized from cell membranes in detergent. It is therefore unlikely that the molecular environment of the membrane contributes to the interaction. The ability of R3/47 to modify the YR1/1 determinant on the RT1Aa molecule is mediated without any significant loss of potency by highly purified monomeric Fab fragments. This result suggests that the binding of R3/47 to the RT1Aa molecule alters the YR1/1 determinant by initiating a propagated conformational change in the antigen.  相似文献   

10.
To map structural and functional epitopes of the cytomatrix protein plectin, a set of mAbs was prepared by immunization of mice. Using immunoblot analysis of plectin fragments obtained after limited digestion with various proteases, two groups of mAbs were distinguished. The epitopes of one group (1) were located on a 130-kD terminal segment of the plectin 300-kD polypeptide chain, whereas those of the other group (2) bound within a 40kD segment confined to a central domain of the polypeptide chain. Domains containing the epitopes of group 2 mAbs were shown to include in vitro phosphorylation sites for kinase A, whereas kinase C phosphorylation sites were found on the same terminal segment that contained group 1 mAb epitopes. Rotary shadowing EM of mAb (Fab fragment) -decorated plectin molecules at various states of aggregation, ranging from characteristic dumbbell-shaped single molecules to highly complex multimeric structures, revealed that the epitopes of group 1 as well as those of group 2 mAbs were located on plectin's roughly 200-nm long rod domain interlinking its two globular end domains. Epitopes of group 1 mAbs were localized within a region near the center of the rod, those of group 2 in more peripheral sections near the globular end domains. Solid-phase binding assays carried out in the presence of Fab fragments of mAbs demonstrated an interference of certain group 1 mAbs in the interactions of plectin with vimentin and lamin B. On the other hand, plectin's self-interaction was inhibited mainly by Fab fragments with epitopes in the peripheral rod domain (group 2 mAbs). Together, these results suggested that the molecular binding sites of plectin for vimentin and lamin B, as well as the phosphorylation sites for kinase C, were confined to a defined central section of plectin's rod domain. In addition, they suggest an involvement of peripheral rod sections in plectin self-association.  相似文献   

11.
Hemocyanins are large copper-containing respiratory proteins found in many arthropod species. Scorpions and orthognath spiders possess a highly conserved 4 x 6-mer hemocyanin that consists of at least seven distinct subunit types (termed a to g). However, many "modern" entelegyne spiders such as Cupiennius salei differ from the standard arachnid scheme and have 2 x 6-mer hemocyanins. Here we report the complete primary structure of the 2 x 6-mer hemocyanin of C. salei as deduced from cDNA sequencing, gel electrophoresis, and matrix-assisted laser desorption spectroscopy. Six distinct subunit types (1 through 6) and three additional allelic sequences were identified. Each 1 x 6-mer half-molecule most likely is composed of subunits 1-6, with subunit 1 linking the two hexamers via a disulfide bridge located in a C-terminal extension. The C. salei hemocyanin subunits all belong to the arachnid g-type, whereas the other six types (a-f) have been lost in evolution. The reconstruction of a complex hemocyanin from a single g-type subunit, which commenced about 190 million years ago and was completed about 90 million years ago, might be explained by physiological and behavioral changes that occurred during the evolution of the entelegyne spiders.  相似文献   

12.
Complexes of influenza virus neuraminidase both with antigen-binding (Fab) fragments and with whole monoclonal antibody molecules have been crystallized. Uniformly thin platelet microcrystals suitable for structure analysis by electron diffraction, yielding reflections to approximately 4.3 A resolution, have been grown from one neuraminidase-Fab complex, that of N9 neuraminidase with 32/3 Fab, and thicker crystals of a second neuraminidase-Fab complex (N9 neuraminidase-NC35 Fab) diffract X-rays to approximately 4.0 A resolution. Electron microscope lattice images of microcrystals both of Fab and of immunoglobulin G complexed with neuraminidase have been interpreted in terms of negatively stained images of the respective individual complex protomers. The sites of binding of the antibodies to the antigen are consistent with the notion that single amino acid changes observed in monoclonal variants of neuraminidase occur in binding epitopes for the antibody used for their selection.  相似文献   

13.
Human immunoglobulin G, subclass 2 (hIgG2), plays an important role in immunity to bacterial pathogens and in numerous pathological conditions. However, there is a lack of information regarding the three-dimensional (3D) structure of the hIgG2 molecule. We used electron microscopy (EM), differential scanning microcalorimetry (DSC) and fluorescence for structural analysis of the hIgG2. DSC and fluorescence indicated two types of interaction between CH1 domain of Fab (antigen-binding fragment/subunit) and CH2 domain of Fc (complement fixation fragment/subunit) simultaneously present in the sample: close interaction, which increases the thermostability of both, CH1 and CH2 domains, and weak (or no) interaction, which is typical for most IgGs but not hIgG2. Thermodynamics could not determine if both types of interactions are present within a single molecule. To address this question, EM was used. We employed a single-particle reconstruction and negative staining approach to reveal the three-dimensional structure of the hIgG2. A three-dimensional model of hIgG2 was created at 1.78 nm resolution. The hIgG2 is asymmetrical: one Fab subunit is in close proximity to the upper portion of the Fc subunit (CH2 domain) and the other Fab is distant from Fc. The plane of Fab subunits is nearly perpendicular to Fc. EM structure of the hIgG2 is in good agreement with thermodynamic data: a Fab distant from Fc should exhibit a lower melting temperature while a Fab interacting with Fc should exhibit a higher melting temperature. Both types of Fab subunits exist within one molecule resembling an A/B hIgG2 isoform introduced earlier on physicochemical level by Dillon et al. (2008). In such an arrangement, the access to the upper portion of Fc subunit is partially blocked by a Fab subunit. That might explain for instance why hIgG2 mildly activates complement and binds poorly to Fc receptors. Understanding of the three-dimensional structure of the hIgG2 should lead to better design of antibody-based therapeutics.  相似文献   

14.
Previously, we have determined the nucleotide and amino acid sequences of the variable domains of three mouse monoclonal antibodies specific to the individual epitopes of the Ebola virus glycoprotein: GPE118 (IgG), GPE325 (IgM) and GPE534 (IgG) [1]. In the present paper, chimeric Fab fragments of Fab118, Fab325, and Fab534 antibodies were obtained based on the variable domains of murine antibodies by attaching CH1 and CL constant regions of human kappa-IgG1 to them. The recombinant chimeric Fab fragments were synthesized in the heterologous expression system Escherichia coli, isolated and purified using metal chelate affinity chromatography. The immunochemical properties of the obtained Fab fragments were studied by immunoblotting techniques as well as indirect and competitive ELISA using recombinant Ebola virus proteins: EBOV rGPdTM (recombinant glycoprotein of Ebola hemorrhagic fever virus without the transmembrane domain), NP (nucleoprotein) and VP40 (structural protein). The identity of recombinant chimeric Fab fragments, as well as their specificity to the recombinant glycoprotein of Ebola hemorrhagic fever virus (EBOV GP) was proved. The results of indirect ELISA evidence the absence of immunological cross-reactivity to NP and VP40 proteins of Ebola virus. The dissociation constants of the antigen-antibody complex K d equal to 5.0, 1.0 and 1.0 nM for Fab118, Fab325 and Fab534, respectively, were determined; they indicate high affinity of the obtained experimental samples to EBOV GP. The epitope specificity of Fab fragments was studied using a panel of commercial neutralizing antibodies. It was found that all studied antibodies to EBOV GP are targeted to different epitopes, while the epitopes of the recombinant chimeric Fab fragments and original murine monoclonal antibodies (mAbs) coincide. All the obtained and studied mAbs to EBOV GP are specific to epitopes that coincide or overlap the epitopes of three commercial neutralizing mAbs to Ebola virus: epitopes Fab118 and Fab325 overlap the epitope of the known commercial mAb h13F6; Fab325 epitope also overlaps mAb c6D8 epitope; Fab534 epitope is located near mAb KZ52 conformational epitope, in the formation of which amino acid residues of GP1 and GP2 domains of EBOV GP are involved.  相似文献   

15.
以凡纳滨对虾(Litopenaeus vannamei)为研究对象, 通过分子筛层析、Tricine-SDS-PAGE、Western-blotting、凝集实验、抑菌实验和Edman N端测序等方法探索血蓝蛋白酶解多肽的凝集和抑菌活性。结果发现, 血蓝蛋白经胰蛋白酶酶解后可产生分子量约为6—70 kD的7条多肽, 该酶解混合物对副溶血弧菌(Vibrio parahaemolyticus)具有显著的凝集活性, 与未酶解的血蓝蛋白相比, 其凝集活性可提高4—16倍。在此基础之上, 进一步分离纯化该7条多肽, 发现多肽-3对副溶血弧菌表现出较强的抑菌活性, 且具有较好的浓度依赖性。在浓度为75 μg/mL时, 其抑菌率为(93.76±1.60)%, 与阴性对照组相比, 存在极显著性差异 (P<0.01)。进一步研究显示该多肽位于血蓝蛋白N端α-螺旋区域。由此推测, 凡纳滨对虾血蓝蛋白在体外经胰蛋白酶酶解后可产生具有凝集、抑菌等免疫活性的多肽, 这对研究血蓝蛋白的降解机制及其在先天免疫中的作用具有重要意义。  相似文献   

16.
The hemocyanins of the scorpions Leiurus quinquestriatus and Androctonus australis, the tarantula Eurypelma californicum (all 24-mers), and the lycosid spider Cupiennius salei (dodecamer) were dissociated into subunits, the subunits isolated and studied by two-dimensional immunoelectrophoresis for interspecific cross-reactivities. Androctonus hemocyanin yielded a pattern of 8 subunit types in agreement with data from Lamy et al. (1979, Arch. Biochem. Biophys. 193, 140-149). Leiurus hemocyanin is also composed of 8 immunologically distinct subunits which could be assigned to the pattern of Androctonus in a subunit-to-subunit correlation. The subunit designations 1 to 6 of Lamy et al. could be adopted for both scorpion hemocyanins; however, in the present communication, Lamy's subunits 3A/3B are designated as 3'/3", because we could not unequivocally decide if 3' = 3A and 3" = 3B or vice versa. The 7 subunit types a to g of Eurypelma hemocyanin could be correlated with the scorpion hemocyanin subunits as follows: a = 3', b = 5B, c = 3C, d = 5A, e = 6, f = 2, g = 4. Additional cross-reactivities were detected between e/4, and f/5A, respectively. No subunit of Eurypelma hemocyanin is homologous to scorpion 3", which could not be precipitated by anti-Eurypelma antiserum. Antiserum against Cupiennius hemocyanin precipitated subunit f of Eurypelma and subunits 2 and 5A of scorpion hemocyanin. The published models of quaternary structure and a possible subunit phylogeny of arachnidan hemocyanins are discussed in view of the present results.  相似文献   

17.
The amino terminal functional unit (domain a) of the Rapana hemocyanin “heavy” structural subunit, designated as Rta, was obtained after limited trypsinolysis of the whole polypeptide chain. Mass spectrometric analysis showed a molecular mass of 49,698 daltons for the electrophoretically homogeneous fragment. Twenty-five amino acid residues were sequenced directly from the N-terminus of Rta, which allowed the location of the domain in the polypeptide chain of the subunit. Physicochemical parameters were determined by absorption and fluorescence spectroscopy and circular dichroism. Comparison with the respective parameters of the whole Rapana hemocyanin showed that the polypeptide backbone folding, binuclear active site and capability of oxygen binding of the isolated functional unit are identical to those of the native hemocyanin. Comparison of N-terminal sequences of functional units from different molluskan hemocyanins and located at different positions revealed some evolutionary relationships.  相似文献   

18.
We have investigated the conformation of Syrian hamster PrP(C) on the surface of transfected CHO cells by performing cross-competition experiments between a set of nine monoclonal antibody fragments (Fab) directed to defined epitopes throughout the protein. No competition was observed between antibodies recognizing epitopes located within the unstructured N-terminal portion of PrP(C) and those recognizing epitopes located within the ordered C-terminal half of the molecule. However, competition was observed between antibodies recognizing overlapping epitopes and between antibodies recognizing epitopes lying adjacent to one another in the PrP sequence. Titrating the reactivity of each Fab against cell-surface PrP(C) revealed a clear heterogeneity in the accessibility of different specific epitopes. Fab D18, recognizing sequence incorporating the first alpha-helix of PrP(C), bound the largest fraction of the cell-surface PrP population. In contrast, Fab E123, binding an epitope at the extreme N terminus of PrP, and Fab 13A5, binding an epitope in the central region of PrP, were able to recognize fewer than half the number of PrP(C) molecules bound by Fab D18. The pattern of antibody reactivity we observed may, in part, result from N-terminal truncation of a proportion of PrP(C) molecules found at the cell surface. However, truncation cannot account for the marked disparity between exposure of the Fab D18 and 13A5 epitopes, which lie adjacent in the PrP sequence. The relative inaccessibility of the 13A5 epitope likely reflects either PrP(C)-PrP(C) interaction, interaction between PrP(C) and other constituents on the cell membrane, or the existence of PrP(C) subspecies with distinct conformations.  相似文献   

19.
Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells and associated with cancer progression. We present here the extensive characterization of immune complexes involving JAM-A antigen and three monoclonal antibodies (mAbs), including hz6F4-2, a humanized version of anti-tumoral 6F4 mAb identified by a functional and proteomic approach in our laboratory. A specific workflow that combines orthogonal approaches has been designed to determine binding stoichiometries along with JAM-A epitope mapping determination at high resolution for these three mAbs. Native mass spectrometry experiments revealed different binding stoichiometries and affinities, with two molecules of JAM-A being able to bind to hz6F4-2 and F11 Fab, while only one JAM-A was bound to J10.4. Surface plasmon resonance indirect competitive binding assays suggested epitopes located in close proximity for hz6F4-2 and F11. Finally, hydrogen-deuterium exchange mass spectrometry was used to precisely identify epitopes for all mAbs. The results obtained by orthogonal biophysical approaches showed a clear correlation between the determined epitopes and JAM-A binding characteristics, allowing the basis for molecular recognition of JAM-A by hz6F4-2 to be definitively established for the first time. Taken together, our results highlight the power of MS-based structural approaches for epitope mapping and mAb conformational characterization.  相似文献   

20.
Adalimumab and Infliximab are recombinant IgG1 monoclonal antibodies (mAbs) that bind and neutralize human tumor necrosis factor alpha (TNFα). TNFα forms a stable homotrimer with unique surface‐exposed sites for Adalimumab, Infliximab, and TNF receptor binding. Here, we report the structures of Adalimumab‐TNFα and Infliximab‐TNFα complexes modeled from negative stain EM and cryo‐EM images. EM images reveal complex structures consisting of 1:1, 1:2, 2:2, and 3:2 complexes of Adalimumab‐TNFα and Infliximab‐TNFα. The 2:2 complex structures of Adalimumab‐TNFα and Infliximab‐TNFα show diamond‐shaped profiles and the 2D class averages reveal distinct orientations of the Fab domains, indicating different binding modes by Adalimumab and Infliximab to TNFα. After separation by size exclusion chromatography and analysis by negative stain EM, the 3:2 complexes of Adalimumab‐TNFα or Infliximab‐TNFα complexes are more complicated but retain features recognized in the 2:2 complexes. Preliminary cryo‐EM analysis of 3:2 Adalimumab‐TNFα complex generated a low‐resolution density consistent with a TNFα trimer bound with three Fab domains from three individual antibody molecules, while each antibody molecule binds to two molecules of TNFα trimer. The Fc domains are not visible in the reconstruction. These results show the two mAbs form structurally distinct complexes with TNFα.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号