共查询到15条相似文献,搜索用时 8 毫秒
1.
Kumar R Wallis JG Skidmore C Browse J 《The Plant journal : for cell and molecular biology》2006,48(6):920-932
As a model for analyzing the production of novel fatty acids in oilseeds, we used the genetic and molecular techniques available for Arabidopsis to characterize modifying mutations affecting the accumulation of hydroxy fatty acids in the seeds of Arabidopsis plants that express a transgene for the castor bean fatty acid hydroxylase, FAH12. We developed a high-throughput analytical system and used it to identify three complementation classes of mutations with reduced hydroxy fatty acid accumulation from among Arabidopsis M3 seed samples derived from chemical mutagenesis. We identified one of the mutations by positional cloning as a single base pair change in a gene encoding NADH:cytochrome b5 reductase (CBR1, At5g17770). When expressed in yeast, the mutant form of the enzyme was less active and less stable than the wild-type enzyme. Characterization of homozygous mutant lines with and without the FAH12 transgene (FAH12 cbr1-1 and cbr1-1, respectively) indicated that the only detectable consequence of the cbr1-1 mutation was on desaturase and hydroxylase reactions in the developing seed. The leaf and root fatty compositions, as well as the growth, development and seed production of mutant plants were indistinguishable from wild type. Interestingly, while the cbr1-1 mutation reduced the accumulation of hydroxy fatty acids in seeds by 85%, the effects on 18:1 and 18:2 desaturation reactions were much less (<25% and <60%, respectively). These results suggest that there is competition in developing seeds among the several reactions that utilize reduced cytochrome b5. 相似文献
2.
Du J Huang YP Xi J Cao MJ Ni WS Chen X Zhu JK Oliver DJ Xiang CB 《The Plant journal : for cell and molecular biology》2008,56(4):653-664
Here we report on a functional gene-mining method developed to isolate stress tolerance genes without any prior knowledge of the genome or genetic mapping of the source germplasms. The feasibility of this approach was demonstrated by isolating novel salt stress tolerance genes from salt cress (Thellungiella halophila), an extremophile that is adapted to a harsh saline environment and a close relative of the model plant Arabidopsis thaliana. This gene-mining method is based on the expression of salt cress cDNA libraries in Arabidopsis. A cDNA expression library of the source germplasm, salt cress, was constructed and used to transform Arabidopsis via Agrobacterium-mediated gene transfer. A transgenic seed library consisting of >125,000 independent lines was generated and screened for salt-tolerant lines via a high-throughput genetic screen. A number of salt-tolerant lines were isolated, and the salt cress cDNAs were identified by PCR amplification and sequencing. Among the genes isolated, several novel small protein-encoding genes were discovered. The homologs of these genes in Arabidopsis have not been experimentally analyzed, and their functions remain unknown. The function of two genes isolated by this method, ST6-66 and ST225, and their Arabidopsis homologs, were investigated in Arabidopsis using gain- and loss-of-function analyses, and their importance in salt tolerance was demonstrated. Thus, our functional gene-mining method was validated by these results. Our method should be applicable for the functional mining of stress tolerance genes from various germplasms. Future improvements of the method are also discussed. 相似文献
3.
Yu H Tyo K Alper H Klein-Marcuschamer D Stephanopoulos G 《Biotechnology and bioengineering》2008,101(4):788-796
Hyaluronic acid (HA) is an important biomaterial with functional medical and cosmetic applications. As its synthesis has been recently reported in recombinant bacteria, it is of interest to develop a high throughput screening method for the rapid isolation of HA accumulating strains transformed by combinatorial libraries. Here we report a novel two-step screening strategy to select for better HA-producing recombinant Escherichia coli strains transformed by mutation libraries of rpoD and rpoS, coding for the sigma(D) and sigma(S) factors of the RNA polymerase, respectively. The first screen, based on translucent colony morphology identification, was used to qualitatively distinguish HA-producing strains on agar plates from non-HA producing strains that exhibit dense colony morphology. The second screen was based on the photometric measurement of an alcian blue staining solution that precipitates with HA, creating an inverse relationship between HA concentration and alcian blue absorbance. The color attenuation fitted a second-order polynomial between HA concentration and OD(540) absorbance. Using the alcian blue absorbance quantification, 74 translucent colonies from the HA-rpoD library and 78 translucent colonies from the HA-rpoS library were isolated and cultured for optimal strain selection. Three representative superior recombinants with high, medium and low increase of HA accumulation, respectively, were identified by the screen from the HA-rpoD and HA-rpoS mutant library. Further flask culture confirmed that results of the library screen were reliable and the superior recombinant D72 highly accumulated HA of 561.4 mg/L with a productivity of approximately 265 mg HA/g dry cell. Sequencing results showed that the mutant rpoD gene in D72 is in a truncated protein that lacks the conserved regions 3 and 4 of the sigma(D). Generally, this two-step high throughput screen presents a promising strategy for selecting superior HA-producing strains from large scale mutation libraries. 相似文献
4.
Main conclusion
Co-expression of a lesquerella fatty acid elongase and the castor fatty acid hydroxylase in camelina results in higher hydroxy fatty acid containing seeds with normal oil content and viability. Producing hydroxy fatty acids (HFA) in oilseed crops has been a long-standing goal to replace castor oil as a renewable source for numerous industrial applications. A fatty acid hydroxylase, RcFAH, from Ricinus communis, was introduced into Camelina sativa, but yielded only 15 % of HFA in its seed oil, much lower than the 90 % found in castor bean. Furthermore, the transgenic seeds contained decreased oil content and the germination ability was severely affected. Interestingly, HFA accumulation was significantly increased in camelina seed when co-expressing RcFAH with a fatty acid condensing enzyme, LfKCS3, from Physaria fendleri, a native HFA accumulator relative to camelina. The oil content and seed germination of the transgenic seeds also appeared normal compared to non-transgenics. LfKCS3 has been previously characterized to specifically elongate the hydroxylated ricinoleic acid to lesquerolic acid, the 20-carbon HFA found in lesquerella oil. The elongation reaction may facilitate the HFA flux from phosphatidylcholine (PC), the site of HFA formation, into the acyl-CoA pool for more efficient utilization in triacylglycerol (TAG) biosynthesis. This was demonstrated by increased HFA accumulation in TAG concurrent with reduced HFA content in PC during camelina seed development, and increased C20-HFA in HFA-TAG molecules. These effects of LfKCS3 thus may effectively relieve the bottleneck for HFA utilization in TAG biosynthesis and the feedback inhibition to fatty acid synthesis, result in higher HFA accumulation and restore oil content and seed viability. 相似文献5.
Daniele Novarina Georges E. Janssens Koen Bokern Tim Schut Noor C. van Oerle Hinke G. Kazemier Liesbeth M. Veenhoff Michael Chang 《Aging cell》2020,19(2)
To ensure proper transmission of genetic information, cells need to preserve and faithfully replicate their genome, and failure to do so leads to genome instability, a hallmark of both cancer and aging. Defects in genes involved in guarding genome stability cause several human progeroid syndromes, and an age‐dependent accumulation of mutations has been observed in different organisms, from yeast to mammals. However, it is unclear whether the spontaneous mutation rate changes during aging and whether specific pathways are important for genome maintenance in old cells. We developed a high‐throughput replica‐pinning approach to screen for genes important to suppress the accumulation of spontaneous mutations during yeast replicative aging. We found 13 known mutation suppression genes, and 31 genes that had no previous link to spontaneous mutagenesis, and all acted independently of age. Importantly, we identified PEX19, encoding an evolutionarily conserved peroxisome biogenesis factor, as an age‐specific mutation suppression gene. While wild‐type and pex19Δ young cells have similar spontaneous mutation rates, aged cells lacking PEX19 display an elevated mutation rate. This finding suggests that functional peroxisomes may be important to preserve genome integrity specifically in old cells. 相似文献
6.
Engineering of oilseed plants to accumulate unusual fatty acids (FAs) in seed triacylglycerol (TAG) requires not only the biosynthetic enzymes for unusual FAs but also efficient utilization of the unusual FAs by the host-plant TAG biosynthetic pathways. Competing pathways of diacylglycerol (DAG) and subsequent TAG synthesis ultimately affect TAG FA composition. The membrane lipid phosphatidylcholine (PC) is the substrate for many FA-modifying enzymes (desaturases, hydroxylases, etc.) and DAG can be derived from PC for TAG synthesis. The relative proportion of PC-derived DAG versus de novo synthesized DAG utilized for TAG synthesis, and the ability of each pathway to utilize unusual FA substrates, are unknown for most oilseed plants, including Arabidopsis thaliana. Through metabolic labeling experiments we demonstrate that the relative flux of de novo DAG into the PC-derived DAG pathway versus direct conversion to TAG is ~14/1 in wild-type Arabidopsis. Expression of the Ricinus communis FA hydroxylase reduced the flux of de novo DAG into PC by ~70%. Synthesis of TAG directly from de novo DAG did not increase, resulting in lower total synthesis of labeled lipids. Hydroxy-FA containing de novo DAG was rapidly synthesized, but it was not efficiently accumulated or converted to PC and TAG, and appeared to be in a futile cycle of synthesis and degradation. However, FA hydroxylation on PC and conversion to DAG allowed some hydroxy-FA to accumulate in sn-2 TAG. Therefore, the flux of DAG through PC represents a major bottleneck for the accumulation of unusual FAs in TAG of transgenic Arabidopsis seeds. 相似文献
7.
8.
MyROOT: a method and software for the semiautomatic measurement of primary root length in Arabidopsis seedlings 总被引:1,自引:0,他引:1
Isabel Betegn‐Putze Alejandro Gonzlez Xavier Sevillano David Blasco‐Escmez Ana I. Cao‐Delgado 《The Plant journal : for cell and molecular biology》2019,98(6):1145-1156
Root analysis is essential for both academic and agricultural research. Despite the great advances in root phenotyping and imaging, calculating root length is still performed manually and involves considerable amounts of labor and time. To overcome these limitations, we developed MyROOT, a software for the semiautomatic quantification of root growth of seedlings growing directly on agar plates. Our method automatically determines the scale from the image of the plate, and subsequently measures the root length of the individual plants. To this aim, MyROOT combines a bottom‐up root tracking approach with a hypocotyl detection algorithm. At the same time as providing accurate root measurements, MyROOT also significantly minimizes the user intervention required during the process. Using Arabidopsis, we tested MyROOT with seedlings from different growth stages and experimental conditions. When comparing the data obtained from this software with that of manual root measurements, we found a high correlation between both methods (R2 = 0.997). When compared with previous developed software with similar features (BRAT and EZ‐Rhizo), MyROOT offered an improved accuracy for root length measurements. Therefore, MyROOT will be of great use to the plant science community by permitting high‐throughput root length measurements while saving both labor and time. 相似文献
9.
10.
Photoinduction and photoinhibition of germination in seed from a homozygous tobacco (Nicotiana tabacum L.) line containing an introduced oat phyA cDNA (encoding phytochrome A) is compared with that of isogenic wild-type (WT) tobacco. Under continuous irradiation by a light source with a low redfar-red (RFR) ratio the transgenic tobacco seed appeared to be less susceptible to photoinhibition of germination compared with WT seed. However, induction of germination following a short pulse by R (666 nm) was not enhanced in the genotype transformed by oat phyA cDNA compared with the WT; neither did germination of the transgenic tobacco seed show an increased sensitivity to saturating pulses of light of longer wavelengths (666–730 nm). In seeds of transgenic Arabidopsis thaliana (L.) Heynh. which contained an introduced phytochrome-B-encoding cDNA, levels of dark germination were enhanced, consistent with mediation of response by phytochrome B-Pfr. The germination behaviour of Arabidopsis genotypes wich contained an introduced cDNA encoding phytochrome A, however, did not significantly differ from that of the WT.Abbreviations ABO
seed transformed with Arabidopsis phyB
- cDNA; CaMV
cauliflower mosaic virus
- FR
far-red light
- Pfr
far-red-absorbing form of phytochrome
- Ptot
total phytochrome
- Pfr/Ptot
phytochrome photoequilibrium
- R
red light
- RBO
seed transformed with rice phyB cDNA
- RFR
quantum ratio of red and far-red light
- WL
white light
- WL + FR
whitelight supplemented with far-red light
- WT
wild type
The authors wish to thank R.D. Vierstra (Department of Horticulture, University of Wisconsin-Madison, USA) for providing the transgenic tobacco line, and M.T. Boylan, D. Wagner and P.H. Quail (U.C. Berkeley/USDA Plant Gene Expression Center, Albany, Calif. USA) for providing the transgenic Arabidopsis lines. The work presented in this paper was funded by grants from the Agricultural and Food Research Council (H.S., A.C.M., G.C.W.). 相似文献
11.
Noemi Ruiz‐Lopez Richard P. Haslam Johnathan A. Napier Olga Sayanova 《The Plant journal : for cell and molecular biology》2014,77(2):198-208
Omega‐3 (also called n‐3) long‐chain polyunsaturated fatty acids (≥C20; LC‐PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega‐3 LC‐PUFAs, i.e. eicosapentaenoic acid (20:5 n‐3, EPA) and docosahexaenoic acid (22:6 n‐3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega‐3 LC‐PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non‐native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis. 相似文献
12.
Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri 下载免费PDF全文
Patrick J. Horn Jinjie Liu Jean‐Christophe Cocuron Kathleen McGlew Nicholas A. Thrower Matt Larson Chaofu Lu Ana P. Alonso John Ohlrogge 《The Plant journal : for cell and molecular biology》2016,86(4):322-348
13.
Ryoichi Araki Akiko Hasumi Osamu Ishizaki Nishizawa Katsunori Sasaki Ayuko Kuwahara Yuji Sawada Yasushi Totoki Atsushi Toyoda Yoshiyuki Sakaki Yimeng Li Kazuki Saito Toshiya Ogawa Masami Yokota Hirai 《Plant biotechnology journal》2013,11(8):1017-1027
Plants belonging to the Brassicaceae family exhibit species‐specific profiles of glucosinolates (GSLs), a class of defence compounds against pathogens and insects. GSLs also exhibit various human health–promoting properties. Among them, glucoraphanin (aliphatic 4‐methylsulphinylbutyl GSL) has attracted the most attention because it hydrolyses to form a potent anticancer compound. Increased interest in developing commercial varieties of Brassicaceae crops with desirable GSL profiles has led to attempts to identify genes that are potentially valuable for controlling GSL biosynthesis. However, little attention has been focused on genes of kale (Brassica oleracea var. acephala). In this study, we established full‐length kale cDNA libraries containing 59 904 clones, which were used to generate an expressed sequence tag (EST) data set with 119 204 entries. The EST data set clarified genes related to the GSL biosynthesis pathway in kale. We specifically focused on BoMYB29, a homolog of Arabidopsis MYB29/PMG2/HAG3, not only to characterize its function but also to demonstrate its usability as a biological resource. BoMYB29 overexpression in wild‐type Arabidopsis enhanced the expression of aliphatic GSL biosynthetic genes and the accumulation of aliphatic GSLs. When expressed in the myb28myb29 mutant, which exhibited no detectable aliphatic GSLs, BoMYB29 restored the expression of biosynthetic genes and aliphatic GSL accumulation. Interestingly, the ratio of methylsulphinyl GSL content, including glucoraphanin, to that of methylthio GSLs was greatly increased, indicating the suitability of BoMYB29 as a regulator for increasing methylsulphinyl GSL content. Our results indicate that these biological resources can facilitate further identification of genes useful for modifications of GSL profiles and accumulation in kale. 相似文献
14.
Gene cloning of an efficiency oleate hydratase from Stenotrophomonas nitritireducens for polyunsaturated fatty acids and its application in the conversion of plant oils to 10‐hydroxy fatty acids 下载免费PDF全文
Woo‐Ri Kang Min‐Ju Seo Kyung‐Chul Shin Jin‐Byung Park Deok‐Kun Oh 《Biotechnology and bioengineering》2017,114(1):74-82
15.
A combination of gene expression ranking and co‐expression network analysis increases discovery rate in large‐scale mutant screens for novel Arabidopsis thaliana abiotic stress genes 下载免费PDF全文
Vanessa Ransbotyn Esti Yeger‐Lotem Omer Basha Tania Acuna Christoph Verduyn Michal Gordon Vered Chalifa‐Caspi Matthew A. Hannah Simon Barak 《Plant biotechnology journal》2015,13(4):501-513