首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of oscillating dissolved oxygen (DO) concentration on the metabolism of a clonal isolate of the Spodoptera frugiperda IPLB-Sf21-AE insect cell line was investigated. Specifically, the effect on cell growth, re- combinant protein synthesis, glucose and glutamine consumption, and lactate accumulation was determined. Prior to conducting the oscillating DO experiments, it was found that the DO concentration could be reduced to 15% air saturation without adversely affecting the growth rate. Under these conditions, glucose and glutamine became depleted as the maximum cell density was reached. The introduction of DO oscillations, that is, cycles consisting of 30 min at 15% DO followed by 30 min of anoxia, significantly altered cell metabolism, including inhibition of cell growth and recombinant protein synthesis. The effect of DO oscillations on glucose consumption was dependent on the experimental conditions. Glucose exhaustion occurred when the DO oscillations contained either an "apparent" anoxia period (nitrogen sparging discontinued upon reaching 0% DO) without pH control or a "true" anoxia period (nitrogen sparging continued throughout anoxia period) with pH control. Glucose consumption was significantly decreased, however, when the cells were exposed to a "true" anoxia period without pH control, that is, low pH inhibited glucose utilization. Glutamine uptake was not significantly affected by DO oscillations. Lactate only accumulated in the oscillating DO runs, a finding consistent with previous results demonstrating that significant lactate accumulation only occurs under DO-limited conditions. (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
重组毕赤酵母表达工程植酸酶发酵过渡相参数相关分析   总被引:1,自引:0,他引:1  
微生物发酵是一个涉及不同尺度的互相关联的复杂生物系统的过程 ,将重组毕赤酵母表达工程植酸酶过渡相的在线和离线参数进行了相关分析研究。通过对发酵过程的在线细胞代谢生理参数 (OUR)和环境参数 (DO)的变化进行相关分析表明 :甘油和葡萄糖碳源对AOX合成的阻遏强度不同 ,葡萄糖的阻遏性明显强于甘油 ,相对于醇氧化酶启动子 ,葡萄糖为强阻遏性底物。根据甲醇代谢途径关键酶酶活性变化 ,推测出各代谢途径流量分布的变化 ,即甲醇诱导后糖酵解途径和三羧酸循环途径代谢流比例下降 ,而磷酸戊糖途径中代谢流通量上升 ,甲醇完全氧化代谢流成为主要代谢流 ,与过渡相在线参数pH、OUR(CER)和RQ等相关分析的甲醇代谢途径的变化结果一致。此外 ,建立了生产过程在线控制与分析的标准 :当OURCER逐渐增大 ,则可判断甲醇已被利用和启动子已被甲醇成功诱导 ,即工程植酸酶开始启动表达.  相似文献   

3.
Continuous cultures of Saccharomyces cerevisiae are known to exhibit oscillatory behavior in the oxidative region. Important findings of a series of experiments conducted to identify the causes for initiation of and the means for elimination of oscillations in these cultures are reported in this paper. These oscillations are seen to be connected to the growth kinetics of the microorganism and are induced at very low glucose concentrations and at dissolved oxygen (DO) levels that are neither high nor low (DO values between 20 and 78% air saturation at a dilution rate of 0.2 h(-1) and pH of 5.5 at 30 degrees C). The oscillatory behavior is encountered over a range of dilution rates (0.09-0.25 h(-1) at 30 degrees C for pH = 5.5 and DO = 50% air saturation). The oscillations can be eliminated by raising the DO level above a critical value or by lowering the DO level below a critical value.  相似文献   

4.
The murine B-lymphocyte hybridoma, CC9C10 was grown at steady state under serum-free conditions in continuous culture at dissolved oxygen (DO) concentrations in the range of 10% to 150% of air saturation. Cells could be maintained with this range at high viability in a steady state at a dilution rate of 1 d(-1), although with lower cell concentrations at higher DO. A higher specific antibody production measured at higher DO was matched by a decrease in the viable cell concentration at steady state, so that the volumetric antibody titre was not changed significantly. An attempt to grow cells at 250% of air saturation was unsuccessful but the cells recovered to normal growth once the DO was decreased.There was a requirement for cellular adaptation at each step-wise increase in dissolved oxygen. Adaptation to a DO of 100% was associated with an increase in the specific activities of glutathione peroxidase (x18), glutathione S-transferase (x11) and superoxide dismutase (x6) which are all known antioxidant enzymes. At DO above 100%, the activities of GPX and GST decreased possibly as a result of inactivation by reactive oxygen radicals.The increase in dissolved oxygen concentration caused changes in energy metabolism. The specific rate of glucose uptake increased at higher dissolved oxygen concentrations with a higher proportion of glucose metabolized anaerobically. Short-term radioactive assays showed that the relative flux of glucose through glycolysis and the pentose phosphate pathway increased whereas the flux through the tricarboxylic acid cycle decreased at high DO. Although the specific glutamine utilization rate increased at higher DO, there was no evidence for a change in the pattern of metabolism. This indicates a possible blockage of glycolytic metabolites into the TCA cycle, and is compatible with a previous suggestion that pyruvate dehydrogenase is inhibited by high oxygen concentrations.Analysis of the oxygen uptake rate of cell suspensions at steady state under all conditions showed a pronounced Crabtree effect which was manifest by a decrease (up to 40%) in oxygen consumption on addition of glucose. This indicates that the degree of aerobic metabolism in these cultures is highly sensitive to the glucose concentration. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 153-164, 1997.  相似文献   

5.
The effects of dissolved oxygen concentration (DO) on hybridoma cell physiology were examined in a continuous stirred tank bioreactor with a murine hybridoma cell line (167.4G5.3). Dissolved oxygen concentration was varied between 0% and 100% air saturation. Cell growth and viability, carbohydrate, amino acid, and energy metabolism, oxygen uptake, and antibody production rates were investigated. Cell growth was inhibited at both high and low DO. Cells could grow at 0% DO and maintain viability under a nitrogen atmosphere. Cell viability was higher at low DO. Glucose, glutamine, and oxygen consumption rates changed little at DO above 1% air saturation. However, the metabolic uptake rates changed below 1% DO, where growth became oxygen limited, and a Km value of 0.6% DO was obtained for the specific oxygen uptake rate. The metabolic rates of glucose, glutamine, lactate, and ammonia increased 2-3-fold as the DO dropped from 1% to 0%. Amino acid metabolism followed the same general pattern as that of glutamine and glucose. Alanine was the only amino acid produced. The consumption rates of amino acids changed little above 1% DO, but under anaerobic conditions the consumption rates of all amino acids increased severalfold. Cells obtained most of their metabolic energy from glutamine oxidation except under oxygen limitation, when glucose provided most of the energy. The calculated ATP production rate was only slightly influenced by DO and rose at 0% DO. Antibody concentration was highest at 35% DO, while the specific antibody production rate was insensitive to DO.  相似文献   

6.
7.
不同溶氧对谷氨酸棒杆菌代谢的影响   总被引:1,自引:0,他引:1  
【目的】以谷氨酸棒杆菌为研究对象,分别控制在0、30%、50%3种溶氧水平下进行发酵,分析不同溶氧水平下代谢的变化。【方法】通过检测发酵代谢物中有机酸、氨基酸的含量,以及测定代谢途径中关键酶活性及其编码基因的表达情况来考察不同溶氧水平下物质代谢发生的变化。通过检测胞内还原力和ATP的含量来分析不同溶氧水平对能量代谢产生的影响。【结果】谷氨酸棒杆菌代谢支路受溶氧的影响而发生改变,氨基酸、有机酸的产量也随之改变。特别是在低溶氧(0)情况下,细胞内氧化磷酸化减弱,导致维持生命活动所必需的ATP供应减少,因此细胞通过增强底物水平磷酸化来产生ATP以满足生命活动的需求。在此情况下,胞内NADH得到较多积累,TCA循环代谢流量减小,而转向糖酵解、乙醛酸循环等,并且这个过程伴随多种杂酸包括乳酸、缬氨酸、亮氨酸等的产生,必将影响目的产物的产量。【结论】研究结果对于进一步采取措施优化溶氧的控制策略,提高目的产物的产量具有指导意义。  相似文献   

8.
Azospirillum lipoferum crt1 was grown in batch cultures under standard conditions at 85% saturation of dissolved oxygen (DO) and 30-g/liter glucose concentrations. Kinetic studies revealed nutritional limitations of growth and the presence of an initial lag phase prior to consumption of glucose. The influences of various gaseous environments and shear stress on growth, i.e., various conditions of agitation-aeration, were characterized. Faster growth in the first stages of the culture and shorter duration of the lag phase were observed at DO concentrations of <30% saturation. The possible influences of dissolved CO(2) concentration or shear stress or both were discounted, and we confirmed the detrimental effect of high DO levels (up to 80% saturation) and the favorable influence of low DO concentrations (lower than 30% saturation) on growth. It was concluded that the gaseous environment, i.e., the DO concentration, needs to be considered as an operating parameter and be accurately controlled to ensure optimal growth of Azospirillum cells.  相似文献   

9.
A method for on-line, continuous measurement of the oxygen consumption rate (Io2) by mammalian cells on a microcarrier was developed and its reliability investigated. Utilizing the periodic dissolved oxygen (DO) fluctuation in the normal on-off control of DO, on-line, continuous measurement of Io2 was carried out in which real-time estimation of the DO saturation concentration was made by measuring the gas-phase pressure and the gas-phase oxygen concentration. It was found that the continuously measured Io2 value was quantitatively exact and could be applied commercially using the oxidation reaction of glucose by glucose oxidase.  相似文献   

10.
11.
The appearance of sustained oscillations in bioreactor variables (biomass and nutrient concentrations) in continuous cultures of Saccharomyces cerevisiae indicates the complex nature of microbial systems, the inadequacy of current growth kinetic models, and the difficulties which may arise in bioprocess control and optimization. In this study we investigate continuous bioreactor behavior over a range of operating conditions (dilution rate, feed glucose concentration, feed ammonium concentration, dissolved oxygen, and pH) to determine the process requirements which lead to oscillatory behavior. We present new results which indicate that high feed ammonium concentrations may eliminate oscillations and that under oscillatory conditions ammonium levels are generally low and oscillatory as well. The effects of pH are complex and oscillations were only observed at pH values 5.5 and 6.5; no oscillations were observed at a pH of 4.5. Under our nominal operating conditions (feed glucose concentration 10 g/L, dilution rate 0.145 h(-1), feed ammonium concentration 0.0303M, dissolved oxygen level 50%, pH 5.5, and T = 30 degrees C) we found two possible final bioreactor states depending on the transient used to reach the nominal operating conditions. One of the states was oscillatory and characteristic of oxidative metabolism and the other was nonoscillatory and fermentative.  相似文献   

12.
The effect of dissolved oxygen concentration on the metabolism of glucose inPseudomonas putida BM014 was investigated. Glucose was completely converted to 2-ketogluconatevia extracellular oxdative pathway and then taken up for cell growth under the condition of sufficient dissolved oxygen concentration. On the other hand, oxygen limitation below dissolved oxygen tension (DOT) value of 20% of air saturation caused the shift of glucose metabolism from the extracellular oxidative pathway to the intracellular phosphorylative pathway. Specific activities of hexokinase and gluconate kinase in intracellular phosphorylation pathway decreased as the DOT increased, while 2-ketogluconokinase activity in extracellular oxidative pathway increased under the same condition. This result can be usefully applied to microbial transformation of glucose to 2-ketogluconate, the synthetic precursor for iso-vitamine C, with almost 100% yieldvia extracellular oxidation by simple DOT control.  相似文献   

13.
溶氧水平对红豆杉细胞悬浮培养的影响研究   总被引:4,自引:0,他引:4  
紫杉醇 (Taxol)是源自红豆杉提取物的一种高度衍生化的二萜类化合物 ,临床实验结果表明紫杉醇对于卵巢癌、乳腺癌、胃肠道癌等具有明显的抗肿瘤活性[1] ,因而受到世界各国的广泛关注 ,并已被美国食品与药品管理局 (FDA)批准用于卵巢癌与乳腺癌的治疗[2 ] 。到目前为止紫杉醇仍然主要从树皮中提取 ,但由于红豆杉生长缓慢 ,天然资源非常有限 ,加快其替代来源的研究势在必行。利用植物细胞悬浮培养生产紫杉醇作为一种可行的选择 ,近年来取得了较大的进展[3 ,4 ] 。本文研究了摇瓶及 2 0 L反应器培养过程的溶氧水平对细胞生长及紫杉醇…  相似文献   

14.
This study was carried out to examine the metabolism of [1-14C]-, [6-14C]-, and [5-3H]glucose by oocyte-cumulus cell complexes (OCC) and denuded oocytes (DO) and to test the hypothesis that metabolism of glucose through the pentose phosphate pathway is associated with meiotic induction. OCC or DO were cultured in hanging drops suspended from the cap of a microfuge tube, with NaOH serving as a trap to collect released 3H2O or 14CO2. Preliminary experiments established that this culture system supports both spontaneous and ligand-induced meiotic maturation. An initial time course experiment (1.5-6 h) showed that hypoxanthine-treated OCC from eCG-primed animals metabolized glucose principally via glycolysis, with an increase to 2.7-fold in response to FSH. Though more [1-14C]glucose was oxidized than [6-14C]glucose, its metabolism was about two orders of magnitude less than that of [5-3H]glucose. Also, FSH significantly increased oxidation of [1-14C]glucose but not [6-14C]glucose, indicating a preferential activation of the pentose phosphate pathway. Pyrroline carboxylate, an activator of the pentose phosphate pathway, increased the activity of this pathway to over 2-fold but failed to affect glucose oxidation through the tricarboxylic acid cycle. Glycolytic metabolism was increased by 25%. The addition of pyruvate to pyruvate-free medium resulted in significant reduction in the metabolism of all three glucose analogues. In OCC retrieved from hCG-injected, primed mice and cultured under hormone-free conditions, metabolic responses were similar to those in FSH-treated complexes cultured in hypoxanthine. DO metabolized glucose, but at a much reduced rate when compared to OCC. Pyruvate reduced the consumption of all three glucose analogues by DO. Pyrroline carboxylate reduced [5-3H]glucose metabolism by DO but had little effect on [1-14C]- and [6-14C]glucose oxidation. These data demonstrate metabolism of glucose by both DO and OCC, but reveal that cumulus cells are more active than the oocyte in this regard. In addition, induction of maturation by FSH, hCG, or pyrroline carboxylate was accompanied by a significant increase in the oxidation of [1-14C]glucose but not [6-14C]glucose by OCC, supporting a proposed role for the pentose phosphate pathway in meiotic induction.  相似文献   

15.
Azospirillum lipoferum crt1 was grown in batch cultures under standard conditions at 85% saturation of dissolved oxygen (DO) and 30-g/liter glucose concentrations. Kinetic studies revealed nutritional limitations of growth and the presence of an initial lag phase prior to consumption of glucose. The influences of various gaseous environments and shear stress on growth, i.e., various conditions of agitation-aeration, were characterized. Faster growth in the first stages of the culture and shorter duration of the lag phase were observed at DO concentrations of <30% saturation. The possible influences of dissolved CO2 concentration or shear stress or both were discounted, and we confirmed the detrimental effect of high DO levels (up to 80% saturation) and the favorable influence of low DO concentrations (lower than 30% saturation) on growth. It was concluded that the gaseous environment, i.e., the DO concentration, needs to be considered as an operating parameter and be accurately controlled to ensure optimal growth of Azospirillum cells.  相似文献   

16.
Baker's yeast, Saccharomyces cerevisiae, was investigated for the combined influence of dissolved oxygen and glucose concentration in continuous culture. A reactor was operated at a range of dilution rates (0.1, 0.2, 0.25, 0.27, and 3.0 h(-1)), above and below the critical value that separates the oxidative and fermentation regions. For each dilution rate (D), steady states were established at each of five to ten different dissolved oxygen concentrations (DO) in the range of 0.01-5 mg/L. The use of on-line mass spectrometry facilitated the measurement of gaseous and dissolved O(2), CO(2), and ethanol. Intracellular carbohydrate, protein, RNA, DNA, lipid, and cytochrome concentrations were measured. Cell size measurements were reduced to specific surface areas. Cytochrome content showed up to 100% variation during a 20-day period of adaptation at D = 0.2 h(-1) to low DO. Eventually, the culture behaved the same at DO = 0.05 mg/L as it did initially at 3 mg/L. At D = 0.2, 0.25, and 0.27 h(-1), the transition between oxidation and fermentation was characterized by a critical DO which decreased with decreasing D. The X-D curves were shifted such that the critical D value was reduced with decreasing DO. Specific oxygen update rates varied with DO according to the saturation kinetics. Specific cell surface areas increased with decreasing DO. Cytochrome content generally decreased with decreasing DO, and Q(O(2) ) could be linearly related to the total cytochrome content, which exhibited a maximum at D = 0.27 h(-1).  相似文献   

17.
Oxygen transport is a major limitation in large-scale mammalian cell culture. The effects of the dissolved oxygen concentration (DO; from 0.1 to 100% saturation with air) on Sp2/0-derived mouse hybridomas were investigated using continuous culture. The steady-state concentration of viable cells increased with decreasing DO until a critical dissolved oxygen concentration of 0.5% of air saturation was reached. The cell concentration declined at lower DO because of incomplete glutamine oxidation, and the specific lactate production from glucose increased to offset the reduced energy production from glutamine. Cell viability increased as the DO was decreased; the viability continued to increase even when the DO was reduced below 0.5%. The specific oxygen uptake rate was essentially constant for DO greater than or equal to 10% of air saturation and then decreased with decreasing DO. The P/O ratio (ATP molecules produced per O atom consumed) appears to change from 2 to 3 between 10 and 0.5% DO. The specific ATP production rate calculated using this assumption decreases only slightly with decreasing DO. The optimum DO of 50% for antibody production is different than the optimum (approximately 0.5% DO) for cell growth.  相似文献   

18.
The influence of dilution rate and dissolved oxygen concentration on continuous production of 2,5-diketogluconic acid (2,5-DKGA) by Gluconobacter oxydans subsp. melanogenum is described. Under suitable dissolved oxygen conditions, the glucose oxidation rate is independent of variations in dilution rates over a wide range (D < 0.33 h−1). The higher dilution rate, however, leads to a partial oxidation of the substrate and therefore accumulation of more gluconic acid. Contrary to this, a longer residence time (lower dilution rate) was more suitable for better ketogenic activity, thereby facilitating accumulation of 2,5-DKGA in higher yields. A high dissolved oxygen concentration is further shown to positively influence the overall oxidation process through an organized induction of membrane-bound NAD(P)+-independent dehydrogenases.  相似文献   

19.
Quantitative estimates of intracellular fluxes and measurements of intracellular concentrations were used to evaluate the effect of dissolved oxygen (DO) concentration on CRL 1606 hybridoma cells in batch culture. The estimates of intracellular fluxes were generated by combining material balances with measurements of extracellular metabolite rates of change. Experiments were performed at DO levels of 60% and 1% air saturation, as well as under oxygen-limited conditions. Cell extracts were analyzed to evaluate the effect of DO on the intracellular concentrations of the glutamate dehydrogenase reactants, as well as the redox state of the pyridine nucleotides in the cytosol and mitochondria. The relationship between cell density and pyridine nucleotide redox state was also investigated. Dissolved oxygen concentration had a significant effect on nitrogen metabolism and the flux through glutamate dehydrogenase was found to reverse at low DO, favoring glutamate formation. The NAD in the cytosol and mitochondria was more reduced under low DO conditions while the cytosolic NAD was more oxidized at low DO. Cytosolic NAD was reduced at higher cell densities while the redox states of cytosolic NADP and mitochondrial NAD did not exhibit significant variation with cell density. These results point to the fundamental role of the intracellular oxidation/reduction state in cell physiology and the possibility of controlling physiological processes through modulation of the dissolved oxygen level or the oxidation/reduction potential of the culture.  相似文献   

20.
Effect of oxygen supply on cordycepin production was investigated in submerged cultivation of Cordyceps militaris, a famous traditional Chinese medicinal mushroom, in a 5-L turbine-agitated bioreactor (TAB). Initial volumetric oxygen transfer coefficient (kLa) within the range of 11.5-113.8 h(-1) had significant influence on cordycepin production. The highest cordycepin concentration of 167.5 mg/L was obtained at an initial kLa value of 54.5 h(-1), where a moderate dissolved oxygen (DO) pattern was observed throughout cultivation. The possible correlation between cordycepin production and DO level was explored by DO control experiments, and the results showed that DO within the range of 10-80% of air saturation greatly affected the cultivation process. To obtain a high specific cordycepin formation rate (rho) throughout cultivation, a two-stage DO control strategy was developed based on the analysis of the relationship of rho and DO. That is, DO was controlled at 60% from the beginning of cultivation and then shifted to a lower control level of 30% when rho started to decrease. As a result, a high cordycepin production of 201.1 mg/L and a high productivity of 15.5 mg/(L.d) were achieved, which was enhanced by about 15% and 30% compared to the highest titers obtained in conventional DO control experiments, respectively. The proposed DO control strategy was also applied to a recently developed 5-L centrifugal impeller bioreactor (CIB) with cordycepin production and productivity titers of 188.3 mg/L and 14.5 mg/(L.d). Furthermore, the scale-up of the two-stage DO control process from 5-L CIB to 30-L CIB was successfully demonstrated. The work is useful for the efficient large-scale production of bioactive metabolites by mushroom cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号