首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of protein and ribonucleic acid (RNA) synthesis in cells infected by foot-and-mouth disease virus has indicated possible mechanisms of viral control over host cell metabolism. Foot-and-mouth disease virus infection of baby hamster kidney cells resulted in 50% inhibition of host cell protein synthesis at 180 min postinfection. A viral-induced interference with host cell RNA methylation was observed to be more rapidly inhibited than protein synthesis. To determine the nature of methylation inhibition, the kinetics of several host cell methylated RNA species were examined subsequent to virus infection. Data from sucrose zonal centrifugation and methylated albumin kieselguhr chromatography showed that methylation of nuclear RNA was inhibited 50% at 60 min postinfection. Inhibition of nuclear ribosomal RNA precursors and formation of nascent ribosomes correlated with inhibition kinetics of nuclear RNA methylation. It is suggested that the viral interference with the host nuclear RNA methylation is directly responsible for the observed loss of nascent ribosome formation. Moreover, early in the infectious cycle, methylation inhibition of host cell RNA could, in part, account for the cessation of host protein synthesis.  相似文献   

2.
The kinetics of host ribonucleic acid (RNA) degradation and its resynthesis into Bdellovibrio-specific polyribonucleotides has been studied. The kinetics of RNA turnover was followed during a one-step synchronous growth cycle of Bdellovibrio growing within 32PO4-labeled Escherichia coli host cells. The species of labeled RNA present at any given time was ascertained through the specificity of the deoxyribonucleic acid (DNA)/RNA hybridization technique. At nearsaturating levels of RNA and at zero time, 7% of the host DNA sequences and only 0.04% of the Bdellovibrio DNA became hybridized with 32P-labeled host cell RNA (greater than 99% host specific). At the end of the burst, 98% of the labeled RNA sequences were specific for Bdellovibrio DNA. About 74% of the initial labeled host cell RNA became turned over into Bdellovibrio-specific sequences. We provide data indicating that host cell ribosomal RNA is assimilated by Bdellovibrio. Degradation of host cell RNA occurs in a gradual fashion over most of the Bdellovibrio developmental growth cycle. This application of the DNA/RNA hybridization technique and its general concept should be of value in elucidating the kinetics of nucleic acid turnover in other types of host-parasite systems.  相似文献   

3.
Eukaryotic RNA viruses are known to utilize host factors; however, the identity of these factors and their role in the virus life cycle remain largely undefined. Here, we report a method to identify proteins bound to the viral RNA during amplification in cell culture: thiouracil cross-linking mass spectrometry (TUX-MS). TUX-MS relies on incorporation of a zero-distance cross-linker into the viral RNA during infection. Proteins bound to viral RNA are cross-linked prior to cell lysis, purified, and identified using mass spectrometry. Using the TUX-MS method, an unbiased screen for poliovirus (PV) host factors was conducted. All host and viral proteins that are known to interact with the poliovirus RNA were identified. In addition, TUX-MS identified an additional 66 host proteins that have not been previously described in poliovirus amplification. From these candidates, eight were selected and validated. Furthermore, we demonstrate that small interfering RNA (siRNA)-mediated knockdown of two of these uncharacterized host factors results in either a decrease in copy number of positive-stranded RNA or a decrease in PV translation. These data demonstrate that TUX-MS is a robust, unbiased method to identify previously unknown host cell factors that influence virus growth. This method is broadly applicable to a range of RNA viruses, such as flaviviruses, alphaviruses, picornaviruses, bunyaviruses, and coronaviruses.  相似文献   

4.
Regulatory agencies have stringent requirements for the large-scale production of biotherapeutics. One of the difficulties associated with the manufacture of plasmid DNA for gene therapy is the removal of the host cell-related impurity RNA following cell lysis. We have constructed a modified Escherichia coli JM107 plasmid host (JMRNaseA), containing a bovine pancreatic ribonuclease (RNaseA) expression cassette, integrated into the host chromosome at the dif locus. The expressed RNaseA is translocated to the periplasm of the cell, and is released during primary plasmid extraction by alkaline lysis. The RNaseA protein is stable throughout incubation at high pH ( approximately 12-12.5), and subsequently acts to hydrolyse host cell RNA present in the neutralised solution following alkaline lysis. Results with this strain harbouring pUC18, and a 2.4 kb pUC18DeltalacO, show that sufficient levels of ribonuclease (RNase) activity are produced to hydrolyse the bulk of the host RNA. This provides a suitable methodology for the removal of RNA, whilst avoiding the addition of exogenous animal sourced RNase and its associated regulatory requirements.  相似文献   

5.
6.
Seven different tissue culture cells have been cultured with and without mycoplasma (M. hyorhinis) in the presence of various precursors of RNA. Total cellular RNA was isolated and analysed by electrophoresis on polyacrylamide gels. The results obtained with mycoplasma-infected cells can be summarized as follows:
1. 1. When cells are labelled with [8-3H]guanosine or [5-3H]uridine there is some incorporation into host cell 28S and 18S rRNA, but it is less than into mycoplasma 23S and 16S rRNA. [8-3H]guanosine or [5-3H]uridine are also incorporated into host cell and mycoplasma tRNA and mycoplasma 4.7S RNA, but the incorporation into host cell 5S rRNA and low molecular weight RNA components (LMW RNA) is reduced.
2. 2. [5-3H]uracil is not incorporated into host cell RNA but into mycoplasma tRNA, 4.7S RNA, a mycoplasma low molecular weight RNA component M1 and 23S and 16S rRNA.
3. 3. [3H]methyl groups are incorporated into mycoplasma tRNA, 23S and 16S rRNA, but not into host cell 28S, 18S, 5S rRNA nor into mycoplasma 4.7S RNA.
4. 4. With [32P]orthophosphate or [3H]adenosine as precursors, the labelling is primarily in the host RNA.
Mycoplasma infection influences the labelling of RNA primarily by an effect on the utilization of the exogenously added radioactive RNA precursors, since the generation time of mycoplasma infected cells is about the same as that of uninfected cells. Mycoplasma infection may completely prevent the identification of LMW RNA components.  相似文献   

7.
8.
Moloney murine leukemia virus (MLV) particles contain both viral genomic RNA and an assortment of host cell RNAs. Packaging of virus-encoded RNA is selective, with virions virtually devoid of spliced env mRNA and highly enriched for unspliced genome. Except for primer tRNA, it is unclear whether packaged host RNAs are randomly sampled from the cell or specifically encapsidated. To address possible biases in host RNA sampling, the relative abundances of several host RNAs in MLV particles and in producer cells were compared. Using 7SL RNA as a standard, some cellular RNAs, such as those of the Ro RNP, were found to be enriched in MLV particles in that their ratios relative to 7SL differed little, if at all, from their ratios in cells. Some RNAs were underrepresented, with ratios relative to 7SL several orders of magnitude lower in virions than in cells, while others displayed intermediate values. At least some enriched RNAs were encapsidated by genome-defective nucleocapsid mutants. Virion RNAs were not a random sample of the cytosol as a whole, since some cytoplasmic RNAs like tRNA(Met) were vastly underrepresented, while U6 spliceosomal RNA, which functions in the nucleus, was enriched. Real-time PCR demonstrated that env mRNA, although several orders of magnitude less abundant than unspliced viral RNA, was slightly enriched relative to actin mRNA in virions. These data demonstrate that certain host RNAs are nearly as enriched in virions as genomic RNA and suggest that Psi- mRNAs and some other host RNAs may be specifically excluded from assembly sites.  相似文献   

9.
Hijacking the translation apparatus by RNA viruses   总被引:14,自引:0,他引:14       下载免费PDF全文
As invading viruses do not harbor functional ribosomes in their virions, successful amplification of the viral genomes requires that viral mRNAs compete with cellular mRNAs for the host cell translation apparatus. Several RNA viruses have evolved remarkable strategies to recruit the host translation initiation factors required for the first steps in translation initiation by host cell mRNAs. This review describes the ways that three families of RNA viruses effectively usurp limiting translation initiation factors from the host.  相似文献   

10.
11.
Cytopathogenesis and inhibition of host gene expression by RNA viruses.   总被引:1,自引:0,他引:1  
Many viruses interfere with host cell function in ways that are harmful or pathological. This often results in changes in cell morphology referred to as cytopathic effects. However, pathogenesis of virus infections also involves inhibition of host cell gene expression. Thus the term "cytopathogenesis," or pathogenesis at the cellular level, is meant to be broader than the term "cytopathic effects" and includes other cellular changes that contribute to viral pathogenesis in addition to those changes that are visible at the microscopic level. The goal of this review is to place recent work on the inhibition of host gene expression by RNA viruses in the context of the pathogenesis of virus infections. Three different RNA virus families, picornaviruses, influenza viruses, and rhabdoviruses, are used to illustrate common principles involved in cytopathogenesis. These examples were chosen because viral gene products responsible for inhibiting host gene expression have been identified, as have some of the molecular targets of the host. The argument is made that the role of the virus-induced inhibition of host gene expression is to inhibit the host antiviral response, such as the response to double-stranded RNA. Viral cytopathogenesis is presented as a balance between the host antiviral response and the ability of viruses to inhibit that response through the overall inhibition of host gene expression. This balance is a major determinant of viral tissue tropism in infections of intact animals.  相似文献   

12.
Rotaviruses are double-stranded RNA viruses that are a major cause of viral diarrhea in infants. Examining virus–host cell interaction is important for elucidating mechanisms of virus proliferation in host cells. Viruses can create an environment that promotes their survival and self-proliferation by encoding miRNAs or miRNA-like molecules that target various host cell. However, it remains unclear whether RNA viruses encode viral miRNAs, and their regulation mechanisms are largely unknown. We previously performed deep sequencing analysis to investigate rotavirus-encoded miRNAs, and identified the small RNA molecule Chr17_1755, which we named RV-vsRNA1755. In our present study, we determined that RV-vsRNA1755 is encoded by the rotavirus NSP4 gene and that it targets the host cell IGF1R, which is part of the PI3K/Akt pathway. We further explored the biological characteristics and functions of RV-vsRNA1755.Our results suggest that rotavirus adapts to manipulate PI3K/Akt signaling at early phases of infection. RV-vsRNA1755 targets IGF1R, blockading the PI3K/Akt pathway and triggering autophagy, but it ultimately inhibits autophagy maturation. A mechanism through which rotavirus encodes a virus-like small RNA (RV-vsRNA1755) that triggers autophagy by targeting the host cell IGF1R gene was revealed. These data provide a theoretical basis for therapeutic drug screening targeting RV-vsRNA1755.  相似文献   

13.
The influenza virus surface glycoprotein hemagglutinin (HA) is responsible for viral attachment to sialic acid-containing host cell receptors and it facilitates the initial stage of viral infection. In the present study, we isolated an RNA aptamer specific to the glycosylated receptor-binding domain of the HA protein (gHA1) after 12 cycles of the systematic evolution of ligands by exponential enrichment procedure (SELEX), and we then investigated if the selected aptamer suppresses viral infection in host cells. Nitrocellulose filter binding and enzyme-linked immunosorbent assay (ELISA) experiments revealed that 1 RNA aptamer, HA12-16, bound specifically to the gHA1 protein. Cell viability assay showed that the HA12-16 RNA aptamer suppressed viral infection in host cells by enhancing cell viability. Immunofluorescence microscopic analysis further demonstrated that the HA12-16 RNA aptamer suppresses viral attachment to host cells by neutralizing the receptor-binding site of influenza virus HA. These results indicate that the isolated RNA aptamer can be developed as an antiviral reagent against influenza through appropriate therapeutic formulation.  相似文献   

14.
Kikumori T  Cote GJ  Gagel RF 《FEBS letters》2002,522(1-3):41-46
The impact of viral infection on normal host RNA processing remains largely unexplored. We postulated that the high abundance of virally derived nuclear RNA in infected cells could impact host cell RNA splicing and viability. To test for aberrant RNA splicing we examined trans-splicing following infection with the replication-competent adenovirus mutant d11520 that lacks E1B 55 kDa protein. Trans-splicing was observed between viral RNA and several cellular precursor mRNAs, including beta-actin and glyceraldehyde-3-phosphate dehydrogenase. Using a tetracycline-inducible model system simulating viral trans-splicing activity we observed that overexpression of a trans-splicing RNA specifically inhibited cell proliferation. These results demonstrate that heterologous trans-splicing occurs naturally during adenovirus infection and suggest that trans-splicing may contribute to disruption of cell function.  相似文献   

15.
Trypanosoma cruzi causing Chagas' disease needs to invade host cells to complete its life cycle. Macromolecules on host cell surfaces such as laminin, thrombospondin, heparan sulfate, and fibronectin are believed to be important in mediating parasite-host cell adhesions and in the invasion process of the host cell by the parasite. The SELEX technique (systematic evolution of ligands by exponential enrichment) was used to evolve nuclease-resistant RNA ligands (aptamer = to fit) that bind with affinities of 40-400 nm to parasite receptors for the host cell matrix molecules laminin, fibronectin, thrombospondin, and heparan sulfate. After eight consecutive rounds of in vitro selection four classes of RNA aptamers based on structural similarities were isolated and sequenced. All members of each class shared a common sequence motif and competed with the respective host cell matrix molecule that was used for displacement during the selection procedure. RNA pools following seven and eight selection rounds as well as individual aptamers sharing consensus motifs were active in inhibiting invasion of LLC-MK(2) monkey kidney cells by T. cruzi in vitro.  相似文献   

16.
17.
Cytopathogenesis and Inhibition of Host Gene Expression by RNA Viruses   总被引:13,自引:0,他引:13       下载免费PDF全文
Many viruses interfere with host cell function in ways that are harmful or pathological. This often results in changes in cell morphology referred to as cytopathic effects. However, pathogenesis of virus infections also involves inhibition of host cell gene expression. Thus the term “cytopathogenesis,” or pathogenesis at the cellular level, is meant to be broader than the term “cytopathic effects” and includes other cellular changes that contribute to viral pathogenesis in addition to those changes that are visible at the microscopic level. The goal of this review is to place recent work on the inhibition of host gene expression by RNA viruses in the context of the pathogenesis of virus infections. Three different RNA virus families, picornaviruses, influenza viruses, and rhabdoviruses, are used to illustrate common principles involved in cytopathogenesis. These examples were chosen because viral gene products responsible for inhibiting host gene expression have been identified, as have some of the molecular targets of the host. The argument is made that the role of the virus-induced inhibition of host gene expression is to inhibit the host antiviral response, such as the response to double-stranded RNA. Viral cytopathogenesis is presented as a balance between the host antiviral response and the ability of viruses to inhibit that response through the overall inhibition of host gene expression. This balance is a major determinant of viral tissue tropism in infections of intact animals.  相似文献   

18.
19.
The ability of poliovirus that was irradiated with UV light at energies up to 2,160 ergs/mm2 to subsequently inhibit host cell protein synthesis was measured. The inactivation of the host cell shutoff function followed one-hit kinetics. Increasing irradiation did not affect the rate of inhibition until the multiplicity of infection after irradiation was reduced to approximately 1 PFU/cell. At higher functional multiplicities, the rate was unchanged, but an increasing lag before the onset of inhibition was observed with increasing irradiation. The energy levels required to inactivate virus-induced inhibition of host cell protein synthesis suggest that damage to virus RNA rather than to virus capsid proteins is responsible for the loss of function. When the inactivation of host cell shutoff was compared with the inactivation of other viral functions by UV irradiation, it correlated exactly with the loss of infectivity but not with other viral functions measured. Guanidine treatment, which prevents detectable viral RNA and protein synthesis, completely inhibited host cell shutoff by low multiplicities of unirradiated virus infection but not higher multiplicities. When a high multiplicity of virus was first reduced to a low titer by irradiation, host cell shutoff was still evident in the presence of guanidine. The results demonstrate that the complete inhibition of host cell protein synthesis can be accomplished by one infectious viral genome per cell.  相似文献   

20.
Viruses are extremely abundant in seawater and are believed to be significant pathogens to photosynthetic protists (microalgae). Recently, several novel RNA viruses were found to infect marine photosynthetic protists; one of them is HcRNAV, which infects Heterocapsa circularisquama (Dinophyceae). There are two distinct ecotypes of HcRNAV with complementary intraspecies host ranges. Nucleotide sequence comparison between them revealed remarkable differences in the coat protein coding gene resulting in a high frequency of amino acid substitutions. However, the detailed mechanism supporting this intraspecies host specificity is still unknown. In this study, virus inoculation experiments were conducted with compatible and incompatible host-virus combinations to investigate the mechanism determining intraspecies host specificity. Cells were infected by adding a virus suspension directly to a host culture or by transfecting viral RNA into host cells by particle bombardment. Virus propagation was monitored by Northern blot analysis with a negative-strand-specific RNA probe, transmission electron microscopy, and a cell lysis assay. With compatible host-virus combinations, propagation of infectious progeny occurred regardless of the inoculation method used. When incompatible combinations were used, direct addition of a virus suspension did not even result in viral RNA replication, while in host cells transfected with viral RNA, infective progeny virus particles with a host range encoded by the imported viral RNA were propagated. This indicates that the intraspecies host specificity of HcRNAV is determined by the upstream events of virus infection. This is the first report describing the reproductive steps of an RNA virus infecting a photosynthetic protist at the molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号